Abstract

The Stanford Synchrotron Radiation Light accelerates electrons around a 234-meter circumference ring at relativistic speeds. The x-ray radiation produced by this process is used in many fields of science ranging from materials science to medicine.

This project seeks to measure the polarization of the 532 nanometer wavelength component in the visible light beam emitted from the SPEAR-3 synchrotron as a function of vertical position. The beam was focused through a lens, then passed through a 532 nm band pass filter and a polarizer mounted on a rotating stand. The beam power was measured as a function of vertical position and polarizer orientation such that the horizontal, vertical, 45 and 135 degree polarizations were measured. A quarter wave plate was inserted before the polarizer to measure the intensity of the left and right hand circular polarizations. This data was then analyzed to calculate the Stokes' Parameters and beam polarization ellipse. Future experiments could include the characterization of other wavelengths of light until the beam is fully characterized, or using polarized xrays to investigate chirality.

Disciplines

Atomic, Molecular and Optical Physics | Optics | Plasma and Beam Physics

Mentor

Jeff Corbett

Lab site

SLAC National Accelerator Laboratory (SLAC)

Funding Acknowledgement

This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science Foundation under Grant No. 0952013. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation. This project has also been made possible with support of the National Marine Sanctuary Foundation. The STAR program is administered by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the California State University (CSU).

Share

COinS
 

URL: http://digitalcommons.calpoly.edu/star/266

 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.