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Abstract

Suffix Trees for Document Retrieval

by

Ryan Reck

This thesis presents a look at the suitability of Suffix Trees for full text index-

ing and retrieval. Typically suffix trees are built on a character level, where the

tree records which characters follow each other character. By building suffix trees

for documents based on words instead of characters, the resulting tree effectively

indexes every word or sequence of words that occur in any of the documents.

Ukkonnen’s algorithm is adapted to build word-level suffix trees. But the pri-

mary focus is on developing Algorithms for searching the suffix tree for exact and

approximate, or fuzzy, matches to arbitrary query strings. A proof-of-concept

implementation is built and compared to a Lucene [6] index for retrieval over a

subset of the Reuters RCV1 data set [8].
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Chapter 1

Introduction

Information Retrieval often needs to provide a user with a list of documents

relevant to some search query [11]. A lot of research goes into how to determine

the best documents to return. To provide results quickly even on large data sets

some sort of index is required to map query terms to documents, as well as ap-

propriate algorithms for building the index ahead of time and scoring documents

at search time. Different kinds of indexes are used for the different qualities they

have. Some indexes work for different kinds of data but most are designed for

indexing words in plain-text documents.

Reverse indexes are the standard way of determining relevant documents in

response to a query [15]. A reverse index tracks all the words in all indexed

documents along with which documents they occur in. Additional information,

such as where in each document the word occurs, can also be stored and then

used when needed to match documents to a query. I propose using a suffix tree

based reverse index instead of the standard flat reverse index. A suffix tree index

maintains more structural information than a flat index, and is therefore more

suited to answering certain types of queries.
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Different kinds of indexes require different searching and scoring algorithms.

Searching a reverse index involves looking up what documents contain the words

in the query and then computing a score for each document. The scoring algo-

rithm is important [2] since it determines what documents are considered more

relevant to the user and thus presented first.

In addition to creating a proof of concept suffix tree based search index imple-

mentation, I explore the various alternative algorithms for building such a suffix

tree and algorithms for finding and scoring documents with respect to a search

query.

1.1 Thesis Question

The driving question here is how does a suffix tree-based search index com-

pare to a typical reverse index. The comparison primarily focuses on their fuzzy

and non-fuzzy query capabilities by evaluating the relevance of the returned re-

sults, and includes measures of their run-time performance and storage space

requirements.

To answer this question, a proof-of-concept suffix tree-based search index is

implemented along with a reverse index implemented with standard open source

tools. The two indexing systems are then compared and evaluated.

1.2 Background Definitions

Before proceeding much further there are some background definitions to take

care of.
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Suffix Tree - Gusfield [5] defines suffix tree as follows:

A suffix tree T for an m-character string S is a rotted directed tree
with exactly m leaves numbered 1 to m. Each internal node, other
than the root, has at least two children and each edge is labeled with
a nonempty sub-string of S. No two edges out of a node can have
edge-labels beginning with the same character. The key feature of the
suffix tree is that for any leaf i, the concatenation of the edge-labels
on the path from the root to leaf i exactly spells out the suffix of S
that start at position i. That is it spells out S[i..m].

Additionally to guarantee every suffix is distinct, and thus ends at a leaf node,

an extra term is concatenated to the end of the string. Here we will use $n where

n is the unique id number of the document.

Generalized Suffix Tree - A Suffix Tree containing multiple strings in a single

tree. Generally a unique suffix is added to the end of the string to distinguish

strings.

Word-Level Suffix Tree - A Suffix Tree showing sequences of words instead

of sequences of characters. Generalized Word-Level Suffix Trees are what I am

using for my search indexes.

Reverse Index - An index from terms to documents they occur in and, option-

ally, where the terms occur in the documents. Reverse indexes are also known as

inverted indexes.

Exact Matching Algorithm - An algorithm to determine if a query string is a

proper sub-string of a target string or any document in the search index.

Exact Sub-String Matching Algorithm - An algorithm to determine the longest

common sub-string between a query string and a target string or any document

in the search index.

Fuzzy Matching Algorithm - An algorithm that determines approximate matches
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between a query string and a target string or any document in the search index.

