
LAZY FAULT DETECTION FOR REDUNDANT MPI

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Computer Science

by

Corey Ford

June 2016

c© 2016

Corey Ford

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Lazy Fault Detection for Redundant MPI

AUTHOR: Corey Ford

DATE SUBMITTED: June 2016

COMMITTEE CHAIR: Chris Lupo, Ph.D.

Associate Professor of Computer Science

COMMITTEE MEMBER: Clint Staley, Ph.D.

Professor of Computer Science

COMMITTEE MEMBER: Phillip Nico, Ph.D.

Professor of Computer Science

iii

ABSTRACT

Lazy Fault Detection for Redundant MPI

Corey Ford

As the scale of supercomputers grows, it is becoming increasingly important for soft-

ware to efficiently withstand hardware and software faults. Process replication is one

resilience technique, but typical implementations require replicas to stay closely syn-

chronized with each other. We propose algorithms to lazily detect faults in replicated

MPI applications, allowing for more flexibility in replica scheduling and potential

power savings. Evaluation shows that, when all processes are operated at full power,

this approach allows applications to complete substantially faster as compared to

using a synchronized model, and often as fast as in non-replicated execution.

iv

ACKNOWLEDGMENTS

Many thanks to:

• Chris Lupo, for excellent guidance on this thesis

• David Fiala and Frank Mueller, for help getting started with RedMPI and

valuable feedback on this work

• My parents, for their love and support

I would like to thank Sandia National Laboratories for supporting this work.

Sandia National Laboratories is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for

the U.S. Department of Energy’s National Nuclear Security Administration (NNSA)

under contract DE-AC04-94AL85000. This work was funded by NNSA’s Advanced

Simulation and Computing (ASC) Program.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 MPI . 3

2.1.1 Operations . 3

2.1.2 Execution . 6

2.2 Resilience . 8

2.3 Checkpointing . 9

2.4 Replication . 9

3 Design . 11

3.1 Correction . 13

4 Implementation . 14

4.1 Async Method . 14

4.2 AsyncHash Method . 17

5 Evaluation . 20

5.1 Runtime Measurements . 21

5.2 Memory Overhead Measurements . 25

5.3 Unit Testing . 27

6 Related Work . 29

6.1 Replication . 29

6.1.1 Replicated MPI Implementations 29

6.1.2 Process Management . 30

6.1.3 Redundant Multithreading . 30

6.2 Other Approaches to Resilience . 31

6.2.1 ULFM . 31

6.2.2 LFLR . 31

vi

6.2.3 Algorithm-Based Fault Tolerance 32

6.2.4 Fault Injection . 32

7 Conclusions & Future Work . 33

BIBLIOGRAPHY . 34

APPENDICES

A Reproducibility of Prior Results . 42

A.1 Latency and Bandwidth Tests . 43

A.2 Processes-per-Node Experiments . 43

A.3 Application Profiling . 46

A.4 Conclusions . 46

vii

LIST OF TABLES

Table Page

5.1 Execution times (seconds) for NPB (Environment 1) 22

5.2 Execution times (seconds) for NPB (Environment 2) 23

viii

LIST OF FIGURES

Figure Page

2.1 C prototypes of some common MPI functions 4

2.2 Example MPI program using nonblocking communication 7

2.3 Process to build and execute example program 7

4.1 Async integrity verification algorithm 15

4.2 Stages of handling a receive request using Async detection 16

4.3 AsyncHash integrity verification algorithm 18

5.1 Runtime at double replication (64 processes, Environment 1) 24

5.2 Runtime at triple replication (64 processes, Environment 1) 24

5.3 Runtime at double replication (16 processes, Environment 2) 24

5.4 Runtime at triple replication (16 processes, Environment 2) 25

5.5 Allocated requests per process over time for double-replicated 64-
process jobs . 26

A.1 Runtime by processes-per-node (CG, different implementations) . . 44

A.2 Runtime by processes-per-node (CG, varying process count) 45

A.3 Runtime by processes-per-node (FT, varying process count) 45

A.4 Runtime by processes-per-node (CG, Environment 2) 46

ix

Chapter 1

INTRODUCTION

High-performance computing uses large clusters to perform complex computations.

Current top supercomputers can operate at petascale, on the order of 1015 FLOPS,

and exascale systems with the capacity for 1018 FLOPS are anticipated within the

next decade.

As scale increases, however, so does the number of system components that can fail

and disrupt application execution. Since the frequency of faults for a single component

remains relatively constant, the probability of having no failures in the entire cluster

during a given time period approaches zero as the cluster grows. At current scale,

the mean time between failures (MTBF) of a system may be on the order of hours or

less. Typical scientific HPC applications may have execution times measured in days

and minimal tolerance for error. Understanding and efficient mitigation of failure

are therefore becoming crucial. Proper and efficient application execution in spite of

various faults, including silent data corruption (SDC) to memory, is the focus of the

subfield of resilience, which encompasses a wide range of possible solutions.

The most common and longstanding approach to failure mitigation is check-

point/restart, which periodically saves application state to reliable storage so that

it can be recovered in the event of a failure in the system. However, the resource

demands of checkpointing scale linearly with the size of the cluster, and increasingly

complex optimizations are required to keep checkpointing time less than MTBF.

As an alternate approach, replication performs redundant computations on mul-

tiple nodes. The state of a process and its replicas are kept synchronized so that a

replica can take over in case of a failure on the primary node. Additionally, replication

1

can provide detection and potentially correction of transient errors on any node, such

as silent data corruption. In a naive approach, replication requires double or triple

the hardware of an ordinary execution. More efficient solutions can predict when

and where replication is necessary, or perform approximate or slower-paced compu-

tations on a replica. Unfortunately, synchronization between replicas to detect SDC

introduces inefficiencies and requires them to execute at the same speed.

In this work we demonstrate the utility of lazy fault detection in an HPC context.

Lazy fault detection, where corrupted data is allowed to be identified as such after

it has been used, improves the efficiency and flexibility of process replication while

retaining the ability to detect SDC. We develop a practical implementation of lazy

fault detection for replicated MPI programs, and show that it generally performs

better than an equivalent synchronized approach across varied benchmark workloads.

The remainder of this thesis is organized as follows. Chapter 2 introduces the

MPI system along with the problem of resilience and its various solutions. Chapter 3

develops the design of lazy fault detection within a software library, and Chapter 4

discusses our implementation. The performance of our implementation is evaluated in

Chapter 5. Chapter 6 reviews related work in resilience. Finally, Chapter 7 concludes

and discusses directions for future work.

2

Chapter 2

BACKGROUND

2.1 MPI

The Message Passing Interface (MPI) is a standardized interface providing communi-

cation and other capabilities to parallel programs. The MPI standard defines APIs in

C and Fortran; implementations typically also provide C++ interfaces, and bindings

to many other languages are available.

2.1.1 Operations

The features of MPI discussed in this thesis are available in version 1 of the MPI

standard [1], and do not include additional features introduced in later versions [2, 3].

Some common MPI operations are listed (with C function prototypes as defined in

Open MPI 1.6) in Figure 2.1. All operations return a status code to signal error.

Communication operations are performed with respect to a communicator based on

a subset of processes; a predefined global communicator suffices for many applications,

so we do not discuss the MPI Comm parameters further.

When an MPI application is launched, each process is assigned a unique integer

rank starting from 0. Operations pertaining to the runtime configuration are used in

practically every MPI application:

• MPI Init initializes the MPI execution environment (and may ensure that all

processes have the same argv vector). It must be called before any other MPI

operations.

