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ABSTRACT 

 

A Comparative Analysis of the Nutrient Composition and Digestibility of California Perennial 

and Annual Grasses at Four Stages of Growth 

 

Elaina Deanne Cromer 

 

Beef products represent the fourth largest agricultural commodity in the state of 

California, valuing more than $3 billion from 2013 to 2015 (CDFA, 2016) and procure 90% of 

the income for the range livestock industry (FRAP, 2003). Forages found on California’s coastal, 

desert, foothill, and mountain ranges are the basis of the state’s beef cattle industry. 

Understanding their nutritional quality of these forages is important for their effective use 

(George et al., 2001a; Waterman et al., 2014). The objectives of this research were to investigate 

the nutritional characteristics, and in situ digestbilities in Angus beef cattle, of common 

California annual and perennial grasses: wild oats (Avena barbata and Avena fatua), soft chess 

(Bromus hordeaceous), filaree (Erodium botrys), Italian ryegrass (Lolium multiflorum), blue 

wildrye (Elymus glaucus), creeping wildrye (Leymus tritichoides), melic (Melica californica, 

Melica imperfecta, Melica torreyana), foothill needlegrass (Nasella lepida), purple needlegrass 

(Nasella pulchra). Nutritional composition as a percentage of dry matter (crude protein, CP; 

neutral detergent fiber, NDF; acid detergent fiber, ADF; and acid detergent lignin, ADL) and 

digestibilities were compared at four growth stages: late vegetative (LV), early reproductive 

(ER), late reproductive (LR), and dry (D). Plant samples were collected in San Luis Obispo 

County, CA. Crude protein concentrations decreased, and fiber concentrations increased, with 

maturity (P ≤ 0.05). Perennial grasses contained more NDF and ADF than annual grasses, across 

all growth stages (P ≤ 0.05). Annual grasses were significantly higher than perennials in dry 

matter digestibility (%DMD) at the 48 h incubation, when averaged across all growth stages (P ≤ 

0.05); and at the LR and D stages, when averaged across all incubation periods (P ≤ 0.05). 

Within the annual grasses, %DMD was similar between ER, LR, and D stages. Within the 

perennial grasses, %DMD was similar between the LR and D stages (P ≤ 0.05). 
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INTRODUCTION 

 

i. Statement of Overall Research Goal  

Forages found on California foothill ranges largely support the state’s beef cattle 

industry (George et al., 2001). These lands are populated by several annual and perennial 

species of grasses and forbs. Waterman et al. (2014) argued in favor of the need for 

regionally specific nutrient composition data of forages, in accordance with seasonal 

dynamics. This information may provide ranchers and land managers with greater 

knowledge to aid management decisions for the maintenance and increased performance 

of their animals (Murray et al., 1978) in addition to enhancing rangeland health. Both 

goals are becoming a priority among the western ranching communities. 

 

ii. Importance of the Project 

Minimal information is known about the nutritional composition of California 

rangeland perennial and annual grass species at various stages of growth (phenologies; 

Ganskopp and Bohnert, 2001), and more specifically, their relative digestibilities as they 

relate to grazing beef cattle (Waterman et al., 2014). Further understanding of nutritional 

value and digestibility of common California plants may provide ranchers and land 

managers with the knowledge to make management decisions for the maintenance and 

increased performance of their animals (Murray et al., 1978). Throughout the year, 

livestock commonly graze annual grasslands, which make up the second largest land type 

(7.1%) of the 45 native habitats in California (Davis et al., 1988). This provides a basis 

for the importance of understanding the seasonal dynamics of rangeland plants in order to 
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monitor the timing of grazing, which has been identified as a pivotal aspect of enhancing 

rangeland health and promoting native grass restoration (Hennemen et al., 2014). 

 

iii. Assumptions 

 The two Angus cows were provided similar, forage-based diets in enough time to 

adapt the rumen to digest plant samples incubated for the experiment. 

 The plant material which cattle select naturally is accurately represented by the 

individual sample types that were collected, dried, and ground. 

 The variations in soil types within San Luis Obispo country, from which plant 

samples were collected, are less of a determining factor to plant nutrient content than 

the inherent genetics and growth stages of each species.  

iv. General Approach 

The study is based on applied and empirical research that analyzed the nutritional 

content and digestibility of nine common annual and perennial plant species in California 

according to the three hypotheses: (1) protein content and digestibility values will 

decrease and fiber content will increase as plants mature, (2) the average digestibility of 

annual plant species will be greater than the average digestibility of perennial plant 

species, and (3) mature perennials plant species will be less digestible, with higher fiber 

content, than mature annuals. 

The research methods involved both field and laboratory analyses. Plant samples 

consisted of the nine species identified and collected in the field at four growth stages: 

late vegetative (LV), early reproductive (ER), late reproductive (LR), and dry (D). These 

samples were then taken to the lab for analysis of neutral detergent fiber (NDF), acid 

detergent fiber (ADF), acid detergent lignin (ADL), nitrogen (N), dry matter (DM), and 
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organic matter (OM). All samples went through in situ digestibility trials, utilizing two 

Angus cows in which the samples were ruminally incubated for 12, 24, and 48 hours. The 

samples were removed at their respective time-point. Finally, dry matter digestibility 

(DMD) and organic matter digestibility (OMD) were calculated. All data was statistically 

analyzed and inferences were made inductively. 

This study provides potential for an analytical study which would pose the 

question, “How does plant growth type (annual or perennial) affect nutritional 

composition and, in turn, digestibility?” A predictive study can be designed to model the 

impact that consumption of particular plant growth types has on Angus cattle 

performance. Theory application can be used with the findings of the current study to 

determine if Angus cattle gain weight on pastures that contain a majority of the plant 

species type which the finding suggest are most nutritious at each given season. 
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LITERATURE REVIEW 

Section I 

i. Historical and recent conversations on annual & perennial grasses 

on the western range 

California is comprised of 101 million acres, 63 million are classified as 

rangeland (CDFF, 1988) and 11 million as grassland (Davis et al., 1998). The forages 

found on the California foothill ranges, largely support the state’s range livestock 

industries (George et al., 2001a), of which 90% of the income is produced by beef cattle 

(FRAP, 2003). Both annual and perennial grasses can be found on lands utilized for 

grazing. According to the recent California Gap Analysis Project, annual grasslands are 

the second most common wildlife habitat type, accounting for 7.1% of the state or 28,921 

km2 (Davis et al., 1998). Many of the nonnative annual plants were brought in by the 

Europeans (Corbin et al., 2007) and now cover over 10 million ha of grassland and oak 

savannah in California (Jackson, 1985; Heady, 1977). The high adaptability and 

suitability to the Mediterranean climate (Jackson, 1985) as well as the ability to survive 

under duress of continual grazing allowed these grasses to become well established in 

California. As a result, the prevalence of native annual and perennial grasses has lessened 

because they do better in less disturbed areas (HilleRisLambers et al., 2010).  

Due to competition with introduced annual species (Barry et al., 2006), continued 

pressure from cattle grazing in the years 1850 to 1880 and throughout the 19th century, 

native perennial and annual grass species have been reported to compose less than 5% of 

the herbaceous cover found as sparse remnants in the California foothills (Bentley and 
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Talbot, 1948; Jones and Love, 1945). Observations from field research conducted by 

Clements (1934) and Bentley and Talbot (1948) suggest that the majority of grasses 

native to California were perennial in growth form. Annuals were favored by California 

ranchers and stockmen through the mid-1900’s (Bentley and Talbot, 1948; Hart, 1932) 

due to high production and palatability. However, perennial plants may serve as a 

potential standing forage in rangelands due to their extended growth period (Barry et al., 

2006), which allows them to maintain vegetative tissue late into the summer and early in 

the fall. Therefore, increasing perennial species on rangeland may enable, livestock to 

graze later into the year; thus, needing less supplemental protein and energy (Wrysinski 

and Robins, 1998).  

 There is minimal information published about the quantity and quality of 

California rangeland perennial and annual grasses and forbs in regards to seasonal and 

environmental variation at various stages of growth (phenologies; Ganskopp and 

Bohnert, 2001; Waterman et al., 2014). Further understanding of the seasonal nutritional 

value and digestibility of common California grasses and forbs may provide ranchers and 

land managers with the knowledge to make management decisions for the maintenance 

and increased performance of their animals. 

 

ii. Annual and perennial grass characteristics  

Grasses consist largely of water, proteins, vitamins, minerals, soluble 

carbohydrates and insoluble carbohydrates (more commonly known as soluble and 

insoluble fiber; Pearson and Ison, 1997; Theander and Åman, 1979). Forbs, are 

morphologically different from to grasses and tend to be higher in protein and soluble 
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fiber (Jung and Allen, 1995) as a result of nitrogen-fixing bacteria at the root-to-soil 

interface (Henzell and Ross, 1973). Comparatively, grasses are less digestible (Van 

Soest, 1994). Digestibility is determined primarily by the proportion of insoluble fiber to 

soluble fiber. On a cellular level, fiber is synonymous with carbohydrates that are 

comprised of various chain lengths and forms of polysaccharides and polymers (Baker et 

al., 1979). The molecular components that fall under the category of soluble fiber are: 

starches, pectins, gums, and mucilages (Baker et al., 1979; Fahey and Berger, 1988). 

Cellulose, hemicellulose, and lignin fall within the insoluble fiber category (Van Soest, 

1994). The ratios of soluble and insoluble fiber vary with plant cell maturity, plant parts 

and structures, maturity of an individual plant, and species (Theander and Åman, 1979). 

 Upon maturity, the plant cell develops a secondary cell wall around the original 

primary structure. The function of the secondary cell wall is to provide structural support 

to the cell and, ultimately, to the plant. It is composed of at least 50% cellulose, some 

hemicellulose, and even less pectin, giving it increased rigidity and thickness in 

comparison with the primary cell wall, which is composed of pectin (Theander and 

Åman, 1979). Cellulose and hemicellulose are polysaccharide chains. They differ in types 

of subunits. The two types of polysaccharide chains are cross-linked together via diferulic 

bridges. Hemicellulose is also cross-linked to lignin. Lignin is a polymer formed from 

monolignols (Moore and Jung, 2001) and is integrated within and between the primary 

and secondary cell walls and acts as “glue” to encase plant cells, maintain structure, 

provide protection, and prevent water loss (Moore and Jung, 2001). Lignin begins to form 

once external structural components develop. Of the three components of insoluble fiber 
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(i.e., cellulose, hemicellulose and lignin), lignin is the most limiting to digestibility 

primarily due to its complex structure. 

 The grass plant has three anatomical structures that are most commonly consumed 

by cattle: leaves, stems, and flowering parts (Arazani et al., 2004). The majority of cells 

found in the leaves are contained within a primary cell wall and serve as the 

photosynthesizing portion of the plant. The stems serve as the structural portion of the 

plant. They are composed of a large percentage of structural material (i.e., cellulose, 

hemicellulose, and lignin).  The degree to which lignification will occur is determined by 

whether the plant stems are hollow or filled with pith (Van Soest, 1994). Perennial plants 

such as blue wildrye (Elymus glaucus) grow long hollow stems (field observation). 

Depending on the level of maturity, the flowering parts can contain high levels of protein, 

fats, and vitamins in the germ/embryo; starch in the endosperm; and a high proportion 

insoluble fiber in the seed coat (Peterson and Soreng, 2007). 

 There are twelve standard stages of maturity (George and Bell), also generally 

termed as phenology, that define the development of grasses as well as forbs (Table 1.1).  

Table 1.1. Numerical stage of maturity associated with plant morphological 

characteristics (George and Bell, 2001).   

Stage number Stage description 

1 Germinated 

2 Early vegetative 

3 Late vegetative 

4 Early bloom 

5 Mid bloom 

6 Full bloom 

7 Late bloom 
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8 Milk stage 

9 Dough stage 

10 Mature 

11 Dry 

12 Dry leached 

 

Four of the most distinguishable stages have been depicted in Figure 1.1 by White and 

Wolf (2009). George and Bell (2001) have measured nutritional quality of annual forages 

relative to each of the twelve growth stages (Table 1.1). The general patterns detected are 

also demonstrated across the four growth stages (Figure 1.1). Throughout these growth 

stages, changes in proportions of various plant parts and forage nutritional values are 

dynamic. Upon initial lengthening of the internode, the plant is in the earliest, vegetative 

stage and the ratio of leaves to stems is high. The perennial, creeping wildrye (Leymus 

tritichoides), stays in the vegetative stage for a long period of time (Laca, 2015), (i.e., 

January to May; Wrysinski and Robins, 1998). Within the protective cover of the sheath, 

the apical meristem begins to develop a seed head. As the internode continues to 

lengthen, the developing seed head emerges from the sheath, revealing the characteristic 

“boot stage”, indicating that the plant has reached early reproductive growth. On the seed 

head, each individual spikelet produces anthers that allow for pollination to occur, which 

then triggers the maturation of viable seeds and indicates late reproductive growth. As the 

plant goes through early reproductive and then late reproductive stages, the ratio of stems 

to leaves increases and cellulose, hemicellulose, and lignin become more prevalent due to 

increased formation of secondary cell walls (Figure 1.1). 
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Figure 1.1. Percentage of plant composed of protein, fiber and lignin, and minerals in 

regards to four commonly depicted growth stages of plants, from least mature (leafy) to 

fully mature (bloom) (White and Wolf, 2009). 

 

Cellulose specifically, is approximately 20 percent of the plant in the first stages of 

growth, 28% in the later reproductive stage, and 35-45% when the grass plant is dry 

(Fahey and Berger, 1988). 

Ryegrass and fescue-based pastures in Victoria, Australia, showed that, in the 

winter months (early growth stages), NDF concentration was low, while CP, DMD, and 

ME were high. Adversely, in the summer months (late growth stages), NDF 

concentration increased while CP, DMD, and ME decreased (Thamaraj et al., 2008). In 

comparison, forbs maintain a higher amount of CP throughout the entirety of the plant 

and through all growth stages, especially due to the fact that leguminous plants utilize 

nitrogen-fixing bacteria (Henzell and Ross, 1973).  
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 Slight differences in forage nutritional dynamics between the annual and 

perennial grass types may exist due to the timing and inherent patterns of growth. 

Perennial species tend to have an extended growth season compared to annuals. In 

California, shoots of perennial species can begin to emerge as soon as late fall (Laude, 

1953; Reever Morghan et al., 2007) and many plants may still be in late reproductive 

phase towards the end of June. When growth is complete, the plant goes dormant 

(Chiariello, 1989; Reever Morghan et al., 2007), maintaining living tissue within the 

bottom 3 to 6 inches of the tiller during the summer. When compared with congeneric 

(within the same genus) annuals, perennials demonstrated a higher allocation of biomass 

to the sheaths and roots, and a higher dry-weight to fresh-weight ratio. 

Annual species in California develop much more rapidly (Garnier, 1992). Most of 

their resources go towards seed production and by mid-May all annual grass types have 

died and dropped their seeds (Chiariello, 1989). In comparison with congeneric 

perennials, annual species have also demonstrated greater leaf area, which is an 

indication of how much leaf dry matter is expanded (Garnier, 1992). 

Sun et al. (2010) evaluated chemical composition and digestibility of several 

cultivars of congeneric annual and perennial ryegrass, Lolium spp., in New Zealand; The 

grass samples were collected in early and late winter growth stages. The ME for cultivars 

of annual ryegrass, averaged 12.7 MJ/kg in June and 13.0 MJ/kg in August. The patterns 

for ME mimic those found for NDF of both annual and perennial ryegrasses. Across both 

sampling periods (i.e., June and August), perennial ryegrass averaged 468g/kg for NDF 

and annual ryegrass averaged 414.5g/kg, suggesting that the perennial cultivars would be 

less digestible. In sacco digestibility trials, revealed that effective degradability and 
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soluble fractions were higher in annual ryegrass cultivars and the indigestible fraction 

was lower for annual ryegrass cultivars (Sun et al., 2010). Analysis of nonstructural 

carbohydrate content of 20-25 cm tall perennial ryegrass in Scotland resulted in a higher 

percentage of water-soluble carbohydrates than orchard or timothy grasses of different 

genera (as cited by Smith, 1973). 

Digestibility characteristics of a forage may not always be the result of growth 

and maturity level. Changes in nutrient composition of standing forages through the 

seasons can be due to leaching of nutrients by rainwater, which can remove up to 30% of 

the phosphorous, 20% of the crude protein, and 35% of the nitrogen-free extract (NFE), 

which consists of carbohydrates, starches, and hemicelluloses (Shepherd et al., 1954). In 

light of the various factors that affect digestibility, it is rare that forage digestibility 

values should exceed 70-74% DM (Oklahoma Cooperative Extension, 2000). 