Fuzzy matched documents will contain some extra words inserted into the query

string, omit some words from the query string, or both.
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Chapter 2

Previous Work

Relevant related work falls into three basic categories: suffix tree construction

algorithms, suffix tree uses, and established indexing designs. Related work in

each of these areas follows.

2.1 Suffix Tree Construction Algorithms

There have been three big suffix tree papers each proposing an algorithm for

their efficient construction. This section provides an overview of these papers,

followed by an in-depth look at Ukkonen’s construction algorithm which provides

the basis for the construction algorithm developed here.

2.1.1 1973 Weiner - Linear Pattern Matching Algorithms

Suffix trees were first introduced by Weiner in 1973 [14] although he called

them position trees. Unfortunately his paper was considered extremely difficult

to understand and garnered little follow-on work.
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2.1.2 1979 McCreight - A Space-Economical Suffix Tree

Construction Algorithm

McCreight came along in ’79 and introduced another algorithm with better

space efficiency [9]. Like Weiner’s algorithm McCreight’s built the tree by working

backwards from the longest suffix to the shortest. Building the tree in this manner

is simple and allows the tree to be built in a single scan of the string. But this

method is more difficult to extend for generalized suffix trees.

2.1.3 1992 Ukkonen - Constructing Suffix Trees On-Line

in Linear Time

Ukkonen came along in ’92 with the first new suffix tree paper in over a

decade [13]. Ukkonen’s algorithm conceptually builds the tree differently than

either of the previous algorithms by starting with an empty tree and extending

it for each character in the string in a single forward scan. By building the tree

in this manner it becomes an on-line algorithm: so that after inserting the Nth

character the suffix tree is complete for the first N characters of the input string.

Since publication, Ukkonen’s algorithm has generally been the preferred suffix

tree construction algorithm, mostly due to the paper being considered easier to

understand than the previous offerings.

The main difference between McCreight’s and Ukkonen’s algorithms turns out

to be mostly conceptual. Conceptually Ukkonen’s algorithm builds in a single

forward pass by building the tree for the previous N − 1 characters of the string

and extending that tree by one character each step to get the tree representing the

first N characters of the string, while McCreight’s builds backwards by inserting
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the longest suffix first then dividing that edge and inserting nodes to get to

the shortest suffix. The actual construction process proceeds similarly in both

algorithms, but this conceptual difference probably leads to Ukkonen’s algorithm

being easier to understand. The difference does mean that Ukkonen’s algorithm

is better suited for building Generalized Suffix Trees.

For building a Generalized Suffix Tree an on-line algorithm is capable of ex-

tending the previous suffix tree with the new suffixes unique to the recently added

string. Without an on-line algorithm the previous tree could not be extended to

create the new generalized tree so it would be necessary to build the suffix tree

for the new string and then merge the new tree into the generalized suffix tree.

2.1.4 Ukkonen’s Algorithm In-Depth

Ukkonen’s algorithm builds the suffix tree for string s in a single pass over the

characters in the string. A simple suffix tree, with one node for every character in

every suffix, explodes with n2 space efficiency. To avoid that, Ukkonen reduces the

number of nodes necessary by defining explicit and implicit nodes. If a node has

only one child node, they get joined into a single explicit node, and the absorbed

parent’s node becomes an implicit node, since it is no longer represented in the

tree explicitly. With this change, a node no longer represents a single character,

but a sequence of characters. For efficiency these sequences are not duplicated

from the original string, but represented as start and end indexes into the original

string. This indirection removes the need for having multiple copies of the string.

Additionally, storing indexes, instead of actual sub-strings, allows leaf nodes to

be left open-ended during the construction process, ending at the most recently

processed character. Having leaf nodes be open-ended serves to allow every leaf to
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be extended without an explicit update, which helps obtain a linear time bound.

Each step of Ukkonen’s algorithm extends every suffix in the tree by one

additional character. In other words, for the text t and tree tree where treei is

the suffix tree built from the sub-string t[0, i], treei is obtained by extending the

previous tree, treei−1. The nodes in treei−1 that need updating for treei make up

what is known as the boundary path. Now the nodes on this path can be classified

into three groups: leaf nodes, branching nodes without a branch on tree[i] and

branching nodes with a branch on tree[i]. The leaf nodes only need to have their

edge/sub-string extended by one character for them to represent the new suffix,

and since the leaves are left open-ended this is already done. Next we need to

update the branching nodes that represent the suffixes that are getting extended.

