Date of Award


Degree Name

MS in Electrical Engineering


Electrical Engineering


Dr. Dennis Derickson, Ph.D.


Cal Poly’s PolySat CubeSat satellites have begun to conduct more complex and scientifically significant experiments. The large data products generated by these missions demonstrate the necessity for higher data rate communication than currently provided by the PolySat UHF radio. This thesis leverages the proliferation of consumer wireless monolithic transceivers to develop a 250kbps to 2000kbps, 2W CubeSat radio operating within the 2.45GHz Industrial, Scientific, and Medical (ISM) radio band.

Estimating a link budget for a realistic CubeSat leads to the conclusion that this system will require a large deployable CubeSat antenna, large earth station satellite dish, and a fine-pointing attitude control system. Noise floor measurements of a CubeSat ground station demonstrate that terrestrial ISM interference can be minimized to below the thermal noise floor by carefully choosing the operating frequency.

The radio is specifically designed as a daughter board for the PolySat System Board with a direct interface to the embedded Linux microprocessor. A state-of-the-art ZigBee transceiver evaluation board is measured to confirm its suitability for a CubeSat radio. A schematic is developed, which integrates the transceiver, power amplifier, low noise amplifier, amplifier protection circuitry, switching regulators, and RF power measurement into a single printed circuit board assembly (PCBA). The circuitry is then squeezed into a high-density, 1.4” x 3.3” layout. The PCBA is then manufactured, troubleshot, tuned, and characterized.