 

iii. Factors affecting variability in nutritive value of  forages 

Knowledge of environmental factors is imperative from a range livestock 

standpoint because forage nutrient supply curves are highly dependent upon climate 

(Waterman et al., 2014). The patterns of change in nutritional quality (increases in fiber 

content and decreases in crude protein, water, and digestibility) upon maturity are similar 

from year to year because phenological development is regulated primarily by 

photoperiod. However, the slight variations observed in nutritional quality from year to 

year occur due to annual variations in temperature, evaporation, and water stress 

(Manske, 1999). There are four primary factors affecting forage productivity and species 

composition: precipitation, temperature, soil characteristics, and plant residue (George 
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and Fulgham, 1989; George et al., 2001a). Of the factors listed, the two that influence 

nutritive value to the highest degree are air temperature and soil moisture (Huston and 

Pinchak, 1991). Inherent differences in warm-season and cool-season plants also affect 

nutritive value. Lastly, the nutrient composition of a plant can change dependent upon 

whether or not it has been grazed (Van Soest, 1994).  

Dramatic increases in temperature, as seen from April to June in California, are 

followed by rapid plant growth and increased lignification. The Mediterranean climate 

produces lower temperatures from October to March, during which cool-season plants 

will begin to germinate and mature. With extended cooler seasons, plants may reach peak 

production later, but retain a higher nutrient concentration for longer (Van Soest, 1994; 

Huston and Pinchak, 1991). The timing of germination is highly influenced by soil 

temperature (which is affected by air temperature). Each plant species geminates 

provided that a specific temperature range is reached and patterns of temperature 

fluctuation are optimal (George and Rice, 2017). Rate of senescence, while primarily 

affected by level of photosynthetic activity, increases with higher temperatures and with 

water stress (Manske, 1999). Water restriction has a similar effect as that of lower 

temperatures upon plant growth by increasing rate of plant growth and lignification 

(Huston and Pinchak, 1991). 

Just as the soil moisture affects absorption of nutrients and impacts the plant 

composition, so does the character of the soil medium (Gordon and Sampson, 1939). 

Varying soil types may have vastly different water-holding capacities. However, soil 

moisture is generally depleted by the end of spring growth in California (George and 

Fulgham, 1989). At this point, or when plants are mature, peak forage production has 
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been met (George et al., 2001a). Perennial grasses often display root growth of 1 m, or 

deeper, which allows for a longer period of growth compared to annuals, but also 

depletes soil water reserves (Peterson and Soreng, 2007). An exception would be the 

annual forb, Erodium botrys (broadleaf filaree), of which 30-35% of the roots have been 

allocated to deeper than 50 cm in the soil profile. This may explain why this annual 

species can hold water late into the month of June (Peterson and Soreng, 2007). When 

annuals and perennials are grown together and compete for water resources, it has been 

shown that water in the top 60 cm of the soil was depleted, but water remained below 60 

cm (Peterson and Soreng, 2007), therefore, pastures composed of a mixture of perennials 

and annuals may have an extended grazing season. 

Where environment, plant physiology, and plant morphology coincide most 

evidently is through the differences in cool-season (C3) and warm-season (C4) plants. 

Both perennial and annual growth types can be C3 or C4 plants (National Forage and 

Grasslands Curriculum, 2016). Air and soil temperatures affect whether a C3 or C4 will 

occur in a given region or not (Waterman et al., 2014). The optimum air temperature 

range for the growth of C3 plants is 65-75oF and, for C4 plants, 90-95oF. The optimum 

soil temperature range for C3 plants is 40-45oF, and for C4 plants, 60-65oF. As the 

temperature increases, C3 plants lose efficiency, whereas C4 plants become more 

efficient. Between 15% and 40% of light energy taken up by C3 plants is lost through 

photorespiration, and this is further exacerbated by increases in temperature (National 

Forage and Grassland Curriculum, 2016). 

The nutritive value C3 and C4 plants will drastically differ due to respective 

differences in physiological processes. The C4 plant contains greater proportions of 
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schlerenchyma, epidermis, and vascular tissue, contributing to its higher lignin content 

than that of the C3 plant (Huston and Pinchak, 1991). It also tends to have a low leaf to 

stem ratio, which further elevates its proportion of structural components. Cool season 

grasses contain a higher percentage of CP, with C3 perennials containing slightly greater 

percentages of CP than C3 annuals (Huston and Pinchak, 1991). Some C4 plants have the 

potential of having a higher nutritive value if adapted to temperate, rather than tropical 

climates (Van Soest, 1994). The C3 grasses contain long-chain fructose polymers, as 

opposed to starch, which is found in greater quantities in legumes and C4 plants (Pearson 

and Ison, 1997). It has also been reported that C3 grasses have lesser concentrations of 

NDF and ADF than C4 grasses, leading to improved animal performance when fed cool 

season grasses (Phillips et al., 2009). 

Grazing also has a noticeable effect on the nutritive value of grass plants. Upon 

initial defoliation, carbon and nitrogen levels decrease within the plant. Carbon utilized 

for regrowth in active shoot meristematic tissue is not drawn from carbon reserves in the 

roots, but from the current photosynthetic carbon in the leaves. Severe defoliation 

disables the plant from actively photosynthesizing, thereby drawing carbon for regrowth 

from the reserves required by dormant buds for first spring growth (Manske, 1999; 

Jackson and Bartolome, 2007). Over time, severe defoliation will inevitably reduce 

production (Briske and Heitschmidt, 1991). However, defoliated individuals have shown 

to have higher dark respiration rates than that of non-defoliated individuals at the same 

growth stage, denoting a higher protein content of the former (Atkinson, 1986). Dark 

respiration rates are analyzed to provide an estimate of plant protein content (Manske, 

1999). Defoliated individuals have also demonstrated a lesser degree of lignification 
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compared to non-defoliated counterparts (Van Soest, 1994). These observations provide 

evidence that managed defoliation can potentially improve the digestibility of grasses. 
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Section II 

A substantial amount of research has been done to determine the digestibility and 

degradation of various nutritional components from commonly cultivated forages. 

However, minimal experimentation has been done to determine the differences among 

digestibility and ruminal degradation of various native grasses, with inherently different 

growth types, and patterns (Waterman et al., 2014). To address this issue, it is important 

to first develop an understanding of the measurable components that are relevant to 

forage evaluation in consideration for ruminal digestion. The primary components are: 

dry matter (DM), dry matter digestibility (DMD), crude protein (CP), crude fiber (CF), 

acid detergent fiber (ADF), neutral detergent fiber (NDF), total digestible nutrients 

(TDN), metabolizable energy (ME), and net energy (NE). Of these components, energy 

and protein are the most limiting in California foothills; thus, of major concern to 

livestock producers (George et al., 2001b). This literature review will primarily focus on 

the needs of a 1300 lb dry cow and a 700 lb stocker, with occasional reference to high 

energy demands of the lactating cow, for comparison. 

 

i. Dry matter and intake 

As a standard, all feed and forage materials should be evaluated on a dry matter 

basis (DMB). When a majority of the water has been removed from the feed sample 

components are referred to on a DMB. The proportions of nutritional components and 

moisture content are variable across grass species; thus, comparing individual samples on 

a DMB is essential to determine the base nutrients the sample will provide to the grazing 
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animal. Furthermore, the amount of dry feed consumed by a grazing animal is also 

variable, especially across seasons, and is determined as dry matter intake (DMI). 

The National Research Council (2000) has provided several equations useful for 

predicting DMI with adjustments for various factors. These factors include: animal body 

weight (BW), level of performance (milk production, in the case of the lactating cow) at a 

given stage of production, energy content of the diet, and body condition score 

(Oklahoma Cooperative Extension, 2000). The adjustments include: breed, animal 

environment impacts, anabolic implant (a hormonal, growth-promoting implant), and 

temperature (NRC, 2000). Ruminal fermentation processes also limit the amount of DMI 

through pH and osmotic pressure (Van Soest, 1994). These factors aside, a cow, dry or 

lactating, will consume more DM from late vegetative forage, than that of early 

reproductive, late reproductive or dry forages due to the increased rate of digestion 

associated with higher quality forages (Table 1.2; NRC, 2000; Oklahoma Cooperative 

Extension, 2000). It has also been reported that the amount of NDF and ADF consumed 

by lambs and ewes in a day was related to DMI (Phillips et al., 2009). 
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Table 1.2  

Nutrient requirements (%DM) across cattle and forage production stages, adapted from the Beef NRC (2000) and Lalman (2001). 

Animal 

Production Type 

Weight (lb) Forage type DMI1 

(lb/day) 

CP2 

(g/day) 

RDP3 

(g/day) 

RUP4 

(g/day) 

eNDF5 

(%DM) 

TDN6 

(%DM) 

Dry cow 1200 55% digestible legume 

(avg. of 4 growth stages) 

27      

 1300 early reproductive stage 29.36 15% DM 80% DM 202  70 

  vegetative stage 26.22 12% DM 217 or  

77% DM 

328  57 

  late reproductive stage 25.4 7% DM 386 or 

75% DM 

400  50 

Lactating cow 1200 55% digestible legume 

(avg. of 4 growth stages) 

30.3     9.8 

Unspecified cow    8% BW   20 10-13% 

RDP 

Stocker         700  

(fed for 1000lb finish) 

18.1 1.96 lb or  

10.9% DM  

 70 or   

12.58 lb 

1dry matter intake  
2crude protein 
3rumen degradable protein  
4rumen undegradable protein  
5effective neutral detergent fiber  
6total digestible nutrients (TDN)
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ii. Protein 

The breakdown of material via microbial and enzymatic processes in a ruminant 

animal is often referred to as digestibility or degradation. It is important to understand 

that these terms have significantly different meanings. Degradation is the breakdown of a 

specific nutrient or plant part at a specific location along the digestive tract. Degradation 

is occurring constantly throughout the process of digestion by enzymes or microbes that 

degrade macromolecules (Leng, 1973). Digestibility is a more general term used to 

quantify the total degradation of macromolecules into simpler compounds via processes 

(mechanical, enzymatic, microbial, etc.) occurring along the entire digestive tract 

(Merchen, 1988). The more digestible that a feed is, the sooner the animal will intake 

enough feed to reach its energy requirement(s) (NRC, 2000).  

 The portion of dietary CP, 60-65% that bypasses degradation by microorganisms 

in the rumen is referred to as rumen undegradable protein (RUP). Rumen degradable 

protein (RDP) is the portion of dietary CP (35-40%) that is available for degradation by 

rumen microorganisms (Jenkins, 2015; Waterman et al., 2014). The protein requirement 

of cattle is most often met by a combination of RUP and RDP (Pearson and Ison, 1997). 

This includes the nitrogen needs of the rumen microbes and the protein needs of the host 

animal (NRC, 1989). Ruminants fortunately have the ability to produce their own protein 

in the form of microbial crude protein (MCP), from the rumen microbiome when protein 

from forages is low (Owens and Zinn, 1988).  

Seasonal variation in California can dramatically impact the CP content of 

forages, which also affects the digestibility. The surface area of proteins available to 

microbes, as well the chemical nature of proteins, are some factors that determine their 
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degradability (NRC, 1989). Most protein in forages is either derived from cytoplasmic or 

chloroplastic proteins, nucleoprotein from the nucleus, and, in the case of plant cell wall 

tissue, extensins (Van Soest, 1994). Extensins are mostly found in higher concentration in 

the stems, serving as structural support by cross-linking cell wall fibers together. 

Comparatively, cytoplasmic, or chloroplastic proteins, will be found in higher 

concentrations in the leaves. Younger tissues in plants tend to contain a higher 

concentration of CP (Laca, 2015) and vegetative plant material contains highly soluble 

protein that can be more easily degraded by rumen bacterial proteases (Leng, 1973; Reid, 

1962). Bohnert et al. (2011) have noted that cool season (C3) forages have a higher RDP 

in comparison with warm season (C4) forages, which have a lower RDP. In regards to 

DMI, the younger, cool season, and other forages of higher nutritional quality, are able to 

able to be consumed at a higher rate, and therefore in higher quantities, as opposed to the 

more mature forages, in which components such as lignin occlude the degradation of 

proteins (Oklahoma Cooperative Extension, 2000). 

 

iii. Fiber 

Crude fiber (CF) is a less accurate measurement of the amount of structural 

carbohydrates in a feed. The more recent measurements, as developed by Van Soest 

(1994), are neutral detergent fiber (NDF) and acid detergent fiber (ADF). These 

measurements provide the breakdown of fiber types generally as a %DM of a feed or 

forage. Neutral detergent fiber consists of the hemicellulose and some cellulose after the 

soluble starches and some keratins have been removed from the forage sample (Van 

Soest, 1994). Hemicellulose and cellulose contribute largely to the ruminal fill of an 
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animal upon voluntary consumption. For this reason, NDF is commonly used as a 

predictor of DMI and is desired in low amounts (UNL, 2016; Mertens, 1983). Acid 

detergent fiber consists of the remaining cellulose in combination with lignin from 

forages, which are the least digestible components. Forages with low ADF concentration 

are desirable because they will be more digestible and therefore have a higher energy 

value (UNL, 2016; Mertens, 1983). Cellulolytic bacteria inhabiting the rumen produce 

various enzymes capable of degrading cellulose and hemicellulose (Leng, 1973). 

Lignification restricts degradation by all bacterial enzymes, but especially cellulase 

(Leng, 1973), due to highly interwoven matrices of chemical bonds formed between 

lignin and the plant structural polysaccharides (Bailey, 1973). Fiber is a component of the 

diet that needs to be monitored so that other nutritional components can be adjusted 

accordingly. 

 

iv. Fiber and protein dynamics  

The amount of forage that an animal should consume, or voluntarily consumes, is 

highly dependent upon the nutritional quality of the forage (Oklahoma Cooperative 

Extension, 2000). In addition, the two most important factors that affect fermentation of 

carbohydrates in the rumen are: the extent to which a plant has undergone lignification 

and, second, the availability of protein or non-protein nitrogen (NPN; Leng, 1973). 

Gordon and Sampson (1939) have clearly outlined the dynamics of CP and CF 

throughout life cycles of various plant species over the course of a three-year study. Most 

nutrient constituents tended to decline throughout the plant’s life cycle, while CF 

increased (Gordon and Sampson, 1939). An issue with high-fiber and low-nitrogen 
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forage is that it can lead to a protein deficiency, which, in turn, can lead to a decrease in 

feed intake. In this situation, supplementing nitrogen can increase DMI substantially 

(Galyean and Goetsch, 1993). A response in forage intake can be clearly observed if CP 

content of the forage is less than 6-8% of the diet (NRC, 1987).  

Components of the diet can be increased or decreased dependent on the fiber 

content. Besides the values listed by the NRC for effective NDF (eNDF), approximaely 

20% DM, there are no specific fiber requirements for the ruminant animal. Effective 

NDF takes into account the rumen microbial yield in response to the rumen pH and is the 

percentage of NDF deemed effective for “stimulating chewing and salivation, rumination, 

and rumen motility” (NRC, 2000). The NRC lists the nutrient requirements of gestating 

and lactating beef cows on diets from forages of varying maturities (Table 1.2). The diets 

containing less mature forages with low fiber content, allow the DMI to increase. The 

diets containing mature forages with high fiber content decrease the DMI and contain a 

smaller amount of RDP and RUP (NRC, 2000). Alternatively, there is a benefit to 

feeding forages of differing NDF contents. Mertens et al. (1983) found that cows fed a 

diet containing a 36% total NDF content, but from various forage types, produced 20-25 

kg milk per day. Reaching an optimal milk production depends upon the level of fiber 

intake and the body size of the animal. Larger ruminant animals can consume more fiber 

due to the sheer volume of their rumen (Van Soest, 1994). According to intake 

predictions, beef breeds should consume less DM than Holstein and Holstein-beef 

crosses, demonstrating that genetics affect intake capacity (NRC, 1987).  
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v. Energy 

Tolkamp and Ketelaars (1992) have theorized that feed intake behavior and 

regulation in ruminants is aimed at maximizing the net energy intake (NEI) per liter of 

oxygen consumed. Minimizing oxygen consumption would thereby reduce accumulation 

of damage to tissues and prolong life. When the quality of a feed rises, the efficiency of 

metabolism and NEI rise. Net energy (NE) is used to express the feed value as “the 

energy allocated to a product from the animal, in addition to the energy lost as heat” (Van 

Soest, 1994). Kellner (1912) noted that the fiber content of the diet has a particularly 

large effect on the increment of heat produced by the animal, which is defined as the 

difference between metabolizable energy (ME) and net energy (NE). The heat increment 

noticeably increases following ingestion and varies in proportion to surface area. The 

greater the heat increment, the more energy that is lost (as cited by Van Soest, 1994). 