• MPI Finalize cleans up the MPI execution environment. It must be called

3

int MPI_Bcast(void *buffer , int count , MPI_Datatype datatype ,

int root , MPI_Comm comm);

int MPI_Comm_rank(MPI_Comm comm , int *rank);

int MPI_Comm_size(MPI_Comm comm , int *size);

int MPI_Finalize(void);

int MPI_Init(int *argc , char *** argv);

int MPI_Irecv(void *buf , int count , MPI_Datatype datatype ,

int source , int tag , MPI_Comm comm ,

MPI_Request *request);

int MPI_Isend(void *buf , int count , MPI_Datatype datatype ,

int dest , int tag , MPI_Comm comm ,

MPI_Request *request);

int MPI_Recv(void *buf , int count , MPI_Datatype datatype ,

int source , int tag , MPI_Comm comm ,

MPI_Status *status);

int MPI_Reduce(void *sendbuf , void *recvbuf , int count ,

MPI_Datatype datatype , MPI_Op op , int root ,

MPI_Comm comm);

int MPI_Send(void *buf , int count , MPI_Datatype datatype ,

int dest , int tag , MPI_Comm comm);

int MPI_Test(MPI_Request *request , int *flag ,

MPI_Status *status);

int MPI_Waitall(int count , MPI_Request *array_of_requests ,

MPI_Status *array_of_statuses);

int MPI_Waitany(int count , MPI_Request *array_of_requests ,

int *index , MPI_Status *status);

int MPI_Wait(MPI_Request *request , MPI_Status *status);

Figure 2.1: C prototypes of some common MPI functions

4

after all other MPI operations have completed.

• MPI Comm size determines the total number of processes.

• MPI Comm rank determines the calling process’s individual rank.

There are several core MPI operations providing point-to-point communication:

• MPI Isend starts a nonblocking send to another process. The rank of the re-

ceiving process is specified, along with the memory location, size, and type of

a buffer to send. This initializes an MPI Request object.

• MPI Irecv starts a nonblocking receive from another process. The rank of the

sending process is specified, along with the memory location, size, and type of

a buffer to be filled with the received message. This initializes an MPI Request

object.

• MPI Wait takes a previously initialized MPI Request object and blocks until the

operation is complete. For send requests, a return from MPI Wait guarantees

that the buffer is no longer needed and can be reused or deallocated by the

application. For receive requests, a return from MPI Wait indicates that the

buffer has been filled with a received message.

• MPI Test takes a previously initialized MPI Request object and sets a flag to

indicate whether the operation is complete. A return from MPI Test with

*flag == 1 gives the same guarantees as a return from MPI Wait.

The semantics of many other MPI operations that initiate or determine the status

of communications can be defined in terms of those already mentioned. For instance:

• MPI Send is a blocking send, equivalent to MPI Isend followed by MPI Wait on

the same MPI Request object.

5

• MPI Recv is a blocking receive, equivalent to MPI Irecv followed by MPI Wait

on the same MPI Request object.

• MPI Waitall waits for all requests in an array to complete, equivalent to MPI Wait

on each in turn.

• MPI Waitany waits for at least one request in an array to complete, and could

be implemented in terms of MPI Test.

• MPI Testall and MPI Testany perform the analogous status-testing operations.

• MPI Bcast and MPI Reduce are examples of collective operations that send to

or receive from all processes. These can be defined in terms of individual point-

to-point communications with each process.

2.1.2 Execution

There are multiple implementations of MPI, including Open MPI [21], MPICH, and

proprietary implementations from Intel and others. An MPI implementation consists

of several components. The first of these is a library (and accompanying header

files) implementing the standard interface against which MPI applications can build.

An MPI implementation also often provides compiler wrappers (such as an mpicc

command) to easily compile and link an application with this library. The other

major component is a set of runtime tools for launching an application binary as

multiple processes, potentially on multiple host machines.

A small C program using nonblocking MPI communication is shown in Figure 2.2.

This is intended to be executed using two processes, and will send a value from the

first to the second before printing it at each process. A typical process (with Open

MPI) to build such an application and execute it using two processes on two hosts is

shown in Figure 2.3. Using this process, two instances of the binary will be launched,

6

#include <stdio.h>

#include <mpi.h>

int main(int argc , char **argv) {

int rank;

int size;

int value = 0;

MPI_Request req;

if (argc != 2) {

printf("Usage: mpi_example num\n");

return 1;

}

MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Comm_size(MPI_COMM_WORLD , &size);

if (size != 2) {

printf("Number of processes must be 2\n");

MPI_Abort(MPI_COMM_WORLD , 1);

}

if (rank == 0) {

sscanf(argv[1], "%d", &value);

MPI_Isend (&value , 1, MPI_INT , 1,

0, MPI_COMM_WORLD , &req);

} else {

MPI_Irecv (&value , 1, MPI_INT , 0,

0, MPI_COMM_WORLD , &req);

}

MPI_Wait (&req , MPI_STATUS_IGNORE);

printf("Value at %d is %d\n", rank , value);

MPI_Finalize ();

return 0;

}

Figure 2.2: Example MPI program using nonblocking communication

$ mpicc -o mpi_example mpi_example.c

$ mpirun -np 2 -host host1 ,host2 ./ mpi_example 42

Figure 2.3: Process to build and execute example program

7

typically one on each host (subject to local configuration) and each with a unique

process rank in {0, 1}.

2.2 Resilience

Resilience in HPC is a complex research area [8, 15]. A wide variety of different

approaches have been developed.

We first introduce some necessary terminology for precisely defining the problem

of resilience, following a well-established taxonomy [4].

• A fault is an erroneous hardware behavior. Faults include transistor malfunc-

tions and memory bits that flip state or remain stuck. Silent data corruption

(SDC) is a specific class of fault.

• An error is an erroneous system state caused by a fault. Errors include incorrect

values stored in registers or memory.

• A failure is an erroneous system behavior resulting from an error. Failures in-

clude incorrect results (Byzantine failures) and node crashes (fail-stop failures).

Given these definitions, resilience is approximately synonymous with fault-tolerance,

with the goal of preventing failures or mitigating their impact. While faults cannot be

prevented in general, techniques such as ECC memory can prevent some faults from

silently causing errors. Software checksums might catch errors before they cause fail-

ures. When these resilience measures are unsuccessful, failures will remain and must

be addressed for the benefit of the application.

Substantial work has been done to analyze the faults that occur in real HPC

systems and their components. Analysis of logs in production HPC environments

give statistics on the frequency of various types of errors [10, 44, 24, 47, 45, 38].

8

Characterization of individual element failures can also be used in resource allocation

to minimize faults [9].

2.3 Checkpointing

Checkpointing (commonly, checkpoint/restart) is a simple and long-standing resilience

technique. In checkpointing, application state is periodically saved to persistent stor-

age; when a fault is detected, the state is restored from the most recent checkpoint

and execution continues.

The concept of checkpointing can be traced back several decades [32]. More re-

cently, Elnozahy provides a good survey [16]. One widely used implementation of

checkpointing is Berkeley Lab Checkpoint/Restart (BLCR) [25], which uses a Linux

kernel module to save process state to a filesystem and integrates with MPI imple-

mentations to coordinate checkpointing across nodes.

The efficiency of checkpointing is a significant concern. If coordinated checkpoint-

ing is performed at the level of the entire system, both the frequency of failures and

the resources required to store a checkpoint increase linearly with the number of

nodes. With sufficiently many nodes, then, most time will be spend on checkpoint-

ing, restarting, and recomputing lost work. Efficiency can be improved somewhat

through incremental checkpointing approaches and compression of checkpoint stor-

age [18]. The optimal checkpointing interval has been derived in terms of the cost

and frequency of checkpointing [50, 14].

2.4 Replication

Replication (or redundancy) is another common fault-tolerance approach. Classically,

state machine replication considers the program as a deterministic state machine and

9

executes replicated copies of it [43, 33].

More generally, communicating processes can be replicated by introducing special

handling of their communications. This results in r real processes being mapped to

one “virtual” process, with a shared identity but with distinct replica ranks that are

hidden from the application. Processes sharing the same replica rank form a replica

set that mirrors the equivalent non-replicated system. In doing so, replication can

handle failures more seamlessly than checkpointing, at the cost of generally requiring

double or triple the computing resources of a single job. Replication appears more

viable than checkpoint/restart for exascale systems [19].

Considering only fail-stop failures, it may suffice to simply run replica processes

independently. For Byzantine failures, regular synchronization is necessary. To detect

SDCs, assuming that processes execute deterministically, either the messages sent by

replica processes can be compared, or their local state can be compared periodically.

RedMPI [20] is a library that implements replication with SDC detection via

message comparison for MPI applications. When an application linked with RedMPI

calls MPI Isend or MPI Irecv, messages are sent to or received from several replicas of

the target virtual process. When the application calls MPI Wait on a receive request,

the library waits for all messages to be received and compares them for consistency,

choosing the majority value to return to the application if possible.