For any branching node without a tree[i] branch, a new branch and leaf node

must be added. For branching nodes with a tree[i] branch, no action needs to

be taken, since the current suffix is already represented in them. Therefore, the

only nodes that must be updated on each iteration are the non-branching nodes

on the boundary path.

If the parent node of the new branch is an implicit node, it must be made

explicit. To make the node explicit, the explicit node that encompasses it must

be split into two explicit nodes. Then a new new branch is added to the parent

node and a new open leaf node is created.

The nodes that need new branches fall between the active point and the end

point. For each of these nodes, the node must be made explicit, if it is not already,

and a new ti transition added to our new leaf node.
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Changes

Ukkonen’s algorithm was designed around character-level suffix trees, and

was optimized for those constraints. Building suffix trees using words instead of

characters is conceptually identical, but varies somewhat in the actual implemen-

tation. I still use indexes into the word list to avoid copying out sub-sequences

of words, but comparison of words, or strings, is not as simple as comparing

character values, so the efficiency constraints might not hold.

The other significant difference is using generalized suffix trees instead of

just simple ones. Ukkonen’s algorithm works almost unmodified for constructing

generalized suffix trees, but needed to be slightly modified to add extra document

indexes, see Section 3.1.1.

2.2 Suffix Tree uses

Suffix trees have been used in several niches. They are incredibly useful in

DNA and gene sequencing applications where they can efficiently find common

sub-sequences in long DNA sequences. They can also be used for text editor auto-

completion and similar tasks, but I am unaware if they are. Gusfield mentions

several applications in his book Algorithms on Strings, Trees and Sequences [5].

Recently suffix trees have seen some uses in information retrieval fields. Here

they have been mostly used for computing document similarity and related tasks.

In their 2007 paper [3] Chim and Deng use suffix trees to cluster documents in

on-line forum communities.

Little research has been done on using suffix trees for document retrieval.

Though Eissen et. al. [4] did an in-depth comparison of the suffix tree document
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model with more common models, there hasn’t been any research on using suffix

trees for document retrieval directly, as opposed to clustering the results after

using another means to determine the results to return.

2.3 Accepted search means

There are two fundamental ways to search a set of documents, with a pre-built

index or without. For pre-built indexes, reverse indexes are the most used due to

their efficiency, simplicity, and effectiveness [15]. Various other types of indexes,

such as document-term matrices, associative memory models [1][12], or ngram

indexes, could be used but aren’t generally competitive with reverse indexes and

don’t extend easily into phrase searches.

2.3.1 Reverse Index - Lucene

A reverse index is basically a list of terms and which documents each term

occurs in. This type of index works incredibly well for simple searches, the terms

are looked up and the list of documents returned. With a few minor tweaks they

can handle much more complex types of queries: for example if you store position

info, you can use the positions of matched terms in a document for phrase based

queries.

Lucene is a popular open source search engine that uses reverse indexes [6].

Lucene can store positions for performing phrase queries as well as term frequency

info for better results, compared to the simplest occurs/does-not-occur boolean

scoring.

Using suffix trees to index documents still qualifies as a reverse index, since it
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still has a set of terms tied to what documents they occur in. However, instead

of a flat term index the index is a suffix tree. This should provide improved

performance for phrase queries since the phrases do not have to be reconstructed

after the terms and their document-locations are looked up in the index. Ad-

ditionally the same suffix tree used to index the documents could be used for

similarity comparisons and clustering without requiring extra storage space for

both an index and a suffix tree.

2.3.2 On-Line Search

The index-less alternative search method is on-line search. Instead of build-

ing an index ahead of time, every search involves scanning every document for

an occurrence of the search term. Obviously this is not feasible for many IR

applications but works just fine on a small enough scale (like grep ”suffix tree”

thesis/*.tex)
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Chapter 3

System Design & Implementation

To examine the effectiveness of suffix tree indexes, I built a simple search tool

to retrieve documents using either a suffix tree based index, or a standard Lucene

index. The results were later evaluated for the quality of the returned results.

The system has two main components: a servlet interface for searching exist-

ing indexes, and a command line interface for creating new indexes and updating

existing ones.