This heat is produced via the oxidation of volatile fatty acids, lactic acid, carbon dioxide, 

methane, glucose, and amino acids – the products of ruminal digestion (Pearson & Ison, 

1997). 

 In the mid-1900’s Moore et al. (1953) used the estimated net energy (ENE) 

system (developed by Frank Morrison) to compare the total digestible nutrient content 

(TDN) of corn compared to alfalfa, in relation to the ENE of both feeds as well. Their 

findings showed that one pound of TDN in corn had a greater NE than one pound of 

TDN in alfalfa. Alfalfa resulted in a higher heat increment due to its increased fiber 

content (Van Soest, 1994), thus a lower TDN. 

Total digestible nutrients express the sum of feed components (digestible starch, 

fiber, protein, fat, ash, and minerals) relative to their energy content and accounting for 
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high energy of fat (Oklahoma Cooperative Extension, 2000; Van Soest, 1994). When 

determining energy efficiency, it is important to provide a complete measure of the 

energy available to the animal from a feed. The NRC (2000) calculated values of TDN 

from a linear regression that did not reveal this. The ratio of ENE to TDN declines in 

relation to the increase in plant cell concentration, or [NDF]. In the case of increased 

[NDF], more energy is required of the animal and the rumen microbes in order to break 

down the forages. It has been shown that grinding forages can lower the heat increment, 

and increase the energy efficiency, which increases the propionate to acetate ratio by 

exposing more surface area to degradation by rumen microbes (Van Soest, 1994). 

Some factors that cost energy to the animal at maintenance are environment, 

work, and grazing (Van Soest, 1994; Waldo et al., 1961). The combination of the act of 

grazing, the increased time required for the mechanical action of digesting whole forages, 

and the level of fiber in the diet, all lead to an increased heat increment, and therefore 

lower energy efficiency in the grazing ruminant animal.  

Varying functions (maintenance, lactation, growth, or fattening) have different 

degrees of efficiency when it comes to using energy. Weight gain is the least efficient 

function, whereas maintenance and lactation are the most efficient (Van Soest, 1994). 

However, it is also important to note that, while lactating may be more energy efficient, it 

is also more energy demanding compared to the other functions (Oklahoma Cooperative 

Extension, 2000) as demonstrated by the fact that, on a forage diet, lactating cows 

increase DMI by a mean of 30% (Minson, 1990).   

The metabolizable energy system takes into account the differing efficiencies, 

more so than TDN or NE, and is easier to measure than NE, but only if representative 
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output values for feces, urine, and methane can be obtained (Van Soest, 1994). These 

output values are subtracted from the gross feed energy in order to obtain a value for ME 

(Saha et al., 2013) and determine the correct production of VFA (acetate to propionate). 

With this in mind, energy is not only important to the animal but also to the rumen 

microbes. If the microbes do not have an adequate amount of vitamins, minerals, and 

energy, then they cannot flourish (Sewell, 1993). No matter what measurement is being 

used to quantify it, energy in itself is the single most important nutritional factor to 

consider when evaluating the diet of beef cattle (George et al., 2001b). 

 

vi. Feed value indices 

Various methods and terminology exist with the purpose of indexing the value of 

feeds to cattle. As of the late 1900’s, there were minimal data detailing the nutritional 

composition of native and non-native grasses. Techniques that used common forage 

cultivars in indoor feeding experiments were not well-refined or applicable to free-

grazing cattle consuming multiple rangeland species (Ulyatt, 1973).  

Three main ranking systems exist for determination of forage value: 1) nutritive 

value (NV), 2) relative forage value (RFV), and 3) relative forage quality (RFQ). 

Kellaway et al. (1993) and Ulyatt (1973) define nutritive value as the “concentration of 

nutrients in the forage, or as animal production response per unit of feed consumed.” 

Ulyatt (1973) ranked nutritive value of forages as “high”, “medium”, and “low”. 

Nutritive value is based upon the percent forage in the diet as well as the percent 

contributed from fiber to the digestible energy (DE; Pearson and Ison, 1997), but cannot 

be determined by these measurements alone as NV and animal intake are highly 
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interrelated (Ulyatt, 1973). Feed intake is an important variable in equations for 

predicting the nutrient requirements of livestock and their rate of gain in feedlot and/or 

pasture conditions (NRC, 2000), and is limited by digestibility (Pearson and Ison, 1997). 

If the digestibility of a given forage is known, this can help to classify it as either high, 

medium, or low NV. However, due to complex interaction of factors determining NV, 

some forages of a similar digestibility, may produce differing NV’s (Ulyatt, 1973). The 

factors determining NV fall under three large categories: animal factors, environment, 

and pasture attributes (Pearson and Ison; 1997). The animal factors (i.e., type, size, and 

level of production) affect potential daily intake. The addition of environment (weather 

and day length; NRC, 2000) and pasture attributes (primarily forage quality) dictates the 

actual daily intake (Pearson and Ison, 1997). 

Unlike the broad classification system of NV, RFV is an index based on a series 

of calculations appropriately developed for ranking cool-season grasses, legumes, 

legume-grasses, and hays and haylages (NFTA, 2007). It is based primarily upon an 

interpretation of %ADF and %NDF values in determination of dry matter digestibility 

(DMD) and DMI values. The National Forage Testing Association (2007) uses DMD and 

DMI to calculate RFV. Alfalfa hay in late reproductive stage is used as the basis for 

comparison with a RFV of 100, above 100 being higher quality.  

 

𝐷𝑀𝐷 =  88.9 – (.779 ×  % 𝐴𝐷𝐹) 

 

𝐷𝑀𝐼 =  
120

%𝑁𝐷𝐹
 

 

𝑅𝐹𝑉 =  𝐷𝑀𝐷 × 
𝐷𝑀𝐼

1.29
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 Additional factors, such as energy intake provide the basis for comparison 

between two or more forages in the RFQ equation (Saha et al., 2013), where: 

 

𝑅𝐹𝑄 =  𝐷𝑀𝐼 (% 𝑜𝑓 𝐵𝑊) × 
𝑇𝐷𝑁 (%𝐷𝑀)

1.23
  

  

While still using a basis of comparison of 100, like RFV, RFQ is a better predictor of 

forage quality because it accounts for fiber digestibility. By including TDN, it also 

includes neutral detergent fiber digestibility (NDFD; Saha et al., 2013), CP, energy 

efficiency (EE), and non-fiber carbohydrates (NFC; UCD, 2008). Ultimately, the value of 

forages to cattle cannot be determined without intimate knowledge of the animal and the 

forage, as well as their environment. 
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Section III 

Seasonal changes affect the amount and composition of forages available, making it 

difficult to control animal diet selectivity. Depending on the climate and geographical 

location of a given pasture, forage species will vary in nutritive value. Nutritive value 

will additionally be affected by the selectivity of cattle (Ulyatt, 1973) especially because 

cattle can show preference for particular plant species, stages of growth, and plant 

structures (Reid, 1973). Sheep selectivity is determined by the plant species that are 

consumed more quickly than others (Kenney and Black, 1984), which includes the plant 

structure, that are more easily digested. Palatability is a primary factor for determining 

animal intake and performance. Managing for animal performance (secondary 

productivity) cannot be addressed without also managing the available forages (primary 

productivity), as the two components are highly interrelated (Soder et al., 2009). Where 

primary productivity is a function of range forage composition, secondary productivity is 

a function of cattle grazing selectivity of available forages. Both of these factors can be 

manipulated by the land manager. 

 

i. Animal behavior in regards to grazing selectivity and palatability  

The selectivity and palatability of a plant can result from plant structure, growth 

stage and species. Most grasses tend to be palatable and nutritious when they are in the 

vegetative stage (Jones and Love, 1945). Naturally, plants do not remain in vegetative 

stage and, therefore, develop varying levels of palatability as they mature. Testing aspects 

of palatability provide insight to cattle preferences. Wilson (1986) and Hodgson (1986) 

reported that the physical aspects of diet, such as plant structural strength (i.e. shear 
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strength, Sun et al., 2010), affect diet selection. Mixed ages of plants, growing and 

senescing, also affect animal selectivity (NRC, 2000 Ch.7; Minson, 1990). Most often, 

cattle will select the plants that are growing over those that are senescing (Minson, 1990). 

Also, the morphological characteristics of a plant species and how densely the individuals 

grow to one another will impact the animal intake (Van Soest, 1994).  

 In regards to selectivity, observations from a study conducted on the San Juaquin 

experimental range between the years of 1946 and 1957, reported that rows of Nasella 

pulchra, purple needlegrass, were grazed and alternate rows of Nasella cernua, nodding 

needlegrass, were only slightly grazed in November of 1953, (Green and Bentley, 1957). 

By the end of the winter, (February 1954) all rows had been uniformly grazed (Green and 

Bentley, 1957). It was also observed that cattle would graze the new growth of the 

Nasella spp.with the dry annuals in May and June 1952, but ignored the dormant or late 

reproductive Nasella spp. (Green and Bentley, 1957). Green and Bentley (1957) 

documented that purple needlegrass was most palatable in winter compared to annual 

grasses. Another perennial species that is highly palatable, and was historically abundant 

on the central coast, is California oatgrass. It is a long-season grass that has encountered 

severe reductions due to farming and overgrazing (Jones and Love, 1945). 

Selectivity and palatability can also be related to chemical composition. A major 

deterrent to the consumption of a plant can be attributed to phenolic compounds, also 

known as alkaloids (Reid, 1973). Palatability and the animal’s level of attraction to a 

plant has been linked to protein content, digestibility or mineral content (Senft, 1989). 

Cell contents from of four varieties of ryegrass demonstrated a high, positive relationship 
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with consumption by steers and heifers and a negative relationship with NDF (Aderibigbe 

and Church, 1980).  

Several hypotheses regarding the tendencies of cattle to selectively graze more 

highly nutritious plants were tested. Crude protein (CP), neutral detergent fiber (NDF), 

acid detergent fiber (ADF), and in situ dry matter disappearance (ISDMD) were mapped 

throughout a spatial distribution of several pastures. The responses of cattle to forage 

quantity/quality dynamics demonstrated that the selectivity of cattle favored forages 

containing above average CP and ISDMD values. Cattle tended to select forages 

containing below average NDF, but had no preferences based on ADF content of plants 

(Ganskopp and Bohnert, 2009). 

Several factors can contribute to selectivity and palatability within the sward. The 

species of grazing animal has a particular palate (Reid, 1973), which has an impact on the 

percentage of forage available that will be eaten. Leigh and Mulham (1966) found that 

80% of the diet of sheep grazing semi-arid pastures in New South Wales, Australia, was 

composed of 1% of the forages available. The selection choices made by the animal are 

highly dependent upon the diversity of plant species already available (Van Soest, 1994). 

Allowing more opportunity for selection increases the likelihood that cattle will consume 

a higher quality diet (Pearson and Ison, 1997). Selection has the potential to be extremely 

high if time or space allows, but can be minimized by stress (grazing pressure, 

competition, hunger, etc.) or uniformity of the sward (Van Soest, 1994; Senft, 1989). 

According to Senft (1989), the already established plant composition of a rangeland 

ecosystem has a greater influence over the future patterns of landscape use than grazing 

management. 
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 Within the home range (Figure 2.2; Senft, 1989) cattle tend to make selections 

based upon experience, forage type, forage quantity, and forage quality (Villalba et al., 

2015). Most often the animal will base foraging decisions on spatial cues prior to plant 

species or even plant parts (Stuth, 1991). Subdividing pastures can be beneficial in that it 

disrupts the tendency of cattle to first select a home range (Senft, 1989).  

 
Figure 1.2. Representation of hierarchical order of selection by cattle with “Home 

Range” being the top order (adapted from Senft, 1989). 

 

Animal species also affect sward height. Cattle are known to graze no closer than 

1-1.5 cm from the ground, due to their anatomical mouth structure (i.e., an intact upper 

lip and thick lower lip), which limit grazing height. Sheep are capable of grazing much 

closer to the floor as their split upper lip and mechanical action of their incisors against 

their dental pad allow them to cut forage (Reid, 1973). Van Soest (1994) discusses the 

complementation resulting from utilization of various forage species when animals select 

a diet within a single pasture. This strategy has shown to optimize the use of forages and 

a greater breadth of forages available (Van Soest, 1994). In order to impact the grassland 

and/or rangeland ecosystem, various grazing management strategies can be used that take 

advantage of the dynamic interactions between animal and plant (Reid, 1973). 



 

 32 

 

ii. Using grazing behavior as a tool  

Reduction of selectivity can be completed by increasing the grazing pressure with 

higher stocking rate. Otherwise, minimal grazing and low stocking rate will allow for 

maturation of plants and possible wasted forage (Van Soest, 1994). Cattle will begin 

grazing the nearest available forage and the movement of the herd will naturally 

gravitate to the water supply. Areas that provide water also tend to have plants 

containing high nutrient concentrations; thus, the closer to a water source, the higher the 

carrying capacity will be (within 1 mile = approx. 47 animal carrying capacity/animal 

unit (AU) year-long; within 2 miles = approx. 38 animal carrying capacity/AU year-

long; Jones and Love, 1945).  

Applying strategies for prevention of over-grazing and trampling of plants around 

water sources is important to prevent erosion and contamination of water sources (Van 

Soest, 1994). One might consider building fence around these areas, or moving animals 

in a high intensity, short duration system. In addition, cattle and sheep should be limited 

to traversing more than 2.5 miles of rolling foothill ranges to access water (Jones and 

Love, 1945). 

Another option for limiting the selectivity of grazers is through the introduction of 

highly competitive species, such as many of the annuals seen on California rangelands, 

which can eliminate other competitors. The addition of highly palatable species may 

increase primary production of a pasture and the amount of energy provided to the 

grazing animal, but may not necessarily benefit the ecosystem (Briske and Heitschmidt, 

1991). From another perspective, in the early spring, when most annual species are in 

early or late reproductive stage, they may protect remnant perennial species by being 
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more palatable and therefore grazed first (Jones and Love, 1945). However, this is 

dependent upon the season and does not take into account the competition for light, 

moisture, and nutrients between annual and perennial species. The decision to add or 

retain annual species should be weighed accordingly. 

 

iii. Matching animal production with plant production  

Animal production can be enhanced by implementing management systems that 

align with production goals. Benefits include increased health via reduced parasitism 

within the herd and adequate consumption of trace minerals (Villalba et al., 2015; SARE, 

1999). Most commonly, the goal of managing livestock is to increase net profit through 

improving animal performance. This can be achieved by balancing the changing 

nutritional needs of the cyclic cow with seasonal fluctuations in nutrition of forages 

available (George et al., 2001b; Van Soest, 1994). 

Within the beef cow production year there are about five stages in the cow 

reproduction cycle. At each stage, but especially late gestation and post-partum, the cow 

requires a specific level of nutrients to achieve a high level of performance and to 

produce healthy offspring. In order to most closely meet the changing nutrient 

requirements of the cow, each of the five stages should be aligned with four stages of 

grass growth. Predominantly annual-based grasslands are not capable of providing the 

cow with adequate nutrients year-round (George et al., 2001b). 

Calving at different seasons (fall or spring), depending on location, are some 

strategies used for planning around these seasonal trends (Figure 1.3) in order to provide 

the cow and calf with adequate nutrient supplies from forage. Meeting the needs of the 
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cow and calf can be easily achieved on adequate green forage (Figure 1.3; George and 

Fulgham, 1989).  

Seasonal Forage Production 

Figure 1.3. Seasonal forage qualities and quantities recorded from 1934 to 1947 at the 

San Joaquin Experimental Range (SJER) (George et al., 2001a). 

 

Beef production operations vary throughout California and management calendars 

are dependent upon location. Fall calving is typically done in the Central Valley or 

Central Coast of California due to earlier onset of summer, which causes forage quality to 

decline sooner. Late winter or early spring calving typically occurs in the northern 

coastal, mountainous, or inter-mountain areas due to the more extreme winter conditions 

being undesirable for newborn calves and later onset of palatable vegetation. The fall 

calving season typically corresponds with the calves being born between September and 

November when green forage is beginning to appear (George and Fulgham, 1989). A 

specific starting point, within this 3-month range, can be determined in part by using the 

knowledge that annual forage will sprout up rapidly if temperatures are in the 15.6° to 

26.7°C range. If temperatures are between 4.4° to 10°C for the majority of the season, 

then annual forage will sprout up gradually. Based on pounds of forage production in a 
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season, relative to the DMI capacity of a dry and lactating cow, one can approximate how 

many head a given pasture can support. Data from the San Joaquin Experimental Range 

(SJER; O’Neals, CA) show that during an average fall (November 7th) an acre of land 

produced 600 lb of forage from annual grasses in vegetative stage (George et al., 2001b), 

which can support 20 dry cows and 18 lactating cows for one day (Oklahoma 

Cooperative Extension, 2000). During a warm, wet fall (November 7th) at the SJER, an 

acre of land produced 1000 lb of forage (George et al., 2001b) that could support 33 dry 

cows and 30 lactating cows for one day (Oklahoma Cooperative Extension, 2000). These 

estimations have not subtracted the amount of residual dry matter that should be left 

behind. 