Unfortunately, this comparison introduces synchronization between replica pro-

cesses, requiring them to execute at the same speed and in lockstep. Lazy (asyn-

chronous) comparison of messages would provide similar fault-detection benefits while

reducing synchronization and allowing for more flexibility in replica process execution.

10

Chapter 3

DESIGN

Our primary goal in lazy fault detection for MPI applications is to avoid the need for

a message receiver to wait for multiple sending nodes, as in RedMPI. This enables

the receiver to proceed as soon as one message is received, avoiding further delay in

the common case that this message is not corrupted. We assume the same model

of message corruption proposed for RedMPI: SDC affects MPI send buffers, or other

values in memory from where corruption eventually propagates to send buffers.

This model allows for combining SDC detection with shadow computing [36],

where only the primary replica processes proceed at full speed and others can be op-

erated at lower power. Slower replicas would provide eventual confirmation of results;

additionally, if two replica processes complete in agreement, any further replicas can

be terminated entirely. Lazy fault detection may even (subject to network limita-

tions) allow an application to complete faster than without replication, since only the

fastest replica response is required at each step.

As requirements, this design must preserve the expected semantics of MPI calls

and error correction:

1. If MPI Recv or MPI Wait returns, or MPI Test indicates completion, the appli-

cation’s buffer must contain a valid received message.

2. If, subsequently, the value that was placed in the application’s buffer is deter-

mined to be incorrect, corrective action must be taken.

3. The application cannot exit until all messages have been verified.

With asynchronous fault detection, any application call to MPI Recv, or to the

11

MPI Wait/MPI Test family of functions with a nonblocking receive request, is satisfied

by any single message received from a sending replica. Further replica messages,

which may support or contradict the original, are processed opportunistically at later

times. If the application is confirmed to have proceeded with a correct message, no

action needs to be taken (and any remaining messages can be ignored), whereas if

the initial message is found to be incorrect, correction can be initiated. To satisfy the

final requirement, when the application calls MPI Finalize, the library waits until

all messages have been verified.

Naturally, the messages considered in satisfying the first two requirements must

correspond to (and, absent corruption, match) the messages that would have been

received in synchronized or non-replicated execution. The MPI standard includes a

non-overtaking requirement that helps to guarantee this.

(3.5) Messages are non-overtaking : If a sender sends two messages in

succession to the same destination, and both match the same receive, then

this operation cannot receive the second message if the first one is still

pending. If a receiver posts two receives in succession, and both match

the same message, then the second receive operation cannot be satisfied

by this message, if the first one is still pending.

. . .

(3.7.4) Nonblocking communication operations are ordered according

to the execution order of the calls that initiate the communication. The

non-overtaking requirement of Section 3.5 is extended to nonblocking com-

munication, with this definition of order being used. [3]

Lazy fault detection does not change the order in which communications are ini-

tiated at either the sender or receiver. Therefore, by the non-overtaking requirement,

it does not affect which messages will satisfy which receive calls. In turn, since repli-

12

cated sending as in RedMPI sends all replica messages in immediate succession, the

ordering of these corresponds directly to the ordering of messages in non-replicated

execution.

3.1 Correction

If message corruption can be detected before the message is returned to the appli-

cation, as in RedMPI, correction is simple: replace the message contents with the

correct value. A lazily detected fault, however, is not readily corrected, since the pro-

cess may have already used the incorrect value and performed further computation

and communication. Instead, some form of rollback is required so that the process

can proceed as if the correct value was initially received.

One simple approach would be to integrate the SDC detection protocol with

a standard checkpoint/restart system, and when a corrupted message is detected,

restart the entire application from a point before this message was received. However,

a full application restart costs substantial computation time, and this has identical

scaling behavior to the checkpointing system alone.

It would also suffice to roll back just the receiving process to the point just before

receiving the corrupted message, and replay this and the following messages received

up until the point of detection. Given conservative handling of requests, any messages

received later than the corrupted one will also be validated later and thus still available

in memory for correction. Outgoing messages sent by the process during replay can

be discarded; if the original versions of these were tainted by the initial corruption,

their receivers will be responsible for performing their own correction if necessary.

13

Chapter 4

IMPLEMENTATION

We extended the RedMPI library to provide asynchronous methods of SDC detection

that avoid waiting for a full set of messages from sending replicas.

As in RedMPI, this functionality is achieved using the MPI profiling layer, en-

abling compatibility with any existing MPI implementation or application. In addi-

tion to exporting MPI * symbols for functions, MPI implementations also export a

parallel set of PMPI * symbols that reference the same functions. Our library, like

RedMPI, exports new MPI * symbols while using the PMPI * symbols internally.

RedMPI tracks outstanding send and receive requests in an internally managed

array. Each request entry references the real underlying MPI requests and, in the

case of receive requests, receive buffers for each of these.

4.1 Async Method

Our first extension is an Async SDC detection method added to RedMPI. The Async

method functions similarly to the existing AllToAll method: complete messages are

sent from each sending replica to each receiving replica, and receiving replicas perform

error detection and correction independently of each other.

To support asynchronous operation, we extended the library to also track, when

using the Async method,

• whether a request entry has returned an initial result to the application (and is

therefore incomplete)

• which request’s buffer was used to return an initial result

14

Persistent state: requests, buffers, appBuf, firstIndex
for i = 0 to r − 1 do

completed[i] ← PMPI Test(requests[i])
end for
if firstIndex is unset then

firstIndex ← smallest i such that completed[i]
appBuf ← buffers[firstIndex]

end if
if all completed then

if a majority of buffers match buffers[firstIndex] then
free request information

else if a majority of buffers match then
initiate correction using majority value

else
abort execution

end if
else

mark request as incomplete
end if

Figure 4.1: Async integrity verification algorithm

• a pointer to the application’s buffer, which is independent of any of the under-

lying receive buffers

• hashes of each received buffer, for more efficient comparisons across multiple

rounds of verification

The core algorithmic addition is an integrity-verification routine for the Async

method, which may be invoked repeatedly on a single request. When provided with

an application receive request, the routine operates as outlined in Figure 4.1.

Asynchrony is introduced in the implementation of MPI Wait. The new imple-

mentation performs a PMPI Waitany instead of a PMPI Waitall on the underlying

requests, and invokes the integrity-verification routine (thus returning the first re-

ceived buffer immediately to the application).

To fully decouple replicas, send requests must also be made asynchronous; other-

wise, a fast process may be blocked waiting for a single slow receiving replica to post

15

Verify

PMPI_Test(reqs[i])

r times

PMPI_Irecv(reqs[i])

PMPI_Waitany(reqs)

PMPI_Waitall(reqs)

MPI_Irecv(req)
r times

MPI_Wait(req)

MPI_Wait(...)

MPI_Finalize()

Figure 4.2: Stages of handling a receive request using Async detection

a matching receive call. Since a successful return from MPI Wait for a send request

indicates that the application is allowed to reuse the send buffer, this necessitates

making an internal copy of each send buffer for the underlying requests to use. When

using the Async method, MPI Isend makes this copy, and MPI Wait returns imme-

diately for a send request. The integrity-verification routine cleans up such request

entries if all underlying requests have completed.

To handle later-arriving replica messages, every execution of MPI Wait first in-

vokes the integrity-verification routine on each incomplete request. The execution of

MPI Finalize similarly invokes integrity verification, after performing a PMPI Waitall

to catch all outstanding messages, on each incomplete request. Figure 4.2 gives an

overview of the steps that may be taken in processing an application receive request

req in terms of operations on its underlying requests reqs.

16

Compared to AllToAll, Async requires a single extra message buffer to be allo-

cated for each request, plus r additional small hash buffers and several more bytes of

information. More importantly, these allocations will tend to have greater temporal

overlap, since the application may create new requests while others are still in an

incomplete state. The execution time of the integrity-verification algorithm is mini-

mal, but it may in general be invoked an indeterminate number of times on a single

request before successfully completing.

4.2 AsyncHash Method

Our second extension is an AsyncHash SDC detection method based on the Msg-

PlusHash method in RedMPI. In MsgPlusHash, complete messages are only sent to

the replica with the same replica rank k as the sender, and a hash of the message

contents is sent to the replica with rank (k + 1) mod r. Receivers check the hash

against the message received and, if necessary, coordinate with adjacent replicas to

determine the correct message contents. In AsyncHash, the hash message is allowed

to be sent and received without blocking the application.

