Abstract

Tropical forest soils have an important role in global carbon (C) stocks. Small changes in the cycling of C could drastically affect atmospheric carbon dioxide (CO2) concentrations and active cycling of carbon in a forest community. Currently, little is understood of how tropical forest soils will respond to the increasing global temperatures. To examine the effects of warming/ drought on losses of older versus younger soil C pools, we implemented radiocarbon (14C) isotopic characterization of various soil plot samples and depths from the Luquillo Experimental Forest, Puerto Rico. 14C was measured using Accelerated Mass Spectrometry (AMS) from catalytically condensed carbon in order to examine the initial carbon stocks of the test plots. This examination was done in order to determine the age of the carbon in the soil plots before implementation of a long term warming experiment. In addition to determining the age of the soil C, the samples were submitted to a Density Fractionation Process to obtain varying aggregate fractions. These were also submitted to AMS for mean residence time of the C stocks. The soil 14C was significantly different in the Heavy and Free Light density fractions. This implies that the soil C turnover increases as you near the top depth of the soil pit samples. The results will be used to establish the initial composition of the sample soils for a warming experiment that will model future changes in climate.

Disciplines

Atmospheric Sciences | Biodiversity | Biology | Climate | Ecology and Evolutionary Biology | Environmental Education | Environmental Sciences | Forest Biology | Natural Resources and Conservation | Oceanography and Atmospheric Sciences and Meteorology | Other Ecology and Evolutionary Biology | Other Environmental Sciences | Terrestrial and Aquatic Ecology

Mentor

Karis J. McFarlane

Lab site

Lawrence Livermore National Laboratory (LLNL)

Funding Acknowledgement

This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science Foundation under Grant No. 0952013. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation. This project has also been made possible with support of the National Marine Sanctuary Foundation. The STAR program is administered by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the California State University (CSU).

 

URL: http://digitalcommons.calpoly.edu/star/310

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.