The winter or early spring calving season generally commences in January and 

ends in March, when conditions begin to warm up to 7.2°C, or greater, and vegetative 

growth appears rapidly. Data from the SJER show that forage production increases from 

November to May. The maximum amount of late reproductive forage one acre produced 

was 3000 pounds (George et al., 2001b), which could meet the DMI capacity of 125 dry 

cows and 100 lactating cows (Oklahoma Cooperative Extension, 2000) for one day. The 

minimum amount produced on May 1st at the SJER was 1000lb/acre (George et al., 

2001b), and would fill the DMI capacity of 41 dry cows and 33 lactating cows, but with a 

lower quality forage (Oklahoma Cooperative Extension, 2000). 

Beef stockers are brought to California rangelands to graze on the fall and early 

winter forage growth, similar to the cows calving in fall (George et al., 2001a). The 

number of beef stockers or calves retained on California pastures is highly dependent 

upon the precipitation, which affects the forage quantity in a given year. Up to 50% of 
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weaned calves may be retained by the owner over a second growing season (George and 

Fulgham, 1989). This scenario is most likely to occur following a warm, wet spring and if 

calves were born at a 75 lb and gained 1.4 lb (heifer) /1.6 lb (steer) per day until weaning 

(7 to 10 months) (George et al., 2001a). 

Highly dynamic forage production in conjunction with changing nutrient 

requirements of reproducing cows can make it difficult to manage livestock on rangeland. 

However, there are ways land and livestock managers can have some control over the 

amount of forage available, which may help to estimate their profits. Dunn et al. (2010) 

estimated net profits by classifying rangelands. They found the ‘good’ to produce better 

profits ($29.43 ha-1), compared to ‘low-fair’ ($27.61 ha-1) and ‘excellent’ rangeland 

($23.01 ha-1). However, this study did not address the nutritional profile of forages 

available to cattle during each season. 

A study by Hart and Ashby (1998) looked at the types of plants grazed and the 

effects that the grazing had on, not only the performance of the animals, but also the 

plants. The resulting biomass of warm season grasses was recorded at each grazing 

intensity (heavy, moderate, and light) and responded best at the moderate level. 

Managing for good range condition levels with moderate grazing intensity appears to 

provide optimum returns to the rancher in terms of primary and secondary productivity 

(Dunn et al., 2010; Hart and Ashby, 1998). Management of specific annual and perennial 

plants that provide optimal nutrient levels year-round may increase yields further. 

iv. Management for specific grass species  

In order to balance the nutritional needs of the animal with the nutrients provided 

by the forage, Jones and Love (1945) have tested how to produce the highest possible 
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yield of palatable and nutritious feed over the longest duration of time. As forages 

mature, forage quality decreases. While more DM may be produced from a pasture, the 

quality of that DM is continually less desirable after a certain level of maturation. In a 

meta-analysis, George and Bell (2001) showed that on California ranges CP, calcium, 

and phosphorus decreased with maturity, while CF increased. More importantly, forage 

maturity was strongly correlated with CP; therefore, it is a good predictor of forage CP 

levels. This relationship was also found in annual grasses such as annual fescue (Festuca 

megalura), ripgut brome (Bromus rigidus), soft chess brome (Bromus mollis), Australian 

chess (Bromus arenarius), wild oats (Avena barbata), and red brome (Broums rubens) 

(George and Bell, 2001).  

Soft chess (Bromus hordeaceus) is the most nutritious and most palatable (60%; 

Hormay, 1940) for cattle of the annual grass species found on California rangelands. Its 

CP levels decline more gradually (from 24% CP) and remain higher between late 

reproductive stage and dry stage (8% to 13% CP), while containing higher energy and 

mineral content compared to other species. The large, plump seeds linger on the plant 

long after the plant has reached the dry stage, providing continued nutrition to cattle 

beyond the growing season (George and Bell, 2001). From the vegetative to the early 

reproductive stage, soft chess (Bromus hordeaceus) contains roughly 28% to 30% CF 

(George and Bell, 2001), however, CF is highly variable within late reproductive and dry 

stage (22% to 39% CF; George and Bell, 2001).  

Purple needlegrass (Nasella pulchra), responded noticeably better to the earlier, 

shorter grazing as opposed to the later and longer grazing. Jones and Love (1945) 

concluded that improper timing of grazing led to overgrazing. Perennial species are more 
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susceptible to overgrazing as their slower growth pattern limits their ability to compete 

amongst annual species. Compared to perennial species Danthonia californica and 

Nasella lepida, N.pulchra appeared to be the most tolerant to grazing. In some cases, 

particularly spring grazing (Figure 1.4), purple needlegrass demonstrated a positive 

response (Bartolome et al., 2004) and in other studies it was indifferent to clipping and 

grazing (Lulow, 2008; Hatch et al., 1999). 

 

Figure 1.4. Boxplots represent the percentage cover of perennial grasses in response to 

various levels of grazing compared to baseline. Nasella pulchra was not present in the 

continuously grazed plot (Bartolome, 2004). 

 

One goal of rangeland restoration may include the elimination of weedy annuals 

(foxtail barley, ripgut brome) to encourage the growth of more palatable annual grasses 

(soft chess) and perennial grasses (Nasella spp., California oatgrass, perennial ryegrass) 

and forbs (bur clover and filaree). The starting point may be a barren landscape in which 
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case rest is recommended, followed by reseeding with desired species when soil is 

prepared, and lastly with grazing to allow for the seeds to make close contact with the 

soil. Another starting scenario may be a pasture containing weedy annuals. In this case, a 

pasture rotation system should be developed in which 3-4 pastures are grazed in the early 

spring, allowing each pasture to rest at least every 3rd year in the cycle, depending on how 

severely it was grazed. Grazing in the early spring minimizes seed distribution of annuals 

such as foxtail barley and ripgut brome before they become dry and potentially harmful 

to the animal. Simultaneously, perennials will be grazed while they are still in vegetative 

stage, allowing them to grow better, as seen through grazing and mowing experiments 

(Jones and Love,1945).  

Grazing with the intention of improving the effective leaf-area index (a way of 

quantifying plant canopy cover) will result in higher grazing pressure, which causes the 

plant to respond in such a way that the digestibility increases because such stresses cause 

decreased lignification during subsequent re-growth (Van Soest, 1994). Therefore, 

grazing inhibits the maturation of forages and increases the overall nutritive value of a 

pasture. Following grazing, grasses will respond with increases in photosynthetic material 

(more leaves) and diminished extraction of soil moisture. This slows maturation of 

perennials, and annuals, so they can retain a higher nutritional value for a longer period 

of time; thus, helping to extend the grazing season (Jones and Love, 1945). 

If the duration of grazing is timed correctly, cattle will select the more palatable 

annuals first and graze the perennials less severely, allowing for the re-establishment of 

perennial bunches. Cattle must be removed in time to spare perennials and also leave 

some cover on the ground in order for soil moisture to be retained so that perennials, 
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filaree, and bur-clover will still have water to continue growing. Subdivisions of pasture 

assist the rancher in setting a desired stock density/grazing pressure in order to maximize 

the use of available forages. The less palatable the forage, the heavier the cattle should be 

stocked. More frequent rotations are most beneficial to restoration efforts (Jones and 

Love, 1945; Henneman et al., 2014).  

 

v. Supplementary feeding 

Supplementation is an especially important strategy used for cattle operations in 

California to implement in the summer months. During this time, standing forages are 

especially low in CP; therefore, cattle should be provided supplementation protein such 

as cottonseed cake or meal (Jones and Love, 1945; Hersom, 2008), safflower, oil meal 

(George et al., 2001b) and alfalfa (Weder et al., 1999) in order to offset nutrient 

deficiencies and maintain adequate animal performance (Waterman et al., 2014). 

 Urea (CH4N2O) is also another useful source of protein supplementation. While it 

is a non-protein nitrogen (NPN) source and does not provide protein directly to the 

animal, the microbes in the rumen are able to use the nitrogen from the compound to 

create microbial protein (George et al., 2001b; Sewell, 1993). When supplementing urea 

to cattle fed a high forage diet, it is important to be aware of the energy content of the 

feed, as forages are generally lower in energy content than concentrate feeds. This can be 

a limiting factor for the rumen microbes in their ability to thrive and successfully produce 

ammonia and microbial protein (Sewell, 1993). High energy, grain-based supplements 

will likely shift the balance in rumen microorganism populations (El-Shazly et al., 1961). 

Cattle fed a low energy diet in combination with urea supplementation may suffer from 

toxicity. Rumen microbial populations adapted to low-quality forages would not be 
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established to recycle large portions of urea. To compensate, the liver would process the 

majority of the urea (Sewell, 1993). However, it has been reported that, of the urea 

produced by beef steers consuming high forage diets, 80% was recycled (Huntington et 

al., 2009).  

 The use of rumen-protected (a type of RUP) amino acid (AA) supplementation 

has increased recently. This is a way for cattle managers to control what AA’s are 

available for absorption through the intestine. Primiparous beef cows consuming annual 

rye hay have shown increases in milk yields when supplemented with rumen-protected 

lysine and methionine (Hess et al., 1998) and heifers grazing kikuyu (Pennisetum 

clandestinum) pasture demonstrated improved growth following supplementation with 

urea, blood-meal, and rumen-protected methionine (Gomez et al., 2011). While rumen-

protected amino acid supplementation has been researched thoroughly and utilized for 

feedlot cattle, less is known about the specific amino acid needs of grazing beef cattle 

(Waterman et al., 2014).  

 A possible supplementation strategy that has been suggested for use in forage-fed 

diets is that of nutrient synchrony, the idea that microbial efficiency can be optimized via 

the providing of N and energy concurrently with other nutrients (Hersom, 2008). While 

opposing results have been demonstrated through various studies, the research of this 

concept is multidimensional and complex, depending on many variables and situations. 

However, the potential for use and improvement in the performance of grazing cattle 

remains. Hersom (2008) has outlined the results of several studies such as those from 

Bohnert et al. (2002a, b, c) and Moore et al. (1999). A positive result of nutrient 

synchrony was seen from increasing the frequency of feeding protein supplements from 
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2-7d/wk, which coincided with a linear increase in OM and NDF digestibility (Bohnert et 

al., 2002a, b, c). It has been advised that nutrient synchrony may elicit a greater response 

when animals graze low-quality forage matched with a supplement of similar degradation 

rate (Hersom, 2008). It is possible that, if provided with a high energy-based supplement, 

the animal can receive a larger portion of the energy in its diet from the supplement, 

therefore decreasing the DMI of available forage (Van Soest, 1994; Hersom, 2008). 

Moore et al. (1999) have stressed that forage DMI improves from supplementing with 

protein or energy when the TDN to CP ratio of the forage is > 7%. As a livestock 

manager, it is important to know the forage-base of the pastures so that an approximation 

of chemical composition of the pasture can be determined and assist with deciding on the 

best supplement(s) to use (Hersom, 2008).  
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Section IV 

The literature supports the conclusion that, perennials grasses may not have a higher 

nutritional value than annuals, in all cases, across all growth stages, despite the fact that 

perennial grasses exhibit prolonged metabolic activity. One common conception amongst 

ranchers is that because of their green appearance, perennials have a higher nutritional 

value than annual grasses in the summer, and are therefore a source of standing forage 

that can be utilized and beneficial to the performance of grazing cattle. However, if the 

rancher of an extensive grazing system is concerned with the long-term production of his 

land, then perennial species should not be grazed post-spring. This practice will allow 

perennials to come back strong in the following fall and winter. This is also best for the 

animal because early grazing eliminates unwanted annual grass species over time. It also 

allows defoliation of perennials, while in vegetative or early reproductive stages, and 

stimulates regrowth with less structural components and higher digestibility. Defoliation 

of annual grasses at this time can prevent the annuals from going to seed, therefore 

reducing competition for perennials in the following growing season. In California, grass 

species, such as the perennial California oat grass and annual soft chess, are of high 

nutritional value, palatability to cattle. However, in the summer months, grazing cattle, 

particularly lactating cows, may still need supplementation. Stockers that are gaining and 

cows that are lactating or gestating in the winter may need supplemented depending on 

pasture quality and soil nutrient characteristics of a given area. Choice of supplement is 

dependent upon the current requirements of the animals and the environment they are in. 

In order to make the most informed economic and environmental decisions on this 

matter, and to develop prediction equations and practical use of strategies such as nutrient 
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synchrony, further research on forage nutritional composition, and techniques for how to 

efficiently gather such data, must be conducted. 
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METHODOLOGY & ANALYSIS 

 

Section I. Materials 

Plant Samples 

Nine plant species, (Table 2.1) (Avena spp., B. hordeaceous, E. botrys, L. multiflorum, E. 

glaucus, L. tritichoides, Melica spp., S. lepida, S. pulchra) (USDA-NRCS, 2017) were 

collected at four growth stages (Table 2.2) in San Luis Obispo county, California 

(Appendix A). Eight plants were grass species and one plant, E. botrys Broadleaf filaree, 

was a forb. 

 

Livestock 

Two lactating cannulated Angus cows, owned by California State University, Chico were 

utilized for ruminal incubation of plant samples.  

 

Section II. Methods  

i. Plant Sample Collection  

Plant samples were collected at four of the most morphologically distinguishable 

growth stages of the twelve standard stages of maturity used by George and Bell (2001). 

The four growth stages and their characteristics are as follows. Late vegetative (LV) 

plants consisted mostly of leaf material and, of the stem material, internodes were 

beginning to lengthen. The early reproductive (ER) plants had reproductive structures 

that were not fully matured (i.e., seeds in milk stage) and anthers were still present. The 

plants at late reproductive (LR) stage were fully mature, and seeds were being cast from 
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the inflorescence. Lastly, the dry (D) plants were completely dried out, with the exception 

of perennial plants, which contained some pigmentation at the bottom 4-8 in. of the tiller. 

Detailed parameters for distinguishing growth stages are shown in Table 2.2 and were 

adapted from NRC (1982). The samples were all collected between May 2016 and April 

2017 using the grass collection procedures described in Appendix A, which were 

designed specifically for this project by the main author. Quality control measures 

included sorting and separating RDM, desired grass species and accurate growth stage. A 

minimum of 300 grams dried and ground plant material were required for each species in 

the experiment. 

Plant sample collection began in May 2016 within San Luis Obispo County. A 

single county was selected to limit variation in soil and climatic factors. Collection 

locations (Appendix B) were not randomized, but rather, selected based on the presence 

and abundance of the sample species. The perennials, purple needle grass, foothill 

needlegrass, and purple needlegrass were all characteristic of bunchgrasses and 

maintained some active tillers year-round. All the annual grasses grew independent culms 

and were completely dried by August. The LR and D stages of all species were collected 

through July. All four growth stages of the perennials, blue wildrye and creeping wildrye 

were collected by August 2016. The LV and ER stages for the remainder of the plant 

species were collected between January 2017 and April 2017 (Table 2.4). 

Identification of grass species was dependent upon the growth stage structure of 

the grass species. Late vegetative stage was more difficult to assess in soft chess, foothill 

needlegrass, and blue wildrye due to loss of distinctive characteristics; thus, the selection 

process was based on species’ preferred location, presence of dried old tillers or new 
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ones, and the ligule, auricle, and configuration of the sheath (i.e., open, fused, 

overlapping). 

Quality control measures included sorting and separating RDM, desired grass 

species and accurate growth stage. A minimum of 300 grams dried and ground plant 

material were required for each species in the experiment. 
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ii. Plant Sample Preparation 

 Samples were dried at 80°C (Kalra, 1998) for 24 to 48 h and subsequently run 

through a Wiley mill (Thomas Scientific. Thomas Wiley Mill, Model 4. Swedesboro, NJ) 

and ground to 4 mm sized particles. The Wiley mill was cleaned thoroughly between 

sample grinding to avoid contamination. Samples were stored individually by species and 

growth stage in large 92 oz (25.4 x 38 cm) Whirlpak® bags (Nasco, Modesto, CA) at 

ambient temperature until preparation for in situ digestibility trials. Sample preparation 

for in situ digestibility trials was similar to Buckner et al. (2013). An aliquot of each of 

the 4-mm samples was processed through a 1-mm screen in the Wiley mill for lab 

analysis.  

 

iii. In-situ Digestibility Trials  

Procedures to determine in situ digestibility were similar to (Buckner et al., 2013). 