The additional per-request state for the AsyncHash method consists of

• an incomplete flag, as for Async

• a locally-computed hash of the full message received

The integrity-verification routine for the AsyncHash method is shown in Fig-

ure 4.3. Once the hash message has been received, the routine checks for consistency

before cleaning up the request.

Under the AsyncHash method, MPI Wait only invokes PMPI Wait to wait for the

full message to be sent or received. This is safe since the hash buffers for both sender

17

Persistent state: hashReq, hashBuf, appBuf, localHash
if localHash is unset then

localHash ← H(appBuf)
end if
completed ← PMPI Test(hashReq)
if completed then

if hashBuf = localHash then
free request information

else
initiate correction

end if
else

mark request as incomplete
end if

Figure 4.3: AsyncHash integrity verification algorithm

and receiver are not exposed directly to the application. Receipt of the hash message

is checked for in later calls to MPI Wait and MPI Finalize, as with Async.

For SDC correction, AsyncHash would require coordination between two replica

processes. If corruption occurs at a single sending process, two receiving processes

will discover mismatched hashes, but the higher-ranked replica will have a correct

message and the lower-ranked replica a matching hash from a distinct sender. These

can be used to determine the correct message contents and perform correction at

the lower-ranked replica, which will have proceeded in its execution with a corrupted

message.

Unlike the Async method, AsyncHash does not allow the application to complete

faster than any single set of processes, since each process is dependent upon the rest

of its replica set (those processes sharing the same replica rank) for data. However,

it does admit a shadow computing configuration in which some replica sets operate

at higher power than others. In this configuration, the faster replica sets will buffer

hash messages to be exchanged with the slower.

The additional storage requirements for AsyncHash are small and constant, and

18

the integrity-verification algorithm is very simple, but the same considerations re-

garding allocation lifespan apply as for Async.

19

Chapter 5

EVALUATION

We evaluated the performance of our modified SDC detection methods relative to

the original RedMPI methods and to non-replicated Open MPI 1.6. This measured

the performance impact only in the absence of faults, since SDC correction was not

implemented. Two different environments were used for evaluation:

1. 32 nodes, each with a 2.3GHz 14-core Intel Xeon processor and 32GB of RAM,

running Linux 2.6 and connected via a gigabit Ethernet switch. We launched

up to 12 processes per node for effective utilization without interference from

system background tasks.

2. 27 nodes1, each with a 4-core NVIDIA Tegra K1 processor and 2GB of RAM,

running Linux 3.10 and connected via a gigabit Ethernet switch. This envi-

ronment is the Astro cluster designed at Cal Poly [46]. We launched up to 4

processes per node.

The target applications were selected from the NAS Parallel Benchmark suite

(NPB) [5]. The MPI implementations of NPB benchmarks use a simple subset of

MPI features:

• point-to-point nonblocking communications, including MPI Isend, MPI Irecv,

and MPI Wait but not MPI Test or its variants

• blocking communications, which RedMPI implements in terms of nonblocking

communications

1Although 46 nodes are available in this environment, at most 27 were used in these executions
due to benchmark sizing constraints.

20

• various collective operations, which RedMPI implements in terms of point-to-

point communications

The NPB programs exhibit strong scaling: the total amount of work for a given

problem size does not depend on the number of processes. Therefore, varying the

number of processes changes the communication/computation ratio. In addition, the

different benchmarks exhibit a range of communication patterns. The FT benchmark

(in Environment 1) and the MG benchmark (in both environments) were excluded

due to difficulties encountered when running these under RedMPI.

5.1 Runtime Measurements

We executed each benchmark in each environment, first using only Open MPI, then

using RedMPI under double and triple replication and with each of the four SDC

detection methods (AllToAll and MsgPlusHash from RedMPI along with our Async

and AsyncHash). We selected three different process counts for each benchmark, as

appropriate for that benchmark’s requirements. Benchmark classes (problem sizes)

were selected to give approximately a 1–2 minute running time under Open MPI,

and in some cases (notably with the IS benchmark) to fit within system memory

constraints).

Table 5.1 and Table 5.2 show measurements of runtime for each execution in the

two environments. Time was measured across the entire execution of the mpirun

command rather than using the benchmark code’s own timing, which uses MPI Wtime

and thus (due to RedMPI’s handling of this operation) only represents the elapsed

time for the first replica set. Figures 5.1 and 5.2 chart runtimes for double and

triple replication respectively, normalized against the runtime under Open MPI, and

restricted to Environment 1 and the process count of 64 common to all benchmarks.

Figures 5.3 and 5.4 show similar data for Environment 2 and a process count of 16.

21

B
en

ch
m

ar
k

P
ro

cs
O

p
en

M
P

I
A

ll
T

oA
ll

A
sy

n
c

Im
p
ro

ve
m

en
t

M
sg

P
lu

sH
as

h
A

sy
n
cH

as
h

Im
p
ro

ve
m

en
t

(C
la

ss
)

1x
2x

3x
2x

3x
2x

3x
2x

3x
2x

3x
2x

3x

B
T

(B
)

36
61

.5
2

21
5.

25
39

9.
67

82
.9

0
11

7.
56

61
.5

%
70

.6
%

67
.4

8
67

.8
5

60
.5

0
58

.5
2

10
.3

%
13

.8
%

64
73

.8
7

21
3.

82
35

9.
82

82
.4

9
10

0.
39

61
.4

%
72

.1
%

94
.3

6
92

.5
3

72
.1

4
79

.8
5

23
.5

%
13

.7
%

12
1

80
.0

9
18

7.
13

31
7.

48
83

.7
6

99
.3

3
55

.2
%

68
.7

%
97

.2
8

11
8.

70
90

.2
9

10
4.

34
7.

2%
12

.1
%

C
G

(C
)

32
86

.4
2

57
8.

17
96

8.
71

20
5.

40
31

8.
80

64
.5

%
67

.1
%

19
8.

54
22

0.
15

14
6.

73
13

0.
29

26
.1

%
40

.8
%

64
17

2.
92

61
4.

23
10

78
.3

4
21

3.
96

34
4.

13
65

.2
%

68
.1

%
24

7.
40

29
4.

24
17

4.
54

16
9.

72
29

.5
%

42
.3

%

12
8

29
5.

35
64

6.
69

11
57

.2
8

19
3.

90
23

3.
12

70
.0

%
79

.9
%

37
4.

68
41

4.
55

28
5.

29
28

2.
79

23
.9

%
31

.8
%

E
P

(D
)

32
17

5.
99

17
7.

17
17

8.
62

17
8.

52
17

9.
82

-0
.8

%
-0

.7
%

17
8.

48
17

8.
82

18
0.

12
17

6.
64

-0
.9

%
1.

2%

64
91

.0
1

91
.1

7
90

.8
9

91
.3

2
90

.1
0

-0
.2

%
0.

9%
91

.5
6

90
.8

4
91

.2
8

91
.3

6
0.

3%
-0

.6
%

12
8

46
.5

4
48

.2
0

49
.1

5
48

.7
9

48
.8

4
-1

.2
%

0.
6%

48
.3

5
51

.9
5

48
.5

6
55

.0
9

-0
.4

%
-6

.0
%

IS
(D

)

32
26

3.
10

56
0.

24
89

8.
02

54
1.

45
85

8.
65

3.
4%

4.
4%

29
7.

12
29

9.
30

29
3.

88
28

9.
61

1.
1%

3.
2%

64
18

5.
63

36
6.

21
59

5.
17

31
4.

80
49

1.
52

14
.0

%
17

.4
%

18
9.

01
26

8.
07

17
1.

37
17

7.
29

9.
3%

33
.9

%

12
8

15
0.

14
27

6.
94

44
5.

46
19

4.
10

29
6.

71
29

.9
%

33
.4

%
28

6.
60

25
9.

64
14

0.
73

14
7.

41
50

.9
%

43
.2

%

L
U

(B
)

32
33

.0
3

91
.4

9
20

7.
56

45
.5

1
65

.7
8

50
.3

%
68

.3
%

40
.5

2
49

.1
7

51
.9

0
52

.2
9

-2
8.

1%
-6

.3
%

64
26

.9
0

11
4.

