Abstract

Let Z1, Z2 , .. . , Zn be independent 0-1-valued random variables. A gambler gels a. reward 1 if he stop8 a.t the time of the last success and otherwise gets no reward. A simple comparison with a Poisson process is used to show that a prophet can do at most e times as well as the gambler using an optimal stopping time. For fixed n, the best constant is (n/(n -l ))"-1.

Share

COinS
 

URL: http://digitalcommons.calpoly.edu/rgp_rsr/83