Briefly, 9.5 g to 10 g of 4 mm ground plant material from each grass species and growth 

stage, in addition to soybean meal control, were measured into 10 x 20 cm, 50-micron 

porosity in situ bags (Ankom Technology, Macedon, NY). Four replicates and a washout 

bag were used for each sample and the control at each time-point (hour 12, 24, 48). Bags 

were secured with nylon string by using a hangman’s knot. The four replicate in situ bags 

were placed into a larger mesh bag for each time-point. Samples from each time point 

were evenly and randomly divided among two separate mesh bags, resulting in 68 

samples per bag and six mesh bags per cow. Time-point mesh bags were identified via 

specific-colored nylon rope secured to the mesh bag and outside of cannula. Three colors 

of nylon string were used (red, blue, and yellow) to represent each time point. 
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Two ruminally-cannulated Angus cows were removed from pasture and fed a 

base alfalfa diet (20.81% CP and 0.25 Mcal/kg NEl) ad libitum for 14 days prior to in situ 

incubation period. They were held off feed for 12 h prior to start of the trial, but were 

allowed alfalfa hay throughout the experiment. Six mesh bags were placed directly into 

the rumen. Each set of two bags, representing one time-point, was removed at its 

designated time-point (i.e., 12, 24, or 48 h) after insertion into the rumen, for 

determination dry matter digestibility (DMD) and organic matter digestibility (OMD). 

Immediately following the removal of mesh bags at each time point, individual sample 

bags were placed in cold water to slow microbial activity and were thoroughly rinsed 

until the rinse water was clear.  

All ANKOM in-situ sample bags were placed in the oven for approximately 72 

hours at 100C and then stored in large 92 oz (25.4 x 38 cm) Whirlpak® bags (Nasco, 

Modesto, CA) until they were weighed. Bags were weighed no sooner than 30 minutes 

after being removed from the oven. Acceptable samples were within a 10% CV. 

 

Section III. Chemical Composition 

i. Dry Matter and Ash 

The DM and OM content of all samples were determined through a gravimetric 

procedure developed by the Cal Poly Nutrition Laboratory (Appendix D). Sub-samples 

were drawn from 4 mm ground plant sample. Duplicates were made for each sample type 

and crucibles containing sub-samples were placed into a forced-air drying oven at 100oC 

for 24 h. After determination of DM, crucibles were placed into a Thermolyne Tabletop 
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Muffle Furnace, (Thermoscientific, Waltham, MA) and heated to a maximum of 600oC 

for 2 h during the 15 h ashing process. Acceptable samples were within a 1% CV. 

 

ii. Nitrogen Analysis 

 Plant samples, ground to 1 mm, weighed into crucibles and analyzed for N 

content using the vario Max CNS, Macro Elemental Analyzer, (Elementar 

Analysenesteme GmbH, Hanau, Germany). Every-other sample was run as a duplicate 

and every ten samples were tested against a standard plant sample. Standards for the first 

and second set of samples were 2.9 % N (tomato powder) and 1.065% N (pine needle 

powder), for the first and second set of samples, respectively. Pine needles had a nitrogen 

content closer to that of the plant samples being analyzed. Acceptable samples were 

within 5% CV. 

 

iii. Fiber Analysis 

Fiber analyses were sequentially ran according to Method 6 for NDF, Method 12 

for ADF, and Method 8 for ADL, Ankom Technology, (Mecedon, New York). 

Procedures were based on methodology described by Van Soest (1994). Plant samples, 

ground to 1mm (Thomas Scientific. Thomas Wiley Mill, Model 4. Swedesboro, NJ), 

were weighed into F57 Ankom, Fiber Filter Bags, and were analyzed using the Ankom 

200 Fiber Analyzer (Macedon, New York). Heat-treated, alpha amylase was added for 

NDF analysis. Sodium sulphite was excluded from NDF analysis, in order to preserve the 

lignin component of the sample for ADL analysis. Following each analysis, samples were 

dried (1002C) via a digital forced-air drying oven (Quincy Lab Corporation, Chicago, 
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IL). Final sample weights were recorded and calculated as %NDF, %ADF, %ADL, and 

were corrected for %DM. Acceptable samples were within 5% CV. 

 

Section IV. Statistical Analysis 

The experimental design was a CRD with fixed effects of growth stages and 

growth type. Initial plant descriptive data (i.e., raw means) were analyzed via PROC 

MEANS procedure in SAS (version 9.1.4; SAS Institute Inc., Cary, NC). Data were 

analyzed with The MIXED procedure of SAS using a two-way ANOVA test to evaluate 

effects of stage, type, and stage x type. There was no stage x type significant interaction. 

Therefore, only main effects were analyzed. Means were generated using LSMEANS 

statement. Growth type effects on CP, NDF, ADF, ADL, DM, OM, ash, aNDFom were 

analyzed with an F-Test. A linear contrast was used to describe maturing growth stage on 

CP, NDF, ADF, ADL, DM, OM, ash, aNDFom. Statistical analysis of the data from the 

in situ trials used individual plant sample as the experimental unit. Data were analyzed 

using The MIXED procedure of SAS with repeated measures to test the effects of in situ 

time period (time), stage, type and all subsequent interactions on DMD and OMD. The 

covariance structure, compound symmetry, was chosen on the basis of the lowest 

Bayesian information criterion. The subject was cow nested within time. Means were 

separated compared using the LSMEANS command and PDIFF statement in SAS. If a 

significant interaction was observed, the SLICE procedure in SAS was used to separate 

stage, type, and time effects within hour. Significance was declared at P ≤ 0.05. Trends 

were discussed at 0.05 < P < 0.10. 
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RESULTS 

Section I. Information for plant species collected 

The names and information for each individual species collected have been 

compiled (Table 2.1). The growth stages were differentiated during collections using the 

listed characteristics in the protocol (Table 2.2). The locations and months for each 

sample collected were recorded in Table 2.3 and Table 2.4. Results of wet chemistry 

analyses for each individual species have been provided in the form of raw means of 

nutritive values (Table 2.5- Table 2.8). Means for CP across all species and growth stages 

ranged from 2-17%. Across all stages, mean values for NDF ranged from 60-80%, with 

the exception of the Italian ryegrass and wild oats with lower values in the LV stage 

(Table 2.5), and filaree with lower values at all growth stages. For each plant species, 

NDF values were higher than those of ADF. Acid detergent fiber values ranged from 29-

48% across all stages, with the exception of lower values found in Italian ryegrass at LV 

stage and in filaree at all stages (Table 2.5- Table 2.8).  

 

Section II. Annual and perennial grass chemical composition 

Descriptive means for nutrient content of annual and perennial grasses, at each 

growth stage are shown in Table 2.9. Based on the descriptive means, annuals 

demonstrate a 1-3% higher level of CP at all four growth stages (Table 2.9). Annuals 

contained a 2% greater concentration of CP than perennials across all growth stages (P ≤ 

0.05; Table 2.10). Perennials demonstrated a higher percentage of NDF and ADF than 

annuals, 10% and 5% higher, respectively (P < 0.01; Table 2.10). The composition of 
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ADL, for both perennials and annuals, across all growth stages, was not different (Table 

2.10). With percent ash corrected for, aNDFom was also higher in the perennials by 11% 

(P < 0.01; Table 2.10). Dry matter, OM, and ash were similar for both growth types 

(Table 2.10). No stage and type interaction was identified for any of the nutrients. 

Broadleaf filaree was omitted from the statistical analysis. 

 

Section III. Chemical composition changes with grass maturity 

Independent of growth type, NDF, ADF, ADL, and aNDFom concentration 

increased with maturity from the LV to the D stage (P < 0.01), whereas CP decreased by 

9% with maturity (P < 0.01). Neutral detergent fiber, ADF, ADL, and aNDFom increased 

by 13, 12, 1%, and 16%, respectively, with increasing maturity (i.e., LV to D; P ≤ 0.01; 

Table 2.11). Dry matter content was not affected by maturity from LV to D stage (P > 

0.05), but OM increased by 3% while ash content decreased by 3% (P ≤ 0.05; Table 

2.11). Broadleaf filaree was omitted from the statistical analysis.  

 

Section IV. Dry matter and organic matter digestibility of grasses 

Following the three in situ ruminal incubation periods, DMD and OMD of 

annuals differed between the 12 and 24-h periods, the 24 and 48-h periods, and the 12 

and 48-h periods (P ≤ 0.05) (Table 2.12). Broadleaf filaree was omitted from the 

statistical analysis for in situ disappearance. No stage and time interaction was detected 

for DMD and OMD of grasses. 
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Only within the 48-hr period did the DMD and OMD differ between the annuals 

and perennials (P ≤ 0.05) (Table 2.13). Digestibility of perennials and annuals following 

the 48-hr period differed by 10%, where annuals were more digestible than perennials 

(Table 2.13). Dry matter digestibility and OMD for both annuals and perennials were 7-

10% at 12 h and 18-21% at 24 h. At 48 h, the DMD and OMD for annual grasses were 

42% and 46%, and for perennials they were 32% and 34%. There were no significant 

differences in DMD and OMD between annuals and perennials at the 12 and 24-hr 

periods.  

No interaction was identified between the two growth types at different growth 

stages for OMD. However, there was an interaction between growth type and growth 

stage for DMD, which differed between annuals and perennials at the LR and D stages (P 

≤ 0.05; Table 2.14). In terms of DMD, annuals were 5% more digestible than perennials 

at the LR and D stage (P ≤ 0.05; Table 2.14). The DMD did not differ between annuals 

and perennials at LV and ER stages. 

Dry matter digestibility values, across all stages, in order of LV to D, 26-21% for 

annuals, and 25-17% for perennials. The digestibility of perennial grasses decreased 

between stages LV, ER, and LR (P ≤ 0.05), but did not change between the LR and D 

stages (P > 0.05). Annual grasses did not significantly change in DMD following the ER 

stage. However, annual grasses decreased significantly in DMD from LV to ER (P ≤ 

0.05; Table 2.15). 
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DISCUSSION 

Section I. Chemical composition of grasses and forbs at different growth stages 

 The primary objective of this experiment was to analyze and compare the initial chemical 

composition of annual and perennial plants at four stages of progressing maturity. The second 

objective was to test the in situ digestibility of annual and perennial grasses at each of these four 

stages. The initial nutrition composition results include one forb, broadleaf filaree, and nine grass 

species.  

Broadleaf filaree was omitted from the statistical analysis for the purpose of producing 

the most accurate representation of annual grasses. Previous research has shown the forbs 

produced higher in vitro dry matter digestibility coefficients and greater mineral content than 

grasses (Hoehne et al., 1968). However, forbs constituted up to 50% of the DM content of 

esophageal contents from cattle grazing native range (Hoenhe et al., 1968), attesting to the 

importance that they have to beef cattle nutrition, an area that merits further exploration. 

The LV stage of soft chess was unable to be collected due to the difficulty in 

differentiating between it and the LV stage of purple false brome. Soft chess at LR stage was not 

collected due to the brief transition time from ER stage to D stage. Previous literature has shown 

that percent crude fiber for soft chess averaged 28.58% for LV, 26.74 for ER, 29.84% for LR, 

and 31.82% for D (Hart and Guillbert, 1932; Gordon & Sampson, 1939). 

It is important to note that anecdotal evidence of the nutritional components for 

individual plant species, all annual grasses combined (not including broadleaf filaree), and 

perennial grasses have been reported. Some of the observed means for fiber content do not 

increase consistently with maturity, contrary to what might be expected. However, these 

observations are not entirely unusual. Wrysinski (1998) has reported ADF values for blue 
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wildrye and creeping wildrye that are slightly higher in the ER stages (45.45 and 44.38) than in 

the LR stage (33.9 and 42.23). Several individual measurements of crude fiber for annual 

grasses, filaree, and bur clover, across 12 stages of maturity, were higher in earlier stages than in 

the preceding stages (George and Bell, 2001).  

Sources of error that could have attributed to any oddities in the values that were 

observed may have to do with ADL analysis, drying methods, or sampling location. Hatfield and 

Fukushima (2005) found that the ADL procedure produced the lowest lignin values, whereas the 

permanganate lignin, also based on ADF, produced much higher values. While all values 

obtained from chemical analyses were corrected for %DM, some initial plant samples were 

dried, at 27°C, rather than 80°C, which is recommended for proper preservation and plant 

analysis (Kalra, 1998). Arzani et al. (2001) also sampled grasses from various sites and reported 

that location had a significant effect on forage quality. 

 

Section II. Growth stage and type significantly affect nutritive values of annual 

and perennial grasses 

To address the first objective of this research, the means of the nutritional components of 

annual and perennial grasses were compared through statistical analysis. As forages mature, the 

proportion of fiber typically increases and crude protein proportion decreases (NRC, 1996; 

Sedivec et al., 1997; White and Wolf, 2009; Wrysinski et al., 1998). Sun et al. (2010) found that 

in the June harvest (beginning of the winter season in New Zealand) perennial ryegrass had a 

significantly lower CP content than that of Italian ryegrass and a ryegrass hybrid (P < 0.05). The 

August harvest of perennial ryegrass cultivars had higher observable means for CP content (225 

g/kg DM) than Italian ryegrass cultivars (181 g/kg DM), but was not different from the Italian 
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ryegrass and the hybrid cultivars (P > 0.05). No differences were found in ash concentrations of 

all three ryegrass types (P > 0.05). The June findings corroborate the evidence from this study 

that, across all growth stages, the perennial grasses studied were lower in CP than the annual 

grasses studied (P ≤ 0.05). In the current study, there was no interaction detected between 

growth stage and growth type, so only main effects were presented.  

Across harvest dates, there was a difference (P ≤ 0.05) seen in the NDF content of 

perennial ryegrass (468 g/kg DM) and Italian ryegrass (414 g/kg; Sun et al., 2010). These 

findings were in line with those of the current study, in which the perennial grasses had a higher 

NDF content than the annual grasses (P < 0.01), across all growth stages. Besides the work of 

Sun et al. (2010), comparing annual and perennial ryegrass cultivars, there is undoubtedly a lack 

of research to address the nutritional differences in annual and perennial grasses, and, more 

specifically, the differences of the two growth types as they mature. This topic is understudied in 

the realm of rangeland grass species of California. Wrysinski et al (1998) has reported the 

nutritional composition of native perennial grasses of California at four growth stages, however 

no comparison to annual species was made. 

A decline in ash content as all grasses matured was also observed in this study (P ≤ 

0.05). Similarly, a majority of minerals tested for in grasses from five ranches in Wyoming 

declined as the grasses matured and weathered. Most notably, phosphorous, sulfur, and zinc 

declined with maturity. Calcium increased with maturity, but declined with weathering (Horn, 

2012). Our results showed a decrease in ash (mineral content) as all plants matured (P ≤ 0.05). 
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Section III. Effects of ruminal incubation period, growth stages, and growth 

type on digestibility 

To address the second objective of this research, we calculated the disappearance of DM 

within the rumen as indicator of the digestible fiber fraction of a given sample. The resulting 

values of DM disappearance were compared statistically between annual and perennial grasses at 

the four growth stages. Digestibility of forage decreased with maturity (Arzani et al., 2004; Sun 

et al., 2010; Thamaraj et al., 2008), while cellulose increased, as a proportion of the plant, and 

the ratio of stems to leaves increased (Fahey and Berger, 1988).  

This concept has also been demonstrated on ryegrass and fescue-based pastures in 

Victoria, Australia by Thamaraj et al. (2008). Their results showed that, in the winter months 

(early growth stages), NDF concentration was low, while CP, DMD, and ME were high. 

Adversely, in the summer months (late growth stages), NDF concentration increased while CP, 

DMD, and ME decreased. It was also reported by Bosman (1970) that, as the proportion of NDF 

and ADF content of grasses increased, the OMD decreased (as cited by Minson, 1990). 

Alternatively, as the CP content increased, the OMD increased (Minson and Kemp, 1961).  

Weston (1985) ranked digestibility as high, medium, and low. As cell wall per kg of grass 

sample increased from 430 to 670, the digestibility ranking decreased. Sullivan (1964) and 

McLeod and Minson (1976), reported that a high ADL content of grasses resulted in a low 

DMD. Gustavsson & Martinsson, (2004) used the indigestible fiber (IF) fraction of timothy hay 

(Phleum pretense L.) as an indicator of the cell wall concentration due to the fact that, across all 

the seasons and harvests, the IF increased exponentially with an increase in NDF concentration.  

While these concepts are well understood and thoroughly researched, little research has 

been done to compare the digestibility of annual and perennial grasses. Sun et al. (2010) has 
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compared both the nutritional and digestibility characteristics of annual and perennial grasses. 