72
22

7.
96

43
.7

5
61

.6
8

61
.9

%
72

.9
%

67
.6

1
87

.0
9

49
.8

2
54

.9
2

26
.3

%
36

.9
%

12
8

56
.3

3
13

9.
93

26
7.

97
53

.1
9

54
.4

2
62

.0
%

79
.7

%
12

7.
32

15
2.

41
81

.2
0

90
.1

0
36

.2
%

40
.9

%

S
P

(B
)

36
11

7.
11

37
4.

56
63

4.
59

14
3.

82
20

0.
20

61
.6

%
68

.5
%

12
0.

28
11

5.
75

10
0.

76
99

.3
0

16
.2

%
14

.2
%

64
14

8.
76

40
4.

16
68

8.
51

15
3.

46
18

2.
74

62
.0

%
73

.5
%

17
6.

59
17

4.
46

13
8.

23
14

6.
89

21
.7

%
15

.8
%

12
1

14
4.

59
30

6.
32

49
5.

65
14

7.
35

16
0.

74
51

.9
%

67
.6

%
16

9.
78

21
4.

90
16

0.
69

18
8.

91
5.

4%
12

.1
%

T
a
b
le

5
.1

:
E

x
e
cu

ti
o
n

ti
m

e
s

(s
e
co

n
d
s)

fo
r

N
P

B
(E

n
v
ir

o
n
m

e
n
t

1
)

22

B
en

ch
m

ar
k

P
ro

cs
O

p
en

M
P

I
A

ll
T

oA
ll

A
sy

n
c

Im
p
ro

ve
m

en
t

M
sg

P
lu

sH
as

h
A

sy
n
cH

as
h

Im
p
ro

ve
m

en
t

(C
la

ss
)

1x
2x

3x
2x

3x
2x

3x
2x

3x
2x

3x
2x

3x

B
T

(B
)

16
10

1.
53

20
0.

01
32

1.
81

13
2.

35
16

3.
10

33
.8

%
49

.3
%

11
8.

72
12

0.
64

11
3.

11
11

3.
53

4.
7%

5.
9%

36
97

.6
1

22
2.

97
37

7.
83

88
.7

5
11

7.
35

60
.2

%
68

.9
%

11
4.

59
12

9.
21

99
.9

6
10

1.
78

12
.8

%
21

.2
%

C
G

(C
)

16
16

3.
95

42
9.

28
77

9.
35

29
9.

17
40

6.
45

30
.3

%
47

.8
%

19
9.

04
21

9.
87

19
1.

56
19

1.
86

3.
8%

12
.7

%

32
18

6.
25

47
8.

98
88

5.
79

18
0.

65
25

3.
85

62
.3

%
71

.3
%

21
4.

59
25

5.
85

15
4.

78
15

3.
66

27
.9

%
39

.9
%

E
P

(C
)

16
41

.2
2

41
.4

5
41

.2
4

41
.0

6
41

.5
8

0.
9%

-0
.8

%
41

.0
6

41
.2

0
41

.0
7

41
.1

9
-0

.0
%

0.
0%

32
21

.0
7

21
.4

6
21

.7
3

21
.2

4
41

.5
1

1.
0%

-9
1.

0%
21

.3
1

21
.3

8
21

.2
7

21
.4

3
0.

2%
-0

.2
%

F
T

(B
)

16
53

.4
7

10
0.

08
15

5.
93

97
.6

6
14

5.
12

2.
4%

6.
9%

56
.0

1
55

.7
8

55
.9

3
56

.1
9

0.
1%

-0
.7

%

32
58

.9
0

63
.5

1
96

.1
3

57
.7

3
83

.5
9

9.
1%

13
.0

%
35

.4
6

35
.5

2
35

.8
4

35
.6

2
-1

.1
%

-0
.3

%

IS
(C

)
16

24
.5

0
53

.8
0

82
.6

2
52

.3
4

78
.4

6
2.

7%
5.

0%
28

.8
1

28
.7

9
29

.1
1

28
.5

9
-1

.0
%

0.
7%

32
29

.2
4

36
.0

3
57

.4
7

32
.2

2
47

.5
8

10
.6

%
17

.2
%

19
.3

6
19

.5
8

18
.9

4
19

.8
2

2.
2%

-1
.2

%

L
U

(B
)

16
99

.5
1

15
3.

07
22

5.
65

21
1.

55
24

0.
66

-3
8.

2%
-6

.7
%

13
3.

15
13

9.
17

21
6.

30
21

9.
76

-6
2.

4%
-5

7.
9%

32
54

.8
8

14
0.

33
21

4.
05

15
3.

09
18

2.
45

-9
.1

%
14

.8
%

94
.0

3
98

.2
4

18
7.

82
19

2.
84

-9
9.

7%
-9

6.
3%

S
P

(A
)

16
84

.2
2

20
3.

52
32

3.
69

75
.2

4
10

1.
08

63
.0

%
68

.8
%

11
6.

84
12

4.
69

86
.0

9
87

.6
0

26
.3

%
29

.7
%

36
97

.4
8

22
3.

61
36

3.
09

58
.0

5
75

.2
7

74
.0

%
79

.3
%

12
0.

10
13

1.
23

10
1.

64
10

5.
27

15
.4

%
19

.8
%

T
a
b
le

5
.2

:
E

x
e
cu

ti
o
n

ti
m

e
s

(s
e
co

n
d
s)

fo
r

N
P

B
(E

n
v
ir

o
n
m

e
n
t

2
)

23

BT CG EP IS LU SP
0

1

2

3

4

5

Ru
nt

im
e

(v
s.

Op
en

 M
PI

) AllToAll
MsgPlusHash
Async
AsyncHash

Figure 5.1: Runtime at double replication (64 processes, Environment 1)

BT CG EP IS LU SP
0

1

2

3

4

5

Ru
nt

im
e

(v
s.

Op
en

 M
PI

)

(6.2) (8.5)
AllToAll
MsgPlusHash
Async
AsyncHash

Figure 5.2: Runtime at triple replication (64 processes, Environment 1)

BT CG EP FT IS LU SP
0

1

2

3

4

5

Ru
nt

im
e

(v
s.

Op
en

 M
PI

) AllToAll
MsgPlusHash
Async
AsyncHash

Figure 5.3: Runtime at double replication (16 processes, Environment 2)

24

BT CG EP FT IS LU SP
0

1

2

3

4

5

Ru
nt

im
e

(v
s.

Op
en

 M
PI

) AllToAll
MsgPlusHash
Async
AsyncHash

Figure 5.4: Runtime at triple replication (16 processes, Environment 2)

We see that, in our environments, there is a significant penalty for most bench-

marks due to the doubled or tripled message traffic with AllToAll, and a lesser one for

MsgPlusHash. In general, our Async and AsyncHash SDC detection methods allevi-

ate these respective overheads substantially. For most benchmarks, the improvement

is consistent across a range of communication/computation ratios, with IS especially

sensitive to this ratio and LU exhibiting a few anomalies. The EP benchmark, which

performs minimal communication, verifies the reliability of our measurements and

shows that there is negligible fixed overhead introduced by SDC detection. For BT,

CG, IS, and SP, the runtime using AsyncHash is comparable to or slightly better

than the baseline Open MPI runtime; the apparent improvements are likely due to

different process placement under replication.

5.2 Memory Overhead Measurements

Our Async and AsyncHash SDC detection methods make a time-memory tradeoff

by continuing execution before fully verifying and freeing an application request. To

measure the impact on memory usage, we instrumented the allocation of internal

request structures in RedMPI across all processes in a replicated job. With this

25

0 20 40 60 80 100
10-1

100

101

102

103 BT

0 50 100 150 200 250

CG

0 10 20 30 40 50 60 70 80 90
10-1

100

101

102

103 EP

0 50 100 150 200 250 300 350

IS

0 20 40 60 80 100 120 140
10-1

100

101

102

103 LU

0 50 100 150 200
Time (s)

Al
lo

ca
te

d
re

qu
es

ts
/p

ro
ce

ss SP

MsgPlusHash Async AsyncHash

Figure 5.5: Allocated requests per process over time for double-replicated
64-process jobs

instrumentation, each benchmark was executed again in Environment 1 with double

replication and a process count of 64 under each of the SDC detection methods.

