Date of Award

4-2017

Degree Name

MS in Electrical Engineering

Department

Electrical Engineering

Advisor

Art MacCarley

Abstract

Every year the automotive industry strives to increase fuel efficiency in vehicles. When most vehicles are designed, fuel efficiency cannot always come first. The Shell Eco-marathon changes that by challenging students everywhere to develop the most fuel-efficient vehicle possible. There are many different factors that affect fuel efficiency, and different teams focus on different vehicle parameters. Currently, there is no straightforward design tool that can be used to help in Shell Eco-marathon vehicle design. For this reason, it is difficult to optimize every vehicle parameter for maximum fuel efficiency.

In this study, a simulation is developed by using basic vehicle models and experimental data to accurately represent any prototype-class vehicle in the Shell Eco-marathon. This simulation is verified using different experimental data from an on-vehicle data acquisition system. An easy-to-use design tool is developed, and this tool is used to optimize driving strategy and final drive ratio to maximize fuel efficiency.

Share

COinS