When comparing the IF and the degradation rates of perennial ryegrass cultivars and annual 

ryegrass cultivars following in sacco digestion in dairy cows, Sun et al. (2010) observed 

differences (P = 0.06) in the degradation rates of the two growth types over 2, 4, 7, 9, 12, 24, and 

72 h incubation periods. While they did not report the specific differences at each hour, the 

annual ryegrasses degraded noticeably faster (0.196 h-1) than did the perennial ryegrasses (0.150 

h-1), but these observations were not significant. 

 Based on the findings above, perennial grasses may require a longer ruminating time. 

Weston (1985) matched ruminating time in h/kg DM with high, medium, and low digestibility 

rankings. A longer ruminating time of 11.1 h corresponded with the low ranking, whereas a 5.1 h 

was ranked high. Previous experiments by Mehrez and Ørskov, (1977) demonstrated the 

digestibility of barley in fiber bags in the rumen of sheep, over several incubation periods. Their 

results show a 70% disappearance in dry matter from the start time to the 12 h period, and only a 

10% increase in dry matter disappearance from the 12 h to the 24 h incubation period. These 

results show that a majority of the barley sample was digested with the 12 and 24 h incubation 

periods. Results on the digestibility of grasses also showed significant increases in digestibility 

with increasing incubation time, but half of the DM disappearance (20%) occurred within the 24-

h incubation period and the second half occurred between the 24 and 48-h incubation periods ( > 

20%).  

No interaction was observed between growth stage and ruminal incubation time in this 

study. However, Fredrickson et al. (1993) have provided evidence of changes in organic matter 

digestibility of native blue grama (Boutelloua gracillis) in eight ruminally cannulated steers 

grazing native blue grama ranges in August, October, and November in New Mexico in 1987. 
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The authors did not specify the stage of maturity at each month, but their objective was to 

address the effect of phenology on ruminal digestion, assuming that plants increased in maturity 

as the months progressed. They reported that at incubation periods 3, 6, 9, and 12 h, percent NDF 

disappearance of native blue grama was lower in the October forage samples than the November 

forage samples (P < 0.05). The same was true between the August and November samples. At 

the 48 h period, the % NDF disappearance of forage samples from August was higher than that 

of samples from November (P < 0.05; Frederickson et al., 1993).  

These study results do not include the proportions of the specific chemical components 

remaining in the undigested portion of the 48 h samples. Knowing this information would 

provide further insight as to the type of particle material that was digested in the rumen. 

Huntanen et al. (2008) compiled the work of several authors who have found that large particles 

and particles with a higher proportion of digestible neutral detergent fiber (DNDF) were 

selectively retained in the rumen, whereas particles consisting of indigestible neutral detergent 

fiber (INDF) had a higher probability of escaping from the rumen. This conclusion was drawn 

based on evidence that the passage rate of INDF was faster than DNDF (Huntanen et al., 2008). 

Being that the current study did not test for the digestibility of specific nutrients in annual 

and perennial grasses, this leaves potential for future research in this area of study. In terms of 

CP digestibility, RUP from forages is often only 10-40% of CP (NRC, 1996; NRC, 2001). 

Mehrez and Ørskov, (1977) observed that the resulting crude protein digestibility was similar to 

that of DMD. Both increased steadily for up to 12 hours of ruminal incubation. From the 12 h 

incubation period to the 24 h incubation, both DMD and N digestibility began to plateau. Elliot 

et al., (1961) reported that the digestibility of CP of grasses decreased by 70 g/kg as grasses 

matured over a period of 28 wk. The greatest decrease was seen between 12 and 28 wk. To see if 
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these reports of DMD can be applied to California annual and perennial grasses, further 

investigation will need to be done. 

 

Section IV. Improving perennial digestibility 

Phillips et al., 2009 utilized highly domesticated breeds to compare apparent digestibility. 

The three cool-season perennial varieties, Harusakae (Festuca pratensis), Jessup (Festuca 

arndinacea), and Nanyro (Festuca arundinacea) were compared to winter wheat (var. Pioneer 

2174). The perennial, Nanyro, contained a greater concentration of N (P < 0.05) and lesser 

concentration of NDF and ADF as a percentage of DM (P > 0.05) than all the other species. 

Despite this, the hays with significantly higher NDF and ADF fractions, produced higher NDF 

and ADF digestibility coefficients. The initial DM concentrations of all the hays were similar, as 

were those of the annuals and perennials in the current studies, but the DMD of the Nanyro hay 

was the lowest, which seems odd when compared to our findings that showed that plants 

containing lower fiber concentrations had a greater digestibility. Even though the winter wheat, 

an annual, had a lesser amount of NDF and ADF and greater amount of N than the perennials, 

Jessup and Harusakae, it was significantly less digestible than Jessup. Philips et al. (2009) 

revealed the possibility of breeding perennial grasses to retain drought and insect tolerant 

characteristics, but also to improve digestibility.  

 In the current study, several different plant species containing a variety of chemical 

compositions were incubated within the same rumen, simultaneously, which is similar to what 

might be found in the rumen contents of cattle grazing rangeland. McCal, (1940) compared the 

coefficients of apparent DMD between a pure stand of bluebunch wheatgrass (Agropyron 

spicatum) and mixture consisting of a majority bluebunch wheatgrass and 10% other forages. 
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The mixture resulted in an 11.5% higher coefficient for DMD than that of the pure stand. The 

digestibility of the range mixture was to an even greater extent with the inclusion of linseed cake 

and barely to the ration. These findings support that a diversity of species in a pasture might 

improve the digestibility of perennial grasses. 

 

Section V. Managing for differences between annual and perennial-dominated 

pastures 

Gustavsson and Martinsson (2004) attempted to find the stage of growth that matches 

with the optimal digestibility of timothy hay. Of the morphological changes measured, the 

greatest changed was in stem growth, which occurred closest in time with optimal digestibility. 

This suggests that stem growth is a good indicator of optimal digestibility. The current study 

results of the changes between growth stages within annual and perennial grasses are consistent 

with this conclusion. There was a significant decline in digestibility between the LV and ER 

stages, within the annual grasses, (P ≤ 0.05), but DMD remained rather constant throughout the 

rest of the growth stages. This decline in DMD continued in perennials up to the LR stage (P ≤ 

0.05). The DMD of perennial grasses at the LR and D stages did not differ likely due to the 

inherent nature of perennials to go through a dormancy period rather than to die completely, 

unlike the annual grasses (Chiariello, 1989; Reever Morghan et al., 2007).  

These results may indicate that annuals are a more reliable feed source in the summer 

months. Perennials are better to graze in the LV stage, not only because of their higher 

digestibility in that stage, as the current study indicated, but also due to the fact that they respond 

well to early, short-duration grazing (Jones and Love, 1945) and are less prone to damage while 

they contain a higher proportion of meristematic tissue (Manske, 1999).  
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According to the time at which annuals were collected in the LV stage for this study, 

grazing during the first couple months of the year should focus on the pastures consisting of a 

majority annual grasses, as they were rapidly germinating and were the most digestible during 

this time. Ranchers should be cautioned to avoid urea toxicity while grazing cattle on large 

amounts of vegetative forage as it may contain higher amounts of CP and lower amounts of 

energy. Ruminant animals can be monitored via coloration of mucosae and the proportion of 

carbohydrates in the diet should be increased if urea toxicity appears to be a potential issue 

(Nicholls and Miles, 1980; Rogers, 1999). 

Perennials do not produce a substantial amount of biomass until after most of the annuals 

have gone through the LV stage. Jones and Love (1945) were some of the first to research the 

improvement of rangelands in California and have also suggested that grazing of perennial 

grasses occur once in the early spring when these grasses are least vulnerable. Given the proper 

conditions, and while in the vegetative stage, grazing can be beneficial to stimulating growth in 

the remaining parts of the plant (Briske and Richards, 1995; White and Wolf, 2009). Grazing 

also has a noticeable effect on the nutritive value of grass plants (Manske, 1999; Jackson and 

Bartolome, 2007). Defoliated individuals have demonstrated a lesser degree of lignification 

compared to non-defoliated counterparts (Van Soest, 1994). These observations provide 

evidence that managed defoliation can improve the digestibility of grasses. 

Due to the sensitivity of perennials to grazing (Jones and Love, 1945), these species 

should be monitored carefully and grazing of them should be kept to a minimum if the goal is to 

reestablish them within a pasture. However, of the perennial grasses, purple needlegrass has 

proven to be the most resistant to grazing (Bartolme et al., 2004; Hatch et al., 1999; Lulow et al., 



 

 64 

2008). Based on field observations during the sample collections for this study, purple 

needlegrass produced the most biomass of the needlegrasses. 

Depending on the location of perennial grasses, such as creeping wildrye and blue 

wildrye, as observed in this study, they may come into LV stage in the summer (Laude, 1953; 

Reever Morghan et al., 2007), as the annuals are dying and have low DMD (Minson, 1990). 

Taking advantage of this timing by grazing perennials at LV stage in the summer, is an option, 

but it is also important to realize that the factors that allow perennial grasses to retain living 

tissue via drought tolerance (Garnier, 1992) may also be the same factors that could cause a plant 

to be less palatable (Provenza et al., 2003). However, several authors have addressed the 

importance and successes of training livestock to consume less palatable plants, which comes 

with introducing a diversity of plants into their diets (Meuret and Provenza, 2015; Provenza et 

al., 2015). 

When the only available grasses are in the D stage, typically late summer or fall in 

California, the CP content may not be sufficient to meet the needs of yearling calves or lactating 

female cattle. Therefore, cattle should be provided supplementation in the form of protein 

concentrates such as cottonseed cake or meal (Jones and Love, 1945; Hersom, 2008), safflower, 

and oil meal (George et al., 2001b) or urea (CH4N2O) (George et al., 2001b; Sewell, 1993) in 

order to offset nutrient deficiencies and maintain adequate animal performance (Waterman et al., 

2014). In fact, several studies such as those from Bohnert et al. (2002a, b, c) and Moore et al. 

(1999) have produced positive results in terms of improving animal performance by increasing 

the frequency of feeding protein supplements from two to seven d/wk, which coincided with a 

linear increase in OMD and NDF digestibility (Bohnert et al., 2002a, b, c). This is a method that 

has been coined as nutrient synchrony. 
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 Grazing with the intent of improving animal performance and ecological health demands 

an intimate knowledge of the landscape. The observations from previous literature and the 

present research may help to guide the timing of grazing individual species. Henneman et al. 

(2014) have suggested timing grazing in alignment with the proper stage of the annual species to 

allow native perennials a chance to recover. Ranchers and land managers have to be attuned to 

the historic and current conditions of their land in response to the environmental conditions. 

Knowledge of the nutritive values and digestibility of annual and perennial plants at particular 

growth stages can assist in planning for consistent provision of forages with optimal digestibility 

to the grazing animal. 

 



 

 66 

IMPLICATIONS 

As forages found on California ranges are an integral part of livestock production 

in the state, it is important to establish an understanding of the nutritional value of the 

forage itself and in relation to the animal consuming it. This study measured the 

nutritional composition of native perennial plants and non-native annual plants that are 

commonly found on California ranges. No definitive comparisons between individual 

species could be made from these values however, because of a small sample size. This 

leaves room for further study on individual plant species of the San Luis Obispo county 

area in California. However, the main objectives of this study were to analyze the 

characteristic nutritional and digestibility differences between annual and perennial plants 

at four growth stages.  

Our findings are in line with our predictions and provide sound evidence on the 

differences in protein and fiber composition, and dry matter digestibility between annual 

and perennial grasses rather than the many theories that have been utilized in the past. As 

predicted, fiber composition increased and crude protein composition decreased as plants 

matured. Annuals were more digestible than perennials, but only during the stages which, 

during this study, occurred in May through August. During the early stages of growth, 

which occurred between January and April, for most species, the dry matter digestibility 

of both annuals and perennials were similar. Before utilizing this information for the 

development of grazing management plans, it is important to note that each species 

matured at different rates. The rate of maturity will also differ according to location. 

Highly digestible forages are likely to be found in locations composed of mostly annual 

grasses, especially in the summer. Both perennial and annual grasses can serve as good a 
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source of digestible forage in the spring months. For the improved establishment of 

perennials, they should be grazed less often than annuals.
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Table 2.1 

Corresponding codes for grass and forb species 

Code1 Species Common Name Growth Type 

AVENA Avena spp. Wild oats Annual 

BRDI2 
Brachypodium distachyon Purple false brome Annual 

BRHO2 
Bromus hordeaceous Soft chess Annual 

ELGL Elymus glaucus Blue wildrye Perennial 

ERBO Erodium botrys Broadleaf filaree Annual 

LETR5 Leymus tritichoides Creeping wildrye Perennial 

LOMU Lolium multiflorum Italian ryegrass Perennial 

MECA2 Melica spp. California melic Perennial 

NALE2 Nasella lepida Foothill needlegrass Perennial 

NAPU4 Nasella pulchra Purple needlegrass Perennial 

1 Codes designated by the USDA  
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Table 2.2 

Protocol for determination of the four growth stages of grasses 

Stage Description1 

Late vegetative Internode lengthening to boot stage. The inflorescence 
has not emerged yet. 

  

Early reproductive Emergence of flower to milk stage. Seed is still soft, 

not fully developed. Anthers are still on the majority 
of the spikelets. 

  

Late Reproductive  Seeds fall off easily when rubbed, or some have 
already been cast from the inflorescence. Annuals 

have practically lost all pigmentation. Perennials may 

be more pigmented, but still losing seed. 
  

Dry Includes growth from current year, not residual dry 

matter. Perennials may have some green/pigmentation 
remaining in the bottom 4-6 inches of the tiller. 

Annuals are completely dry like straw at this point.  

 

1Adapted from Laca (2015) 

*Similar protocol were utilized for Broadleaf filaree 
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Table 2.3 

Plant species collected at various sites in San Luis Obispo, California, from May 2016 to July 

2016 and January 2017 to April 2017 

Site Species Growth Stage Growth Type Origin* 

Walter's Ranch     

Wild oats Avena spp. D Annual grass non-native invasive 
Creeping wildrye Leymus tritichoides LR, D Perennial grass native 

Poly Canyon     

Wild oats Avena spp. LR Annual grass non-native invasive 
Soft chess Bromus hordeaceus ER, D Annual grass non-native invasive 

California melic Melica californica ER, LR, D Perennial grass native 

Foothill needlegrass Nasella lepida LV, ER Perennial grass native 

Irish Hills     

Blue wildrye Elymus glaucus LV, ER, LR, 

D 

Perennial grass native 

Annual ryegrass Lolium multiflorum LR, D Annual grass non-native invasive 

Camp San Luis     

False brome Brachypodium 
distachyon 

LV Annual grass non-native invasive 

Redstem filaree Erodium cicutarium LR, D Annual forb non-native invasive 
Foothill needlegrass Nasella lepida ER, LR, D Perennial grass native 
Purple needlegrass Nasella pulchra LR, D Perennial grass native 

*Origin and life cycle obtained from CalFlora online database (CalFlora, 2017) 
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Table 2.4 

Months and year of collection, USDA species abbreviation (USDA-NRCS, 2017), and 

growth stage of plant species were collected from San Luis Obispo, CA. Growth stage 

indicates when grasses and filaree were available and collected. 

Year Month Species Growth Stage 

2016 May AVENA LR 

AVENA D 

BRHO2 D 

ELGL LV 

ELGL ER 

ELGL LR 

ERBO LR 

LETR5 LV 

LETR5 ER 

LOMU LR 

MECA2 LR 

NALE2 LR 

NAPU4 LR 

June ELGL D 

LETR5 LR 

LOMU D 

LOMU D 

NALE2 D 

NALE2 D 

July ERBO D 

MECA2 D 

MECA2 D 

NAPU4 D 

NAPU4 D 

August LETR5 D 

2017 January AVENA LV 

February AVENA ER 

ERBO LV 

LOMU LV 

MECA2 LV 

NAPU4 LV 

NAPU4 ER 

Feb-Mar NALE2 LV 

March BRDI2 LV 

ERBO ER 

LOMU ER 

MECA2 ER 

Mar-Apr NALE2 ER 

April BRHO2 ER 
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Table 2.5 

Chemical composition (%DM) of plant species sampled at late vegetative stage. 

