Date of Award

8-2013

Degree Name

MS in Computer Science

Department

Computer Science

Advisor

Franz J. Kurfess

Abstract

This paper discusses a modification to improve usability and functionality of a ge- netic neural net algorithm called NEAT (NeuroEvolution of Augmenting Topolo- gies). The modification aims to accomplish its goal by automatically changing parameters used by the algorithm with little input from a user. The advan- tage of the modification is to reduce the guesswork needed to setup a successful experiment with NEAT that produces a usable Artificial Intelligence (AI). The modified algorithm is tested against the unmodified NEAT with several different setups and the results are discussed. The algorithm shows strengths in some areas but can increase the runtime of NEAT due to the addition of parameters into the solution search space.

Share

COinS