Date of Award

9-2016

Degree Name

MS in Polymers and Coatings

Department

Chemistry & Biochemistry

Advisor

Dr. Raymond H. Fernando

Abstract

A Comparison of Solvent and Water-Borne Alkyd Coatings Abstract

Conventional solvent based alkyd coatings have gone out of favor due to concerns over volatile organic compound (VOC) content. However, due to recent focus on renewable raw materials, alkyds are making a comeback in waterborne form. Water based alkyd coatings are known to have poor shelf stability and corrosion resistance, as well as other problems during the formulation process. This project focused on comparing solvent borne to two types of water-borne alkyds, water reducible alkyds and alkyds emulsions. The purpose was to understand the differences between the three types of alkyds in terms of their production and final properties. It was ultimately hoped that the formulations used for this project would prove to solve the problems normally experienced by waterborne alkyds.

After testing several chemical and physical properties, it was determined that the solvent borne alkyd coatings performed better than both water based systems in corrosion resistance, accelerated weathering, and shelf stability but the water reducible and emulsion alkyd coatings performed similarly to the solvent borne alkyd in gloss, contrast ratio, and durability. The VOC emissions for all three alkyd types were as expected; the solvent borne had the highest emission at 253 g/L, followed by water reducible with 166 g/L, and emulsion with 34 g/L.

The History of VOC Regulations in the United States Abstract

In another solvent based alkyd coating focused project within my research group, the question of the how volatile organic compound (VOC) regulation in the United States (U.S.) evolved came up. It quickly became apparent that no comprehensive answer to this question existed. Part two of this project is an attempt to answer this question in a comprehensive manner.

VOC regulations started in California in the late 1970s, and paints and coatings became a nationally regulated emission source by the 1990s. The U.S. government limited harmful emissions, such as smog and compounds contributing to ozone depletion, through Clean Air Acts. The first Clean Air Act was enacted in 1965, but it wasn’t until the Clean Air Act of 1990 that VOC emissions became a focus. VOCs are not inherently hazardous but are a source of concern because they serve as a precursor to the formation of damaging ground level ozone.

The Environmental Protection Agency (EPA) has established the minimum VOC emission limits in the Architectural and Industrial Maintenance (AIM) federal rule, but each state or state subdivision can enforce stricter limits within their borders. The strictest limits are set by the South Coast Air Quality Management District (SCAQMD) in Southern California, but other entities exist. This report thoroughly documents the history of VOC regulation in the United States by collecting, combining, organizing, and summarizing information gathered from various industries and government publications, agency members, and industrial and academic professionals.