Date of Award

6-2014

Degree Name

MS in Electrical Engineering

Department

Electrical Engineering

Advisor

Jane Zhang

Abstract

With the advent of modern graphics and computing hardware and cheaper sensor and display technologies, virtual reality is becoming increasingly popular in the fields of gaming, therapy, training and visualization. Earlier attempts at popularizing VR technology were plagued by issues of cost, portability and marketability to the general public. Modern screen technologies make it possible to produce cheap, light head-mounted displays (HMDs) like the Oculus Rift, and modern GPUs make it possible to create and deliver a seamless real-time 3D experience to the user. 3D sensing has found an application in virtual and augmented reality as well, allowing for a higher level of interaction between the real and the simulated. There are still issues that persist, however. Many modern graphics/game engines still do not provide developers with an intuitive or adaptable interface to incorporate these new technologies. Those that do, tend to think of VR as a novelty afterthought, and even then only provide tailor-made extensions for specific hardware. The goal of this paper is to design and implement a functional, general-purpose VR engine using abstract interfaces for much of the hardware components involved to allow for easy extensibility for the developer.