The indexes are additionally abstracted through the SearchEngine interface.

The interface defines all the methods needed to search and update existing in-

dexes. The SuffixTreeEngine and LuceneEngine both implement this interface,

so the two engines are completely interchangeable once loaded from disk.

3.1 Suffix Tree Component

The Suffix Tree component builds a suffix tree-based document index. The

model for representing a suffix tree was fairly straight-forward and most of the
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work went into the various search algorithms. The suffix tree is modeled by

TreeNodes, which each store a reference to the words they represent and a

HashMap for their children, indexed by the child’s sub-string’s first word. In

a suffix tree no two children of any node can begin with the same word, so that

first word is guaranteed to uniquely identify a single child node.

Each node stores a list of the words that node represents. This is not grossly

inefficient since all Java List implementations return a list that refers to the same

backing word list merely with different offsets, in other words the data in the

list is not duplicated across every node, but each node refers to its portion of

the original list. However, most standard Java lists’ sub-list method returns a

sub-list that cannot be written to disk. So a custom list class was required to

wrap an ArrayList, for fast random access and to provide start/end pointers into

the backing array list, as well as return serializable sub-lists.

The various algorithms involved absorbed most of the development time. The

following subsections detail all of the significant algorithms involved in building

suffix trees, searching for matches, and scoring the results.

3.1.1 Building Suffix Trees

Suffix trees are built with Ukkonen’s algorithm, modified to build generalized

word-level suffix trees. Each document is given a unique suffix ”docId” to ensure

that every suffix is unique.

In a suffix tree constructed with Ukkonen’s algorithm, any node only contains

information about its first occurrence in the document. This becomes a problem

for returning search results from non-leaf nodes, since they only store the informa-

tion about the first document they occurred in, not all of them. This limitation
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could be worked around by traversing the entire sub-tree at a search result’s ter-

minus since there will be at least one leaf node for each document that contains

the matched suffix. However, walking entire sub-trees would add significant time

to every search. If the occurrence information were moved into every node, and

not just leaves, you could eliminate this search-time cost but with an increased

space requirement. This change results in a higher space requirement and in-

creases the time required to build the index but eliminates substantial work from

the search process so the increased space requirement brings substantial benefits

in being able to return search results more quickly.

Moving the position information up from the leaf nodes has two obvious

alternatives: recursively walk the tree adding positions to any node based on

the positions of its children, or look-up each suffix of the original string in the

suffix tree and mark every node the look-up traverses. The first method requires

traversing the entire tree and calculating the positions based on each node’s length

and the positions of its children. With the second method, the suffix tree must

be searched for each suffix of the inserted string and the position of the suffix

recorded in the nodes traversed.

While neither of these methods are particularly efficient, the second approach

is guaranteed to involve fewer nodes than the first. The first must examine every

node in the tree while the second only examines every node which is part of the

most recently added string, or document. Clearly, in any suffix tree with more

than one distinct document, the second will involve fewer nodes.
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3.1.2 Searching

Different search strategies can be used depending on the search results desired.

These can be as simple as determining if a query string occurs in any document

in the collection exactly, whether the query or any of the its sub-strings occur,

or if any strings sufficiently similar to the query string occur. Each one of these

employs a different search strategy and involves a different amount of complexity.

Exact Matching

Searching a suffix tree for an exact match is a simple look-up, and very effi-

cient. The search becomes a linear complexity look-up traversing the tree nodes.

Starting at the root of the tree and the first word in the query, look-up the word

in the node’s child map, if it is found, compare the child’s sub-string to the string.

If the child’s string is a proper prefix of the search string, continue the look-up

using the child node and the next word in the query after the prefix as the next

word to look-up. If the query string is a prefix or exact match of the child’s

string, the search terminates successfully. If at any node the next query word is

not found, the search terminates unsuccessfully. The complexity is linear since

searching for a string involves at most n word look-ups or comparisons, where n

is the size of the string. More interesting look-ups, with more interesting results

than whether or not the string is found, add more complexity.

The exact matching algorithm is shown in Algorithm 3.1. The algorithm is im-

plemented as a recursive method called rSearch that looks up the queried words

in the given node. If there are words to look up, it calls commonPrefixLength

to determine the length of the match, and if the words the next node represents

were all matches then the search continues by search next for the remainder of
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the search terms. If the terms were all matched as a prefix of the next nodes

words, matches are also constructed for all documents in the next node.