The resulting data, after applying a moving average, sampling this every second,

and normalizing to a per-process count, is plotted for each benchmark in the sub-plots

of Figure 5.5. Data for AllToAll was excluded since it is nearly identical to that for

MsgPlusHash but extends for a longer time period in most cases.

26

Most of the benchmarks appear to frequently block on requests, so under Msg-

PlusHash (or AllToAll) there are at most a handful of request entries allocated at a

time. As a general trend, Async maintains approximately an order of magnitude more

requests, while AsyncHash shows more dramatic variation over time but has up to 20

times again as many requests allocated. The exceptions are EP, which makes no MPI

requests during the majority of its execution (and therefore also does not provide our

integrity-verification routine an opportunity to clean up leftover initial requests), and

IS, which performs all-to-all communications that appear as 128 individual point-to-

point requests and that are not effectively streamlined by our asynchronous methods.

The largest overall memory overhead observed in this data (excluding IS, which

has large memory usage regardless of SDC detection) is for the CG benchmark using

the Async SDC detection method, where an average of 16 requests per process were

concurrently allocated at one point in time. A typical message buffer in this bench-

mark is 150KB, giving a per-process memory overhead of 3.6MB for redundant buffers

(one for send requests, two for receive requests) in this situation. With the AsyncHash

method, request buffers are not copied, so a single allocated request represents less

than 200 bytes of memory. The largest number of allocated requests observed in the

AsyncHash data is 330 per process for the SP benchmark, resulting in approximately

66KB memory overhead. We believe these overheads are inconsequential for current

systems and do not present a hindrance to the use of lazy fault detection.

5.3 Unit Testing

Due to the complexity of the Async verification routine, it is itself verified with a set

of unit tests. These tests cover several different scenarios:

1. All received message buffers are identical.

27

2. The first two message buffers received are identical (providing confirmation),

but a third differs.

3. The first message buffer received is corrupted, but the second and third match

(triggering correction).

The tests evaluate the routine’s functionality independent of a full MPI environ-

ment by providing a mock implementation of the PMPI Test function. All tests pass.

28

Chapter 6

RELATED WORK

6.1 Replication

6.1.1 Replicated MPI Implementations

Several libraries implementing transparent replication for MPI applications have pre-

viously been developed. One early implementation is rMPI, which and replicates MPI

processes on multiple nodes to protect against fail-stop failures [48, 19]. MR-MPI is a

more sophisticated implementation of redundancy featuring MPI collectives, wildcard

receives, and partial replication [17]. PaRep-MPI [23] implements adaptive replica-

tion based on failure prediction. All three of these libraries use the MPI profiling layer

to transparently interpose between existing MPI implementations and applications.

RedMPI extends the approach of MR-MPI to handle silent data corruption [20].

Its core functionality consists of protocols for MPI point-to-point communication

that provide SDC detection. The first method, AllToAll, directs (by instrumenting

MPI Isend) sent messages to all replicas of the receiving process. The second, Ms-

gPlusHash, saves bandwidth by sending a full message to only one receiving replica

and a hash to another. The same combination of messages is seen when receiving;

MPI Irecv is instrumented to start multiple receive requests, while MPI Wait waits

for all these requests to complete and then checks for consistency. Either of these

methods provides SDC detection under double replication and SDC correction (by

voting) under triple replication.

VolpexMPI [35] and FMI [42] are complete runtime implementations that provide

replication, replacing a normal MPI implementation. These approaches consider only

29

fail-stop failures, so while they do not require close synchronization between replicas,

SDC will not be detected.

Purdy et al. [39] propose replicating MPI processes to improve runtime in the face

of highly variable latency in a public cloud environment. This work does not include

an implementation and does not consider SDC detection.

6.1.2 Process Management

Another body of work within resilience concentrates on management of the replica

processes themselves. Shadow computing executes non-primary replica processes at

slower speeds [36, 12, 13]. When the primary processes are successful, the replicas

can be terminated early, saving power. However, when one of the primary processes

fails, a replica can take over and accelerate to full speed, having only a fraction of the

work to make up compared to a complete restart. Allowing for SDC detection within

shadow computing is one goal of our work.

Node cloning dynamically creates replicas of running processes [40, 41]. This is

achieved by copying memory pages to a new node after quiescing MPI communication.

Cloning is useful to consolidate divergent node states, or to regain replication after

nodes are lost to failures. This complements fault detection by providing a way to

recover from even fail-stop failures.

6.1.3 Redundant Multithreading

Redundant multithreading is similar to replication, but in a shared-memory multi-

threading context. In redundant multithreading, network failures are not a concern,

but transient hardware faults are still important [37]. Substantial work by Hukerikar

et al. develops redundant multithreading as a fault-detection strategy [30].

30

Later extensions to this work additionally incorporate lazy fault detection [29, 31].

This form of fault detection minimizes synchronization between replica threads by

instead periodically saving state to memory buffers for later comparison. We use this

design as inspiration for our MPI implementation of lazy fault detection.

6.2 Other Approaches to Resilience

Beyond checkpointing and replication, introduced in Chapter 2, a wide spectrum of

other resilience techniques are possible.

6.2.1 ULFM

Fault-tolerance tools such as BLCR and RedMPI often leave the application unaware

of faults and recovery. While this simplifies application development, it requires

conservative assumptions to safely protect all applications, and a given application

may be able to more efficiently respond to faults itself. User-level failure mitigation

(ULFM) is a proposed extension to the MPI standard that exposes fault-tolerance

capabilities to the application [6]. ULFM has been evaluated in practical use [7, 22, 34]

and consensus algorithms have been developed [26] to allow coordination in recovery.

6.2.2 LFLR

Local failure, local recovery (LFLR) is a fault-tolerance paradigm that addresses

these scaling concerns by recovering nodes independently. In LFLR, a single node

is maintained as a hot spare containing the parity of every active node’s state. An

implementation of LFLR has been developed on top of MPI-ULFM [49].

31

6.2.3 Algorithm-Based Fault Tolerance

Algorithm-based fault tolerance (ABFT) makes use of characteristics of a particular

algorithm to detect and mitigate faults. An early case of this applies to matrix

operations [28]. ABFT can be used as a starting point to understand other approaches

to resilient algorithms [27]

6.2.4 Fault Injection

Simulated faults are useful for testing fault tolerance techniques. Fault injection

attempts to mimic the effects of real hardware faults, but at a higher frequency,

allowing testing to be performed on smaller systems and timescales. Many fault

tolerance implementations are evaluated using some form of fault injection. Cho et

al. provide a very good evaluation of various fault injection approaches in terms of

the resulting application failures [11]. At a higher level of abstraction, the effect of

faults can even be modeled through statistical simulation [51].

32

Chapter 7

CONCLUSIONS & FUTURE WORK

We have developed an approach to lazy fault detection for MPI programs that im-

proves on previous replication models in efficiency and scheduling flexibility. The

evaluation results suggest that our Async and AsyncHash methods of SDC detec-

tion for RedMPI provide a noticeable performance benefit, matching the speed of

non-replicated execution for some benchmarks, with reasonable memory overhead.

Further, when combined with shadow computing, lazy fault detection can save com-

putational power while still providing SDC detection. Ultimately, we believe this

represents a valuable advance in addressing resilience.

The most significant area for future work is implementation of SDC correction

(discussed in Section 3.1) for lazy fault detection. With correction added, the effi-

ciency of the library can be evaluated again in the presence of injected faults that

corrupt MPI messages.

In addition, further MPI features could be made to avoid replica synchronization,

though often with a loss of complete consistency between replicas. RedMPI imple-

ments features such as wildcard receives, MPI Test, MPI Iprobe, and MPI Wtime by

sharing one replica’s result with others. A given application might or might not di-

verge based on the results of these time-sensitive calls. Adapting these calls to use

local results would risk replica divergence for some applications that use them, but

improve performance for others.

33

BIBLIOGRAPHY

[1] MPI: A message-passing interface standard: Version 1.3. Technical report,

Message Passing Interface Forum, May 2008.

[2] MPI: A message-passing interface standard: Version 2.2. Technical report,

Message Passing Interface Forum, September 2009.

[3] MPI: A message-passing interface standard: Version 3.1. Technical report,

Message Passing Interface Forum, June 2015.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and

taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 1(1):11–33, Jan. 2004.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,

H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel

Benchmarks. International Journal of High Performance Computing

Applications, 5(3):63–73, Sept. 1991.

