Date of Award

12-2015

Degree Name

MS in Aerospace Engineering

Department

Aerospace Engineering

Advisor

Dr. Kira Abercromby

Abstract

In trajectory optimization, a common objective is to minimize propellant mass via multiple gravity assist maneuvers (MGAs). Some computer programs have been developed to analyze MGA trajectories. One of these programs, Parallel Global Multiobjective Optimization (PaGMO), uses an interesting technique known as the Island Model Paradigm. This work provides the community with a MATLAB optimizer, STOpS, that utilizes this same Island Model Paradigm with five different optimization algorithms. STOpS allows optimization of a weighted combination of many parameters. This work contains a study on optimization algorithm performance and how each algorithm is affected by its available settings.

STOpS successfully found optimal trajectories for the Mariner 10 mission and the Voyager 2 mission that were similar to the actual missions flown. STOpS did not necessarily find better trajectories than those actually flown, but instead demonstrated the capability to quickly and successfully analyze/plan trajectories. The analysis for each of these missions took 2-3 days each. The final program is a robust tool that has taken existing techniques and applied them to the specific problem of trajectory optimization, so it can repeatedly and reliably solve these types of problems.

Included in

Astrodynamics Commons

Share

COinS