LATE VEGETATIVE 

Plant Type         

Species1 CP2 NDF3 ADF4 ADL5 DM6 OM7 Ash aNDFom8 

Grass         

AVENA 15.90 52.45 29.27 7.79 92.63 86.78 13.22 39.23 

BRDI2 11.09 64.81 34.31 9.20 90.82 88.07 11.93 52.88 

BRHO29 - - - - - - - - 

ELGL 11.84 62.80 32.48 8.40 92.26 88.85 11.15 51.65 

LETR5 7.61 75.21 41.22 8.32 91.87 95.12 4.88 70.33 

LOMU 17.37 52.29 25.38 6.86 90.82 85.98 14.02 38.27 

MECA2 16.59 68.25 36.67 8.14 90.19 87.55 12.45 55.81 

NALE2 12.50 65.77 31.49 8.20 91.35 88.79 11.21 54.56 

NAPU4 12.03 68.49 31.96 7.49 92.05 90.59 9.41 59.08 

Forb         

ERBO 15.61 24.26 17.02 21.30 85.84 90.06 9.94 14.31 

1Codes designated by the USDA, correspond to plant species 
2Crude protein (%DM) 
3Neutral detergent fiber (%DM) 
4Acid detergent fiber (%DM) 
5Acid detergent lignin (%DM) 
6Dry matter (%) 
7Organic matter (%) 
8Ash-corrected neutral detergent fiber (%OM) 
9Not collected, unable to be distinguished from BRDI2 at late vegetative stage  
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Table 2.6 

Chemical composition (%DM) of plant species sampled at early reproductive stage. 

EARLY REPRODUCTIVE 

Plant Type         

Species1 CP2 NDF3 ADF4 ADL5 DM6 OM7 Ash aNDFom8 

Grass         

AVENA 9.05 70.56 40.96 6.56 90.61 92.25 7.75 62.81 

BRDI29 - - - - - - - - 

BRHO2 8.34 63.16 33.93 6.82 91.65 92.82 7.18 55.99 

ELGL 8.29 73.48 41.54 8.37 91.64 92.75 7.25 66.24 

LETR5 6.89 76.23 43.13 9.05 92.34 95.48 4.52 71.71 

LOMU 8.74 60.95 34.03 7.18 91.36 89.59 10.41 50.54 

MECA2 10.39 71.84 39.33 7.30 90.67 90.91 9.09 62.75 

NALE2 8.64 74.22 39.58 7.39 93.12 91.94 8.06 66.16 

NAPU4 9.80 72.96 37.93 6.48 93.03 92.48 7.52 65.44 

Forb         

ERBO 16.48 31.17 23.05 21.85 86.27 89.07 10.93 20.23 

1Codes designated by the USDA, correspond to plant species 
2Crude protein (%DM) 
3Neutral detergent fiber (%DM) 
4Acid detergent fiber (%DM) 
5Acid detergent lignin (%DM) 
6Dry matter (%) 
7Organic matter (%) 
8Ash-corrected neutral detergent fiber (%OM) 
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9Not collected 
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Table 2.7 

Chemical composition (%DM) of plant species sampled at late reproductive stage. 

LATE REPRODUCTIVE 

Plant Type         

Species1 CP2 NDF3 ADF4 ADL5 DM6 OM7 Ash aNDFom8 

Grass         

AVENA 10.01 64.54 38.07 8.25 92.28 90.39 9.61 54.93 

BRDI29 - - - - - - - - 

BRHO29 - - - - - - - - 

ELGL 6.32 78.66 44.33 9.11 89.74 90.37 9.63 69.03 

LETR5 4.87 77.87 44.93 10.17 92.27 95.01 4.99 72.88 

LOMU 7.19 58.25 30.01 9.75 92.92 91.92 8.08 50.17 

MECA2 5.77 72.35 38.93 8.91 91.62 89.84 10.16 62.19 

NALE2 5.98 72.82 39.63 12.01 92.47 88.78 11.22 61.61 

NAPU4 4.89 77.74 42.32 8.81 91.55 93.28 6.72 71.02 

Forb         

ERBO 4.98 47.32 35.01 13.70 92.12 92.41 7.59 39.72 

1Codes designated by the USDA, correspond to plant species 
2Crude protein (%DM) 
3Neutral detergent fiber (%DM) 
4Acid detergent fiber (%DM) 
5Acid detergent lignin (%DM) 
6Dry matter (%) 
7Organic matter (%) 
8Ash-corrected neutral detergent fiber (%OM) 
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9Not collected  
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Table 2.8 

Chemical composition (%DM) of plant species sampled at dry stage. 

DRY 

Plant Type         

Species1 CP2 NDF3 ADF4 ADL5 DM6 OM7 Ash aNDFom8 

Grass         

AVENA 6.35 71.64 39.96 8.19 91.70 90.87 9.13 62.50 

BRDI29 - - - - - - - - 

BRHO29 3.78 78.93 45.14 7.77 91.35 94.17 5.83 73.10 

ELGL 3.15 80.41 48.33 9.94 92.87 93.94 6.06 74.35 

LETR5 5.05 77.97 46.55 11.46 92.19 94.84 5.16 72.81 

LOMU 5.14 70.98 43.10 9.74 91.54 89.65 10.35 60.62 

MECA2 3.76 73.50 39.79 9.70 92.46 88.00 12.00 61.49 

NALE2 3.60 76.82 42.70 8.44 91.79 89.21 10.79 66.02 

NAPU4 1.77 83.78 49.48 8.34 92.20 94.16 5.84 77.94 

Forb         

ERBO 4.32 52.75 38.59 14.49 91.20 89.94 10.06 42.69 

1Codes designated by the USDA correspond to plant species 
2Crude protein (%DM) 
3Neutral detergent fiber (%DM) 
4Acid detergent fiber (%DM) 
5Acid detergent lignin (%DM) 
6Dry matter (%) 
7Organic matter (%) 
8Ash-corrected neutral detergent fiber (%OM) 
9Not collected  
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Table 2.9 

Descriptive means of nutritive values (%DM) for grasses1 collected at all four stages of growth2.  

Stage  

Life-form 

CP3 NDF4 ADF5 ADL6 DM7 OM8 Ash aNDFom9 

Late vegetative        

annual 14.79 56.51 29.65 7.95 91.42 86.95 13.05 43.46 

perennial 12.11 68.11 34.77 8.11 91.55 90.18 9.82 58.29 

         

Early reproductive        

annual 8.71 64.89 36.31 6.85 91.21 91.56 8.44 56.44 

perennial 8.80 73.75 40.30 7.72 92.16 92.71 7.29 66.46 

         

Late reproductive        

annual 8.60 61.39 34.04 9.00 92.60 91.16 8.84 52.55 

perennial 5.57 75.89 42.03 9.80 91.53 91.46 8.54 67.35 

         

Dry         

annual 5.09 73.85 42.73 8.56 91.53 91.56 8.44 65.41 

perennial 3.47 78.50 45.37 9.58 92.30 92.03 7.97 70.53 

1Does not include ERBO 
2Each of the four stages were determined using defining characteristics of maturity level 
3Crude protein (%DM) 
4Neutral detergent fiber (%DM) 
5Acid detergent fiber (%DM) 
6Acid detergent lignin (%DM) 
7Dry matter (%) 
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8Organic matter (%) 
9Ash-corrected neutral detergent fiber (%DM) 
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Table 2.10 

Differences in means of nutritive values for all grasses grouped by growth type, across four stages 

of growth1. 

 Growth Type  

Nutrient (%DM) Annual Perennial SE2 P > F 

CP3 9.22 7.49 0.58 < 0.05 

NDF4 64.45 74.06 1.32 < 0.01 

ADF5 35.88 40.62 1.07 < 0.01 

ADL6 8.10 8.80 0.30 0.07 

DM7 91.61 91.88 0.26 0.40 

OM8 90.24 91.60 0.71 0.14 

Ash 9.76 8.40 0.71 0.14 

ANDFom9 54.69 65.65 1.84 < 0.01 

1Each of the four stages were determined using defining characteristics of maturity level 
2Standard error of the LSMeans 
3Crude protein (%DM) 
4Neutral detergent fiber (%DM) 
5Acid detergent fiber (%DM) 
6Acid detergent lignin (%DM) 
7Dry matter (%) 
8Organic matter (%) 
9Ash-corrected neutral detergent fiber (%DM) 
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Table 2.11 

Differences in means of nutritive values of all grasses grouped by stage of growth, across annual 

and perennial grasses. 

 Growth Stage1 p-value 

Nutrient LV ER LR D SE2 Linear effect 

CP3 13.33 8.99 6.81 4.29 0.74 < 0.01 

NDF4 62.56 69.22 69.69 75.55 1.68 < 0.01 

ADF5 32.26 38.21 38.73 43.79 1.36 < 0.01 

ADL6 7.96 7.31 9.42 9.11 0.38 < 0.01 

DM7 91.47 91.77 91.78 91.98 0.33 0.27 

OM8 88.80 92.11 91.08 91.68 0.91 0.05 

Ash 11.20 7.89 8.92 8.32 0.91 0.05 

aNDFom9 51.36 61.33 60.77 67.24 2.35 < 0.01 

1LV = late vegetative, ER = early reproductive, LR = late reproductive, D = dry.  
2Standard error of the LSMeans 
3Crude protein (%DM) 
4Neutral detergent fiber (%DM) 
5Acid detergent fiber (%DM) 
6Acid detergent lignin (%DM) 
7Dry matter (%) 
8Organic matter (%) 
9Ash-corrected neutral detergent fiber (%DM)  
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Table 2.12 

Dry matter digestibility (%DMD) and organic matter digestibility (%OMD) differences within annual 

and perennial grass species, after three in situ ruminal incubation periods (h). 

  Period  

Growth Type 12 h 24 h 48 h SE1 

%DMD     

Annual 7.05a 19.11b 41.77c 1.71 

Perennial 8.62a 18.07b 31.51c 1.11    
  

%OMD 
  

  

Annual 8.44a 21.12b 45.57c 1.98 

Perennial 10.05a 19.74b 34.35c 1.26 

1Standard error of the LSMeans 
 a-cMeans within a row with different subscripts differ, P ≤ 0.05 
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Table 2.13 

Dry matter digestibility (%DMD) and organic matter digestibility (%OMD) differences between grass 

growth types after three in situ ruminal incubation periods (h). 

  Growth Type  

Period Annual Perennial SE1 

%DMD    

12 h 7.05 8.62 1.63 

24 h 19.11 18.07 1.69 

48 h 41.77a 31.51b 1.68 

%OMD 
  

 

12 h 8.44 10.05 1.87 

24 h 21.12 19.74 1.95 

48 h 45.57a 34.35b 1.95 

1Standard error of the LSMeans 
 a-cMeans within a row with different subscripts differ, P ≤ 0.05  
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Table 2.14 

Differences in %DMD between annual and perennial grasses at four growth stages.  

  Growth Type  

Growth Stage Annual Perennial SE1 

Late vegetative 25.71 24.5 1.78 

Early reproductive 22.44 20.46 2.12 

Late reproductive 21.03a 15.81b 2.07 

Dry 21.4a 16.83b 1.78 

1Standard error of the LSMeans 
 a-cMeans within a row with different subscripts differ, P ≤ 0.05  
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Table 2.15 

Differences in dry matter digestibility (%DMD) between each growth stage across annuals and 

across perennials. 

 Growth Stage  

Growth Type LV ER LR D SE1 

Annual 25.71a 22.44b 21.03b 21.4b 2.46 

Perennial 24.5a 20.46b 15.81cd 16.83d 1.65 

1Standard error of the LSMeans 
 a-cMeans within a row with different subscripts differ, P ≤ 0.05 
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ABBREVIATIONS 

AA – amino acid 

AU – animal unit 

ADF – acid detergent fiber 

ADL – acid detergent lignin 

BW – body weight 

CF – crude fiber 

CP – crude protein 

D – dry  

DADF – digestible acid detergent fiber 

DADL – digestible acid detergent lignin 

DE – digestible energy 

DMB – dry matter basis 

DMD – dry matter digestibility 

DMI – dry matter intake 

DNDF – digestible neutral detergent fiber 

EE – energy efficiency 

ENE – estimated net energy 

ER – early reproductive 

IF – indigestible fraction 

ISDMD – in situ dry matter disappearance 

MCP – microbial crude protein 

ME – metabolizable energy 

MP – metabolizable protein 

NDF – neutral detergent fiber 

NDFD – neutral detergent fiber digestibility 

NE – net energy 

NEI – net energy intake 

NFC – non-fiber carbohydrates 

NFE – nitrogen free extract 

NPN – non-protein nitrogen 

NRC – national research council 

NV – nutritive value 

LR – late reproductive 

LV – late vegetative 

OM – organic matter 

RDM – residual dry matter 

RDP – rumen degradable protein 

RFQ – relative forage quality 

RFV – relative forage value 

RUP – rumen undegradable protein 

SJER – San Joaquin Experimental Range  

TDN – total digestible nutrients 
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APPENDICES 

Appendix A: Plant Collection Procedures 

Author: Elaina Cromer      Revision date: June 2016 

 

Materials: 

- Grass clippers 

- Permanent marker 

- Brown paper bags (5-7/sample) 

- GPS 

- Hand lense 

- 300g of grass (at min 

 

Sample Collection Procedure 

1. Pinpoint a general location where the desired grass species can be found. Using the 

GPS, create a waypoint (consult corresponding GPS manual for instructions on 

marking locations). Label the waypoint with the USDA Plants Profile assigned code 

name (eg. NALE2 for Nasella pulchra), for the specific grass species. Also include 

the stage of growth [V=vegetative, ER=early reproductive, LR=late reproductive, 

Dry] that it was collected at. Try to collect the entire sample within a 1-mile radius so 

as to minimize variability in soil type.  

 

2. With a permanent marker, label the brown paper bags with the sample collection 

date, the species code for the grass sample to be collected, the stage of growth 

[V=vegetative, ER=early reproductive, LR=late reproductive, Dry], and the name 

assigned to the location where the sample will be collected from.  

 

3. In non-cultivated grasslands, each grass species may require a unique collection 

technique to be adopted. Depending on the species type and the environment that it is 

growing in, the grass may grow large bunches (Nasella pulchra), in large continuous 

swards (Lolium multiflorum), or sparsely distributed (Elymus glaucus). These 

patterns will impact ease of collecting and the time required for collection. 

Individuals of a species that tend to grow in close proximity to one another will take 

less time, and species that are sparsely distributed will take more time. Planning 

collection times with this knowledge in mind is critical as the growing season is 

constantly progressing.  

 

4. Individuals from the same species that grow within close proximity to one another 

can be clipped in large bunches all at once and any non-desired species can be sorted 

out of the bunch. If there is an overwhelming number of non-desired species mixed 

in with the samples species it may be best to clip each individual separately. 
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5. Clip the grasses approximately 1 to 3 inches from the soil surface. Try not to include 

any soil or roots in the sample.  

 

6. When a bunch of grass (small enough for a hand to wrap around it) has been 

acquired, fold it at a length equidistant to the length of the paper bag. Continue 

folding the entire bunch so that it fits in the paper bag neatly.  

7.  Collect enough bunches to fill the paper bag three quarters of the way, fold the bag 

shut, and start a new bag until 5 to 7 bags have been filled (approximately 300g).  

 

8. Within 3 hours or less of the collection, get the brown paper bags containing the 

grass samples into a drying oven that is set to 80o F or 27oC. Let the samples dry for 

24-48 hours. High water content samples (LV and ER in particular) should be dried 

at 100F or 55C.  

 

9. Remove from drying oven and store in a dark, dry room at an ambient temperature.   

 

10. Maintain a clear record in a designated notebook of the collection date, the USDA 

Plants Profile assigned code name, the genus and species names, and notes including: 

the stage of growth the sample was collected at; how much sample was collected; 

how much sample is left to be collected; what the sample looked like (try to use 

specific morphological trait descriptions); surrounding environment; what 

unexpected difficulties (if any) were encountered during the sample collection that 

could be avoided in the future; and any questions. 

 

11. Lastly, grasses should be ground using a medium to large sized Wiley Mill, through 

a 4mm screen. Attach a large Whirlpak bag or storage bag to the chute, where the 

ground sample is funneled out the bottom. Continue to store ground grass samples in 

a dark, dry room at an ambient temperature.  

 

NOTE: For N, NDF, ADF, and ADL analysis, subsamples will need to be taken from 

larger sample and further ground through a 1mm screen. Sample ground to 4mm is 

adequate for in situ. 
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Appendix B: Plant Collection Site Maps 
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Appendix C: In situ Digestibility Protocol 

 

Ruminant Nutrition Lab 

In situ Digestibility Protocol 

Author: Alexis Ulloa and Elaina Cromer 

 

Materials: 

- Nylon bags 

- White nylon string (10 inches) 

- Bunsen burner 

- Large lingerie bags (x6) 

- Metal washers (x24) 

- Colored thick string (x2 per color) 

- Cannulated cows (x2) 

- 5 gallon buckets (x7) 

- Air-force drying oven 

- Aluminum foil 

 

Procedure: 

Filling the in situ bags: 

1. If new bags, label nylon bags according to the project labeling system. Wash bags 

through running water inside out and place in air-forced drying oven set at 100C 

for at least 12 hours. Remove and cool in desiccator for at least 1 hours. 

2. If old bags, wash bags through running water inside out and place in air-forced 

drying oven set at 100C for at least 12 hours. Remove and cool in desiccator for at 

least 1 hours. 