Algorithm 3.1: Exact Match
1 de f exactRSearch ( node , words ) :
2 r e s u l t = d i c t ( )
3 i f l en ( words ) == 0 :
4 f o r doc in node . docs :
5 r e s u l t [ doc ] = node . g e tF i r s tLoca t i on ( doc )
6 e l s e :
7

8 i f words [ 0 ] in node . ch i l d r en :
9 next = node . ch i l d r en [ words [ 0 ] ]

10 cp l = commonPrefixLength (words , next . words )
11 i f cp l == len ( next . words ) : # a l l words in next matched
12 r e s u l t 2 = rSearch ( next , words [ cp l : ] )
13 f o r doc in r e s u l t 2 :
14 preLength = 0
15 i f node != root :
16 preLength = len ( node . g e tF i r s tLoca t i on ( doc ) )
17 postLoc = r e s u l t 2 [ doc ]
18 r e s u l t [ doc ] = Locat ion ( postLoc . s t a r t − preLength ,

postLoc . end )
19 e l i f cp l == len ( words ) : # a l l words found in next
20 f o r doc in node . docs :
21 preLength = 0
22 i f node != root :
23 preLength = len ( node . g e tF i r s tLoca t i on ( doc ) )
24 postLoc = next . g e tF i r s tLoca t i on ( doc )
25 r e s u l t [ doc ] = Locat ion ( postLoc . s t a r t − preLength ,

postLoc . s t a r t + cpl −1)
26 re turn r e s
27

28 de f commonPrefixLength ( l i s t 1 , l i s t 2 ) :
29 n=0
30 whi le n < min( l en ( l i s t 1 ) , l en ( l i s t 2 ) ) and l i s t 1 [ n ] == l i s t 2 [ n ] :
31 n+=1
32 re turn n

To illustrate the algorithm, let’s walk through an example. Take the tree from

Figure 3.1, and we’ll search for the string ”suffix tree search algorithm.” Starting

at the root we look-up the first word in the root’s children and find the node

representing the string ”suffix tree.” We calculate the commonPrefixLength

and since it’s equal to the number of words this node represents we continue the

search by recursively calling exactRSearch with the child node and the remaining
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search terms: ”search algorithm.” Looking up ”search” in the next node yields

no result so the search terminates with no matches found.

search $3

search $0

algorithm

suffix tree

search

tree

fuzzy match

exact match

match

fuzzy match

exact match

$1

$2

algorithm $1

algorithm $2

search $0

algorithm $1
$1

$2

search $3

algorithm $2

search $3

search $0

fuzzy match

exact match

algorithm $1

algorithm $2

algorithm
$1
$2

search

$1 $2

Figure 3.1: Example Suffix Tree
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Exact Sub-String Matching

Checking for exact sub-string matching is not significantly more complicated.

Instead of a single look-up for the entire string, each suffix of the query string

must be looked up. Therefore the complexity becomes (n2) but since query strings

are generally short, the added overhead is not bad in practice.

Additionally searches are not simply terminated when the next word fails to

be found but gets recorded as a partial match up to the last matched word. This

change adds no time complexity for finding the results but does complicate the

gathering and ranking of results as well as requiring more time to deal with the

greater number of returned results.

The exact sub-string match algorithm in Algorithm 3.2 is nearly identical to

the exact match algorithm. There are two changes to the search algorithm to

capture partial matches: lines 9-11 are added to return partial matches when no

next node can be found, and the loop starting on line 17 is rewritten to handle

partial matches that don’t continue in the next node or match the next node’s

word list completely. One other change is required to match sub-strings correctly,

the method which invokes rSearch must invoke it multiple times omitting query

terms to find partial matches that do not include the first word.