[6] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. Post-failure

recovery of MPI communication capability Design and rationale. International

Journal of High Performance Computing Applications, 27(3):244–254, Aug.

2013.

[7] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra.

An evaluation of User-Level Failure Mitigation support in MPI. Computing,

95(12):1171–1184, May 2013.

34

[8] A. Bouteiller. Fault-Tolerant MPI. In T. Herault and Y. Robert, editors,

Fault-Tolerance Techniques for High-Performance Computing, Computer

Communications and Networks, pages 145–228. Springer International

Publishing, 2015. DOI: 10.1007/978-3-319-20943-2 3.

[9] J. Brandt, B. Debusschere, A. Gentile, J. Mayo, P. Pebay, D. Thompson, and

M. Wong. Using Probabilistic Characterization to Reduce Runtime Faults in

HPC Systems. In 8th IEEE International Symposium on Cluster Computing

and the Grid, 2008. CCGRID ’08, pages 759–764, May 2008.

[10] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward

Exascale Resilience: 2014 update. Supercomputing frontiers and innovations,

1(1):5–28, June 2014.

[11] H. Cho, S. Mirkhani, C.-Y. Cher, J. Abraham, and S. Mitra. Quantitative

evaluation of soft error injection techniques for robust system design. In 2013

50th ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–10,

May 2013.

[12] X. Cui, B. Mills, T. Znati, and R. Melhem. Shadow Replication: An

Energy-Aware, Fault-Tolerant Computational Model for Green Cloud

Computing. Energies, 7(8):5151–5176, Aug. 2014.

[13] X. Cui, T. Znati, and R. Melhem. Lazy Shadowing: An Adaptive,

power-Aware, Resiliency Framework for Extreme Scale Computing. 2014.

[14] J. T. Daly. A higher order estimate of the optimum checkpoint interval for

restart dumps. Future Generation Computer Systems, 22(3):303–312, Feb. 2006.

[15] J. Dongarra, T. Herault, and Y. Robert. Fault Tolerance Techniques for

High-Performance Computing. In T. Herault and Y. Robert, editors,

35

Fault-Tolerance Techniques for High-Performance Computing, Computer

Communications and Networks, pages 3–85. Springer International Publishing,

2015. DOI: 10.1007/978-3-319-20943-2 1.

[16] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey of

Rollback-recovery Protocols in Message-passing Systems. ACM Comput. Surv.,

34(3):375–408, Sept. 2002.

[17] C. Engelmann and S. Böhm. Redundant Execution of HPC Applications with

MR-MPI. ACTAPRESS, 2011.

[18] K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros, K. Pedretti, and

R. Brightwell. Keeping checkpoint/restart viable for exascale systems. Sandia

National Laboratories, Tech. Rep. SAND2011-6815, Feb. 2012.

[19] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pedretti, R. Brightwell,

R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the Viability of Process

Replication Reliability for Exascale Systems. In Proceedings of 2011

International Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’11, pages 44:1–44:12, New York, NY, USA, 2011.

ACM.

[20] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell.

Detection and Correction of Silent Data Corruption for Large-scale

High-performance Computing. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’12,

pages 78:1–78:12, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[21] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,

V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,

R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a

36

next generation MPI implementation. In Proceedings, 11th European

PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary,

September 2004.

[22] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla, J. Chen, and

M. Parashar. Exploring Failure Recovery for Stencil-based Applications at

Extreme Scales. In Proceedings of the 24th International Symposium on

High-Performance Parallel and Distributed Computing, HPDC ’15, pages

279–282, New York, NY, USA, 2015. ACM.

[23] C. George and S. Vadhiyar. Fault Tolerance on Large Scale Systems using

Adaptive Process Replication. 64(8):2213–2225, Aug. 2015.

[24] T. J. Hacker, F. Romero, and C. D. Carothers. An analysis of clustered failures

on large supercomputing systems. Journal of Parallel and Distributed

Computing, 69(7):652–665, July 2009.

[25] P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart (BLCR) for

Linux clusters. Journal of Physics: Conference Series, 46(1):494, 2006.

[26] T. Herault, A. Bouteiller, G. Bosilca, M. Gamell, K. Teranishi, M. Parashar,

and J. Dongarra. Practical Scalable Consensus for Pseudo-synchronous

Distributed Systems. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’15, pages

31:1–31:12, New York, NY, USA, 2015. ACM.

[27] M. A. Heroux. Toward Resilient Algorithms and Applications. arXiv:1402.3809

[cs], Feb. 2014. arXiv: 1402.3809.

[28] K.-H. Huang and J. Abraham. Algorithm-Based Fault Tolerance for Matrix

Operations. C-33(6):518–528, June 1984.

37

[29] S. Hukerikar, P. Diniz, R. Lucas, and K. Teranishi. Opportunistic

application-level fault detection through adaptive redundant multithreading. In

2014 International Conference on High Performance Computing Simulation

(HPCS), pages 243–250, July 2014.

[30] S. Hukerikar, P. C. Diniz, and R. F. Lucas. A Case for Adaptive Redundancy

for HPC Resilience. In D. a. Mey, M. Alexander, P. Bientinesi, M. Cannataro,

C. Clauss, A. Costan, G. Kecskemeti, C. Morin, L. Ricci, J. Sahuquillo,

M. Schulz, V. Scarano, S. L. Scott, and J. Weidendorfer, editors, Euro-Par

2013: Parallel Processing Workshops, number 8374 in Lecture Notes in

Computer Science, pages 690–697. Springer Berlin Heidelberg, Aug. 2013. DOI:

10.1007/978-3-642-54420-0 67.

[31] S. Hukerikar, K. Teranishi, P. Diniz, and R. Lucas. An evaluation of lazy fault

detection based on Adaptive Redundant Multithreading. In 2014 IEEE High

Performance Extreme Computing Conference (HPEC), pages 1–6, Sept. 2014.

[32] R. Koo and S. Toueg. Checkpointing and Rollback-Recovery for Distributed

Systems. SE-13(1):23–31, Jan. 1987.

[33] V. Kumar and A. Agarwal. HT-Ring Paxos: Theory of High Throughput

State-Machine Replication for Clustered Data Centers. arXiv:1507.04086 [cs],

July 2015. arXiv: 1507.04086.

[34] I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, and B. R. de Supinski.

Evaluating User-Level Fault Tolerance for MPI Applications. In Proceedings of

the 21st European MPI Users’ Group Meeting, EuroMPI/ASIA ’14, pages

57:57–57:62, New York, NY, USA, 2014. ACM.

[35] T. LeBlanc, R. Anand, E. Gabriel, and J. Subhlok. VolpexMPI: An MPI

Library for Execution of Parallel Applications on Volatile Nodes. In M. Ropo,

38

J. Westerholm, and J. Dongarra, editors, Recent Advances in Parallel Virtual

Machine and Message Passing Interface, number 5759 in Lecture Notes in

Computer Science, pages 124–133. Springer Berlin Heidelberg, Sept. 2009.

DOI: 10.1007/978-3-642-03770-2 19.

[36] B. Mills, T. Znati, and R. Melhem. Shadow Computing: An energy-aware fault

tolerant computing model. In 2014 International Conference on Computing,

Networking and Communications (ICNC), pages 73–77, Feb. 2014.

[37] S. Mukherjee, M. Kontz, and S. Reinhardt. Detailed design and evaluation of

redundant multi-threading alternatives. In 29th Annual International

Symposium on Computer Architecture, 2002. Proceedings, pages 99–110, 2002.

[38] A. Oliner and J. Stearley. What Supercomputers Say: A Study of Five System

Logs. In 37th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, 2007. DSN ’07, pages 575–584, June 2007.

[39] S. Purdy, P. Hunt, and D. Bindel. Process Replication for HPC Applications

on the Cloud. Dec. 2010.

[40] A. Rezaei and F. Mueller. Sustained Resilience via Live Process Cloning. In

Parallel and Distributed Processing Symposium Workshops PhD Forum

(IPDPSW), 2013 IEEE 27th International, pages 1498–1507, May 2013.

[41] A. Rezaei and F. Mueller. DINO: Divergent Node Cloning for Sustained

Redundancy in HPC. In IEEE Cluster 2015, Chicago, IL, Sept. 2015.