3. Weigh bags and record weights. 

4. Tare scale and add approximately 10 grams of corresponding sample. 

5. Tie bags using the protocol attached. (refer to images below as well) 

a. Vertically fold the top of the nylon bags three times. 

b. Loop one end of a white string and place upside down against the top of 

the folded bag. 

c. Using the long end of the string, loop tightly around the bag at least four 

time. 

d. On final loop, put string through the original open loop. 

e. Pull on opposite end of the loop until tie hides under the string. 

f. Pull both sides of the string tightly towards opposite ends. 

6. Group bags based on cow and time point. (ex: cow A/12 hr) 

7. Place grouped nylon bags in large lingerie bag with three metal washers. 
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8. Zip lingerie bag and tie end. 

9. Securely wrap designated colored thick string to lingerie bag with a labeled metal 

washer attached to end. 

a. Red string = 12 hrs 

b. Blue string = 24 hrs 

c. Yellow string = 48 hrs 

 

Placing bags in situ (in the rumen): 

10. Place corresponding lingerie bags into each cow’s rumen using the following 

technique. 

a. Find two cannulated cows and lock them into the head locks. 

b. Push on the cannula lid until it pops into the rumen. 

c. Grab the lid and turn it on its side to pull it out. 

d. Set aside. 

e. Using a gloved hand, remove feed from the rumen and begin to form a 

tunnel down towards the bottom of the rumen (you will feel once you pass 

the forage mat layer and reach the liquid layer). 

f. Grab one lingerie bag at a time and shove it through the tunnel and into 

the liquid layer. 

g. Do this for all time points. (12, 24, 48 hr.) 

h. Make sure the colored thick string with labeled metal washer hangs out of 

the rumen. 

i. Carefully push the cannula lid back on until you pass the first lip. 

j. Slowly continue to push the lid in while bending the sides. 

k. Lift the cannula lip up and make sure the lid is properly secured under it. 

l. Follow steps b-k for the other cannulated cow. 

11. After each time point comes to an end, repeat the steps for removing the cannula 

lid. 

12. Reach into the rumen and remove the appropriate time point bag.   

  NOTE: In many cases, the bags will become tangled and 

detangling must be done without removing the other bags from the rumen. 

13. Place the lingerie bag into a bucket with water. 

14. Perform steps 11-13 for both cows at each time point. 

 

Washing and drying the nylon bags: 

15. Prepare six 5 gallon buckets filled half ways with water.  

16. Untie the two lingerie bags (one per cow) and remove nylon bags. 

17. Place nylon bags into the first wash bucket (include washout bags). 

18. Follow the washing method below: 

a. Simultaneously, push the bags down and to the right within the water x10 

b. Simultaneously, push the bags down and to the left within the water x10 

c. Push bags straight down into the water x10 

19. Remove one bag at a time from the water and compress twice to remove water. 
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20. Place compressed bag into the next wash bucket. 

21. Perform washing method for a total of 6 times. 

22. After the sixth wash, compress the bags twice and place them in a dry bucket. 

23. Lay nylon bags on aluminum foil sheet inside an air-forced drying oven pre-

heated to 100C. 

24. Leave bags in oven for at least 72 hours. 

25. Remove bags from oven and cool in desiccator for at least 1 hour but no more 

than 2 hours. 

26. Untie bags and carefully place back into desiccator. 

27. Weigh and record bags. 

28. Perform steps 15-26 for each time period. 
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Appendix D: Dry Matter and Ashing Procedure 

Animal Science Department 
Policies and Procedures 

  

 

Title: Gravimetric determination of the dry matter and ash component of feed 

and fecal samples. 

Owner: Emily Schwartz  

Approval: Mark S. Edwards, Ph.D., Associate Professor 

Revision Level: 0.3 

Revision Date: 10-May-2017 

  

Scope: This procedure can be used to determine the ash concentration in feed or 

fecal samples. 

Equipment:  Force-air drying oven 

 Desiccator 

 Coors Crucibles with lids  

 Metal Tongs 

 Analytical Balance (Mettler Toledo), accurate to 0.1 mg 

 Kimwipes 

 Scoopula 

 Muffle Furnace, capable of maintaining a temperature of  

600 ±  20° C 

Reagents: None 

Safety: For this procedure the following personal protective equipment (PPE) 

must be worn: 

  Gloves 

Procedure: 

 

 

 

 

 

 

 

 

 

1. Preheat forced-air drying oven to 100° C for a minimum of 3 hr 

prior to use. 

2. Dry empty crucibles must be in oven for a minimum of 2 hr before 

use. Wet crucibles must be in oven for at least 24 hr prior to use. 

3. Using metal tongs place one crucible and cover into desiccator at 

a time until desired number of crucibles are removed from the 

oven. Be sure to completely close desiccator in between crucible 

moving.  
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4. Allow crucibles to cool to room temperature for approximately 15 

min but no more than 2 hr. 

5. Weigh and record the weight of the empty crucible and the cover 

together (W1). 

6. Remove the cover and place onto clean Kimwipe. 

7. Tare the crucible. 

8. Add 2.0000 – 2.0500 g of ground sample with scoopula. If excess 

sample is added to crucible it should be removed and discarded 

(not be placed back into original sample bag). (W2) 

9. Crucibles should be placed into the forced-air drying oven at 100° 

C for a minimum of 24 hr. The covers should be removed and 

placed on the side of the crucible. 

10. Crucibles should be removed from oven and placed into desiccator 

for a minimum of 1 hr, but no more than 2 hr,  to cool to room 

temperature.   

11. Record weight of dry sample plus crucible and cover. (W3). Close 

desiccator in between weighing. 

12. Once crucible has been weighed it should be placed into a second 

desiccator. 

13. Turn Muffle Furnace on before opening. Check internal 

temperature. 

14. Place covered crucibles into Muffle Furnace. Leave covers on.  

15. Starting Muffle Furnace: 

 Select desired program: Program 1 

o To determine if correct program is selected use 

‘Page’ button to advance until ‘Run List’ is 

displayed. Hit ‘Scroll’ button and display will show 

which program is currently selected. To change hit 

the up or down arrow until desired program is 

shown. Hit ‘Page’ button to return to temperature 

display.  

 

  

 

  

 

 

 

 

                                          ‘Scroll’ Button 

Current Temperature 

Set Temperature 

 

‘Run’ Button 
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Calculations: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      ‘Page’ Button 

 

16. Push the ‘Run’ button. Run will be illuminated and the cycle light 

will begin to flash. 

 Muffle furnace will heat to 600° C in 3 hr. 

 Muffle will rest at 600° C for 2 hr. 

 Muffle furnace will then cool to 200° C over a period of 5 

or more hours. 

 Muffle furnace will stay at 200° C until crucibles are 

removed. Once crucibles have been removed push ‘Run’ 

button. Run light and the cycle light should turn off. 

 

17. Remove crucibles from the muffle furnace before they cool below 

200° C. 

18. Using tongs place the crucibles into a desiccator and allow the 

crucibles to cool to room temperature for 1 hour (but no more than 

2 hr). 

19. Weigh the covered crucibles and ash sample and record the weight 

to the nearest 0.1 mg (W4) 

Ash can be disposed of in trash. Crucibles should be washed and 

put into forced-air drying oven set at 100° C. (Oven should not 

have any samples inside. Water from wet crucibles can add 

moisture to the air in the oven and effect other samples) 

 

 

Laboratory Dry Matter (DM), expressed as a ratio (w/w) of dry 

matter to initial weight 

 

% 𝐷𝑀 =
𝑊3 − 𝑊1

𝑊2
 × 100 

 

 Where W1 =  tare weight of crucible and cover in grams 

 W2 = initial weight of sample in grams 

 W3 = dry weight of sample, crucible and cover in grams 

 

Total Ash (Ash), expressed as a ratio (w/w) of ash to dry weight 

 

% 𝐴𝑆𝐻 =
𝑊4 − 𝑊1

𝑊3 − 𝑊1
 ×  100 

 

 Where W1 =  tare weight of crucible and cover in grams 

 W3 = dry weight of sample, crucible and cover in grams 

 W4 = weight of ash, crucible and cover in grams 
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Quality Control: 

 

All samples should be analyzed in duplicate. 

An acceptable average standard deviation among replicated 

analyses for moisture or dry matter is about ±0.10, which results 

in a warning limit (2s) of about ±0.20 and a control limit (3s) of 

about ±0.30. Plot the results of the duplicate analyses on an R-

control chart and examine the chart for trends. Results outside the 

95 percent confidence limits warn of possible problems with the 

analytical system. Results outside the 99 percent confidence 

limits indicate loss of control, and results of the run should be 

discarded. Two consecutive analyses falling on one side of the 

mean between the warning limits and the control limits also 

indicate loss of control. 

 

Comments:  If ash is intended for acid-insoluble ash analysis, refer to Part I-II in 

“Sequential Determination of Laboratory Dry Matter, Total Ash, and 

Ash Insoluble in 2 M Hydrochloric Acid” 

file:///C:/Users/student/Documents/Standard%20Operating%20Procedures/Lab%20Manual/Ash%20and%20Dry%20Matter/SOP_Acid%20Insoluble%20Ash_2.0%201Aug15.pdf
file:///C:/Users/student/Documents/Standard%20Operating%20Procedures/Lab%20Manual/Ash%20and%20Dry%20Matter/SOP_Acid%20Insoluble%20Ash_2.0%201Aug15.pdf
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Appendix E: Example Fiber Analysis Datasheet 

 
 

NDF/ADF/ADL - Cal Poly Beef Nutrition

Study Number: *	Samples	with	a	CV	greater	than	5	must	be	re-run

Date: 

Analyst:

Sample Bag Sample Final Bag Final Bag Final Bag

ID & Description Bag # Weight Weight  Weight, post-NDF Weight, post-ADF Weight, post-ADL

A B
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Appendix F: Dry Matter, Organic Matter Datasheet 

 

DM and OM - Cal Poly Beef Nutrition

Study Number: *	Samples	with	a	CV	greater	than	5	must	be	re-run

Date: 

Analyst:

100°C

Sample Cruc Wet Sample Dry Weight of Post-Ash

ID & Description Cruc ID Weight (g) Weight (g) Spl + Cruc (g) Spl + Cruc wt (g)

A B
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Appendix G: Nitrogen Data Example Sheet 

 
* Samples 1-10 were used for calibration and a standard of comparison for the grasses. 

 



Appendix H: California Plant Species Report

Avena barbata, Avena fatua
Wild Oats

The Avena genus is the most prevalent and abundant weed in the world (Thurston, 1982) 
because of its rapid growth rate (UC ANR, 2017) . The plant feature that most clearly 
distinguishes A. barbata from A. fatua are: the differences in the lemma length and whether 
or not the barbs separate. A. Fatua has an acute lobe, whereas, the barbs in A. barbata 
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Brachypodium distachyon
Purple False Brome

Brachypodium distachyon originated from dry, open habitats in southern Europe. The 
appearance is a glaucous or bluish-green. The sheaths are open and overlapping. The 
nodes are completely covered in long trichomes, while the stem is smooth and striated, 
and only sparsely covered in shorter trichomes. Spikelets form a raceme pattern. Racemes 
are typically 2-7 cm in length with 1-7 overlapping, appressed spikelets. The spikelets are 
generally 15-40 mm and laterally compressed. Lemmas are usually 7-10 mm with 8-10 
mm awns (Barkworth, et al., 2007).
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Bromus hordeaceous
Soft Chess

The feature that sets the Bromus genus apart from the rest of the wheatgrasses are the 
non-overlapping sheaths. They are most commonly seen either completely fused together 
at the collar, or fused partway down by a couple centimeters, as demonstrated by Bromus 
hordeaceous. B. hordeaceous is favorable to livestock, as it is considered to be the most 
nutritious and palatable of all California Bromus species. Fire has little to no effect on B. 
hordeaceous but has the potential to increase in abundance postfire (Howard, 1998). 
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Elymus glaucus
Blue Wildrye

Elymus glaucus displays an overlapping sheath. No ligule is present, but somewhat of an 
auricle can be detected. On the inflorescence, there are several spikelets per node and on 
each spikelet the glumes are side by side, rather than overlapping. E. Glaucus is considered 
a decreaser, as it thrives in environments disturbed by fire (USDA Forest Service, 2017). 
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Erodium botrys
Broadleaf Filaree

Erodium botrys, as well as the many other Erodium spp., comes into late vegetative stage 
quite early, around early February, and is in full bloom by mid-to late March. The primary 
difference between redstem (E. cicutarium) and broadleaf filaree (E. botrys) is how lobed 
their leaves are. The E. botrys has a single-lobed compound leaf, whereas many other 
erodium spp. have leaves that separate into many lobes (UC ANR, 2016). E. Cicutarium 
populations benefit from a fire; seed establishment increases as fire destroys the mulch 
layer (Howard, 1992).  
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Leymus tritichoides
Creeping Wildrye

The leaves and stem of Leymus tritichoides (or Elymus tritichoides) have a coarser texture 
in comparison to Elymus glaucus, one might call the texture “scabrous”. Similarly to E. 
Glaucus, L. triticoides has an overlapping sheath. The spikelets are clearly arranged on the 
inflorescence in a distichous manner. Within a single plant, there can be variation among 
the leaves. The lower leaves commonly have auricles, while the upper leaves do not. 
The leaves have a waxy surface and are rigid when dry. L. triticoides are not palatable to 
livestock grazing in the late summer, despite the fact that they may be the only green plant 
standing at that time. This species can be green or have a bluish tint to it. 
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Lolium multiflorum
Italian Ryegrass

Lolium multiflorum has open sheaths that may sometimes be closed towards the bottom, 
below the collar. The Lolium genus has an edgewise arrangement of 7-11 veins running 
along the tiller leading up to each individual spikelet. L. multiflorum contains a red-tinged 
base. L. multiflorum is more related to the fescues than the wheatgrasses. The distinguishing 
feature L. multiflorum is the presence of auricles at the collar region. L. multiflorum seeds 
generally don’t survive a fire, but they thrive after a fire; infact, L. Multiflorum is commonly 
planted after a prescribed fire for that reason (Carey, 1995). 
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Melica Californica, Melica Imperfecta, Melica Torreyana 
California Melic, Little California Melic, Torrey’s melicgrass

There are several species of Melica found on the Cal Poly, especially in the native prairie. 
The largest of these species is the Melica californica. M. californica has the largest anthers 
and spikelets of all the Melica species; the spikelets are about 1 cm in length. M. californica 
leaves have a papery look about them. The second largest Melica species found in the 
native prairie is the Melica torreyana where it is commonly found on rocky hillsides. It 
grows rather prolific and tall with spikelets reaching sizes 7-9 mm in length. Both the M. 
californica and M. torreyana have a rudimentary floret that is proportionally smaller for 
the size of the plant, in comparison to the stalk size. The Melica imperfecta, on the other 
hand, has a relatively large rudimentary floret and shorter stalk, in comparison to its overall 
size. The smallest of the species in the native prairie is M. imperfecta. It’s spikelets are no 
larger than 3 mm in length with ½ mm anthers. Lastly, it has short, acute ligules. 

M. Torreyana M. Callifornica

M. Imperfecta
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Nassella lepida
Foothill Needlegrass

Nassella lepida has fine awns, in fact, it has the thinnest and smallest awns of all the 
Nassella species. The awns and spikelets are much shorter in length compared to those 
of Nasella pulchra. The callus is quite sharp, and for this reason, livestock tend not to 
mess with the plant after it goes to flower, the early reproductive stage and beyond. When 
identifying this species, look for trichomes that line the collar all the way around and along 
the edges of the leaves. Additionally, the leaves have an open sheath. 
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Nassella pulchra
Purple Needlegrass

Nassella pulchra has a great amount of variation in the color and shape of its ligules and 
articles. The most common colors found on individuals in the native prairie can range 
from a light pink to a deep purple. The production of water-soluble pigments are a result 
of exposure to UV light, various plant lineages, soil chemistry, temperature, etc. Unlike N. 
lepida, the lemmas are hairy between veins from seedling to maturity. The distinguishing 
feature that one should use when identifying N. pulchra are the presence of an open sheath 
and the lack of an auricle. The ligules are rather pronounced and membranous. Additionally, 
the ligules are for the most part smooth and hairless, however, there are a tuft of hairs at 
the collar. In comparison to N. lepida, N. pulchra is a much leafier plant and has a lemma 
length of 2 mm or greater. Fire has mixed effects on N. Pulchra ,in which, varies from site 
to site throughout California; however, coastal populations are generally unaffected by 
fall burning. In fact, fall burning along with moderate spring grazing benefits N. pulchra 
because it increases seedling establishment (Montalvo et al., 2010). 
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