Date of Award

8-2009

Degree Name

MS in Civil and Environmental Engineering

Department

Civil and Environmental Engineering

Advisor

Yarrow Nelson, Tryg Lundquist

Abstract

Co-precipitation and absorption methods were investigated for removal of boron from produced water, which is groundwater brought to the surface during oil and natural gas extraction. Boron can be toxic to many crops and often needs to be controlled to low levels in irrigation water. The present research focused on synthetic reverse osmosis (RO) concentrate modeled on concentrate expected from a future treatment facility at the Arroyo Grande Oil Field on the central coast of California. The produced water at this site is brackish with a boron concentration of 8 mg/L and an expected temperature of 80°C. The future overall produced water treatment process will include lime softening, micro-filtration, cooling, ion exchange, and finally RO. Projected boron concentrations in the RO concentrate are 20 to 25 mg/L. Concentrate temperature will be near ambient. This RO concentrate will be injected back into the formation. To prevent an accumulation of boron in the formation, it is desired to reduce boron concentrations in this concentrate and partition the boron into a solid sludge that could be transported out of the area. The primary method explored for boron removal during this study was adsorption and co-precipitation by magnesium chloride. Some magnesium oxide tests were also conducted. Jar testing was used to determine the degree of boron removal as a function of initial concentration, pH, temperature, and reaction time. Synthetic RO concentrate was used to control background water quality factors that could potentially influence boron removal. The standard synthetic RO concentrate contained 8 g NaCl/L, 150 mg Si/L and 30 mg B/L. After synthetic RO concentrate was prepared, amendments (e.g. sulfate, sodium chloride) were added and the pH adjusted to the desired value. Each solution was then carried through a mixing and settling protocol (5 min at 200 RPM, 10 min at 20 RPM, followed by 30 min settling and filtration). Boron concentrations from the jar tests were determined using the Carmine colorimetric method.

Boron removal with magnesium chloride was greatest at a pH of 11.0. At this pH 87% of boron was removed using 5.0 g/L MgCl2◦6H2O at 20°C. Mixing time did not greatly affect boron removal for mixing periods of 5 to 1321 minutes. This result indicates equilibrium was achieved during the 45-min experimental protocol.

Maximum boron removal was observed in the temperature range of 29°C to 41°C. At 68°C boron removal decreased five-fold compared to the reduction observed at 29°C to 41°C. For treatment of the cool concentrate, this relatively low optimal temperature range gives magnesium chloride an advantage over magnesium oxide, which is effective only at high temperatures. Neither sodium chloride nor sodium sulfate affected boron removal by magnesium chloride for the chloride and sulfate concentrations expected in the produced water at this site. In contrast, silica did inhibit boron removal, with removal decreasing from 30% to 5% when silica concentration was increased from 0 to 100 mmols/L. This result was unexpected because other researchers have reported silica is necessary for effective removal of boron by magnesium chloride.

To investigate the reasons for the differing boron removal results for magnesium chloride and magnesium oxide, solids produced by the two reagents were compared using X-ray diffraction spectroscopy (XRD). Solids from magnesium chloride contained 30% amorphous material versus 10% for magnesium oxide. The crystalline components from the magnesium oxide treatment were for the most part magnesium oxide, whereas magnesium chloride crystalline solids were a combination of brucite (Mg(OH)2) and magnesium chloride hydroxide. The greater boron adsorption observed with magnesium chloride could thus either be attributed to the greater surface area of the amorphous precipitate and/or the higher boron affinity of brucite and magnesium chloride hydroxide.

Adsorption isotherms were plotted for boron removal by magnesium compounds formed during precipitation. Boron adsorption followed a linear isotherm (r2= 0.92) for boron concentrations up to 37.8 mg B/L. While the data also fit Langmuir and Freundlich models the data fell in the linear range of those models. The linearity of the adsorption curves indicates that adsorption sites for boron were not saturated at these concentrations. The linearity means that higher boron concentrations in the RO concentrate will lead to greater mass removal, up to concentrations of at least 37.8 mg/L boron.

Using magnesium chloride, boron removal by co-precipitation was more effective than by adsorption to pre-formed precipitate. Removal approximately doubled for a given dose of magnesium chloride. The effectiveness of co-precipitation presumably occurs due to entrapment of boron as the precipitate forms.

This study has shown the potential of magnesium chloride as an agent for boron removal by determining those conditions most effective for boron co-precipitation and adsorption. Magnesium chloride has been shown to be more effective than magnesium oxide. Magnesium chloride also out-performed treatment with slaked quicklime, which was tested previously by others. Two important limitations of boron removal with magnesium chloride are the high chemical requirements (5 g/L MgCl2) and sludge production (1 g/g MgCl2 used). These are greatly mitigated by treatment of RO concentrate rather than the full produced water flow. In addition, reagent use and sludge production might be decreased by recycling sludge from the up-front lime softening process. Compared to magnesium oxide, magnesium chloride removes greater quantities of boron per mole of magnesium added (20 mg B/g MgCl2). The magnesium chloride isotherm demonstrated that treatment of RO concentrate required less reagent and produced less sludge per mass of boron removed than treatment of the more dilute feed water.

Share

COinS