[42] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. de Supinski, N. Maruyama,

and S. Matsuoka. FMI: Fault Tolerant Messaging Interface for Fast and

Transparent Recovery. In Parallel and Distributed Processing Symposium, 2014

IEEE 28th International, pages 1225–1234, May 2014.

39

[43] F. B. Schneider. Implementing Fault-tolerant Services Using the State Machine

Approach: A Tutorial. ACM Comput. Surv., 22(4):299–319, Dec. 1990.

[44] F. B. Schneider. What Good are Models and What Models are Good? pages

17–26. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[45] B. Schroeder and G. A. Gibson. Understanding failures in petascale computers.

Journal of Physics: Conference Series, 78(1):012022, 2007.

[46] S. Sheen. Astro - a low-cost, low-power cluster for CPU-GPU hybrid

computing. Master’s thesis, California Polytechnic State University, San Luis

Obispo, 2016.

[47] J. Stearley and R. Ballance. A preliminary report on red storm RAS

performance. Lugano, Switzerland, 2006.

[48] J. R. Stearley, R. E. Riesen, J. H. Laros III, K. B. Ferreira, K. T. T. Pedretti,

R. A. Oldfield, T. Kordenbrock, and R. B. Brightwell. Increasing fault

resiliency in a message-passing environment. Technical Report

SAND2009-6753, Sandia National Laboratories, 2009.

[49] K. Teranishi and M. A. Heroux. Toward Local Failure Local Recovery

Resilience Model Using MPI-ULFM. In Proceedings of the 21st European MPI

Users’ Group Meeting, EuroMPI/ASIA ’14, pages 51:51–51:56, New York, NY,

USA, 2014. ACM.

[50] J. W. Young. A First Order Approximation to the Optimum Checkpoint

Interval. Commun. ACM, 17(9):530–531, Sept. 1974.

[51] D. Zhao, D. Zhang, K. Wang, and I. Raicu. Exploring Reliability of Exascale

Systems Through Simulations. In Proceedings of the High Performance

40

Computing Symposium, HPC ’13, pages 1:1–1:9, San Diego, CA, USA, 2013.

Society for Computer Simulation International.

41

APPENDICES

Appendix A

REPRODUCIBILITY OF PRIOR RESULTS

Our results show a much higher overhead for MsgPlusHash as compared to Open MPI,

than is presented in the RedMPI publications [20]. The largest overhead presented

in these publications is 19.4% for a triple-replicated 512-process CG benchmark. By

contrast, our results show 40% or larger overheads for triple-replicated CG. We at-

tempted to understand and reconcile this discrepancy.

The RedMPI evaluation environment is described as follows.

We deployed RedMPI on a medium sized cluster and utilized up to

96 nodes for benchmarking and testing. Each compute node consists of

a 2-way SMPs with AMD Opteron 6128 (Magny-Cours) processors of 8

cores per socket (16 cores per node) with 32 GB RAM per node. Nodes

are connected via 1Gbps Ethernet for user interactions and management.

MPI transport is provided by a 40Gb/s InfiniBand fat tree interconnect.

To maximize the compute capacity of each node, we ran up to 16 processes

per node.

When launching RedMPI jobs, we map replica processes so that they

do not reside on the same physical nodes. This type of mapping is pre-

ferred as a fault on a node will not affect multiple replicas of the same

process simultaneously (i.e., due to localized power failures for a whole

rack). [20]

A notable difference from our evaluation environments is the use of an InfiniBand

42

interconnect instead of Ethernet.

A.1 Latency and Bandwidth Tests

We measured latency and bandwidth between hosts in our two environments using

the ping and iperf tools respectively.

In both environments, iperf reliably reports transfer rates over 900 MB/s between

any two hosts, approaching link capacity and well exceeding bandwidth observed

during any benchmark run. Several simultaneous such transfers did not appear to

interfere with each other, showing that the aggregate capacity of the central switch

in each environment is at least several GB/s.

In Environment 1, ping reports round-trip latencies averaging 0.22 ms (standard

deviation 0.10 ms). In Environment 2, the values are somewhat worse, with a mean

of 0.62 ms and standard deviation of 0.23 ms.

Overall network performance (IP/Ethernet) does not appear to be a likely culprit

in our observed messaging overheads. However, this does not rule out issues with

MPI implementations’ use of TCP for communications over these networks.

A.2 Processes-per-Node Experiments

Investigating large overheads seen with replication led to the observation that the

placement of processes on nodes dramatically affects overall runtime in our Environ-

ment 1.

We compiled a 32-process class-B CG kernel from NPB. We executed this under

each of four different MPI implementations available in our environment (without

using RedMPI): Open MPI 1.6, Open MPI 1.10, PGI MPICH, and Intel MPI. For each

implementation, only the -npernode parameter to mpirun was varied, which controls

43

0 2 4 6 8 10 12 14 16 18
npernode

0

20

40

60

80

100

120

Ru
nt

im
e

(s
)

Open MPI 1.6
Open MPI 1.10
PGI MPICH
Intel MPI

Figure A.1: Runtime by processes-per-node (CG, different implementa-
tions)

the number of processes placed on each node before moving to the next. For instance,

mpirun -npernode 10 ... bin/cg.B.32 uses four nodes, placing processes 0–9 on

the first, 10–19 on the second, 20–29 on the third, and 30–31 on the fourth.

Figure A.1 shows the runtimes reported by the benchmark code, giving a median,

minimum and maximum value across 7 runs for each configuration. There are sub-

stantial variations in runtime (some over 300%), and the overall shape is consistent

between all four MPI implementations. While some runtime improvements corre-

spond to changes in the number of nodes involved in the execution, there is no clear

impact of processor contention once -npernode exceeds 14.

We repeated the experiment using Intel MPI and varying the total process count

of the benchmark. For larger process counts, -npernode values were restricted to

those achievable using at most 32 nodes. Figure A.2 shows the results. There is some

variation in trends; for instance, -npernode 12 performs better than 11 or 13 for

process counts 64 or less, but worse for process counts of 128 or 256.

We repeated the experiment using the FT benchmark with Intel MPI and varying

numbers of processes. Figure A.3 shows the results. For FT, -npernode values

44

0 2 4 6 8 10 12 14 16 18
npernode

0

50

100

150

200

250

Ru
nt

im
e

(s
)

16
32
64
128
256

Figure A.2: Runtime by processes-per-node (CG, varying process count)

0 2 4 6 8 10 12 14 16 18
npernode

0

20

40

60

80

100

Ru
nt

im
e

(s
)

16
32
64

Figure A.3: Runtime by processes-per-node (FT, varying process count)

45

0 2 4 6 8 10 12 14 16 18
npernode

20
40
60
80

100
120
140
160
180
200

Ru
nt

im
e

(s
)

Figure A.4: Runtime by processes-per-node (CG, Environment 2)

between 11 and 15 perform particularly poorly, but powers of 2 are still local minima

as for CG.

We repeated the experiment for CG using Open MPI 1.6 in Environment 2. Fig-

ure A.4 shows the results. While the absolute values are different, the overall shape

is very similar to that for Environment 1.

A.3 Application Profiling

We used profiling tools to introspect a slow execution (of CG with -npernode 14).

This showed that processes were spending a majority of their time busy-waiting inside

MPI Wait.

A.4 Conclusions

Our evaluation environments exhibit significant communication-related runtime vari-

ations for NPB that are not intrinsically linked to process replication or to network

infrastructure flaws. Further evaluation of our work in an environment with an In-

finiBand interconnect, as used for RedMPI validation, would be useful.

46

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background
	MPI
	Operations
	Execution

	Resilience
	Checkpointing
	Replication

	Design
	Correction

	Implementation
	Async Method
	AsyncHash Method

	Evaluation
	Runtime Measurements
	Memory Overhead Measurements
	Unit Testing

	Related Work
	Replication
	Replicated MPI Implementations
	Process Management
	Redundant Multithreading

	Other Approaches to Resilience
	ULFM
	LFLR
	Algorithm-Based Fault Tolerance
	Fault Injection

	Conclusions & Future Work
	BIBLIOGRAPHY
	Reproducibility of Prior Results
	Latency and Bandwidth Tests
	Processes-per-Node Experiments
	Application Profiling
	Conclusions

