Abstract

A derivation of Benford's Law or the First-Digit Phenomenon is given assuming only base-invariance of the underlying law. The only base-invariant distributions are shown to be convex combinations of two extremal probabilities, one corresponding to point mass and the other a log-Lebesgue measure. The main tools in the proof are identification of an appropriate mantissa σ-algebra on the positive reals, and results for invariant measures on the circle.

Disciplines

Mathematics

Included in

Mathematics Commons

Share

COinS
 

URL: http://digitalcommons.calpoly.edu/rgp_rsr/30