Algorithm 3.2: Exact Sub-String Match
1 de f rSearch ( node , words ) :
2 r e s u l t = d i c t ( )
3 i f l en ( words ) == 0 :
4 f o r doc in node . d o c po s i t i o n s :
5 r e s u l t [ doc ] = node . g e tF i r s tLoca t i on ( doc )
6 e l s e :
7 i f words [ 0 ] not in node . ch i l d r en : # no next node to search
8 i f node != root :
9 f o r doc in node . d o c po s i t i o n s : #record p a r t i a l matches

10 r e s u l t [ doc ] = node . d o c po s i t i o n s [ doc ] [ 0 ]
11 e l s e : # next i s not nu l l
12 next = node . ch i l d r en [ words [ 0 ] ]
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13 cp l = commonPrefixLength (words , next . words )
14 r e s u l t 2 = None
15 i f cp l == len ( next . words ) : # a l l words in next matched
16 r e s u l t 2 = rSearch ( next , words [ cp l : ] )
17 f o r doc in next . d o c po s i t i o n s :
18 preLength = 0
19 i f node != root :
20 preLength = getLength ( node . d o c po s i t i o n s [ doc ] [ 0 ] )
21

22 i f r e s u l t 2 and doc in r e s u l t 2 :
23 s ta r t , end = r e s u l t 2 [ doc ]
24 r e s u l t [ doc ] = ( s t a r t − preLength , end )
25 e l s e : #record p a r t i a l matches
26 s ta r t , = next . d o c po s i t i o n s [ doc ] [ 0 ]
27 r e s u l t [ doc ] = ( s t a r t − preLength , s t a r t + cpl −1)
28 re turn r e s u l t

To continue our previous example searching for ”suffix tree search algorithm”

the search starts the same, but differs in how non-matches are handled. Instead

of terminating when ”search” is not found in the ”suffix tree” node, a partial

match is returned instead. The other difference is repeating the search for each of

the suffixes of the search string, ie ”tree search algorithm,” ”search algorithm,”

and ”algorithm”; though in this case the additional single term matches are

overshadowed by the previous matches for ”suffix tree.”

Fuzzy String Matching

Fuzzy matching allows greater variance between the query string and matched

documents and subsequently adds more complexity. Fuzzy matching matches

strings within a given Levenshtein distance [7] of the query string. The Lev-

enshtein distance, or edit distance, of two strings is the number of insertions,

omissions, or replacements needed to turn one string into the other. Two strings

are said to match if their edit distance is less than the maximum allowed fuzz, or

k as it is referred to here.

The key difference between inexact and exact match searching of suffix trees
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lies in how children nodes to search are chosen. Exact matching only searches

the nodes whose string exactly matches the next part of the query string, and

these nodes can be efficiently looked up in a hashtable of their first word. Inexact

matching searches every child whose string’s edit distance is within k of the next

part of the query string. So inexact matching must determine for every child

of every node on the search path whether that child’s string is within k of the

search string, or where the edit distance between the child node’s sub-string and

the current prefix of the search query is less than k, before continuing with that

node’s children. The fuzzy match then proceeds to search each of the suitable

child nodes, with a decreased allowed edit distance based on the edit distance

of the child node’s sub-string to the current prefix of the search query. Once

the allowable edit distance reaches zero, matching is done with the exact match

search previously discussed.

Gusfield presents an algorithm for finding all matches within edit distance k of

a search string in O(km) time using suffix trees. However, the extra processing

required, proportional to m or the sum of the lengths of every document in

the index, would have performed poorly. Instead a theoretically less efficient

algorithm was used that works out better in practice since k is generally much

smaller than m.

Calculating a complete edit distance between the remaining query text and

a node’s string is unnecessary, the only thing needed is the length of the longest

possible match with no more than k differences and without continuing past the

end of either string. To calculate the length of the longest match, whenever a

mismatch is encountered, try each of the three possible edits (insertion, omission,

and replacement) and keep the longest obtained length with the fewest number

of edits. The resulting algorithm has exponential complexity on the number of
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edits k, but since this is generally small, performance is still good.

There are two additional cases where a child node will be searched: if there is

no match between a node’s text and the remaining search string and the length

of the node’s text is less than k, or if the length of the remaining portion of the

node’s text, subtracting the length of the best possible match, is less than the

remaining fuzz after subtracting the fuzz used in the match; in other words, when

len(text) − len(match) < k − kmatch evaluates to true. In either of these cases

the node must still be scanned since a successful match could continue with any

of its children. However, to accurately compute the edit distance, the node must

be searched several times with varying remaining search strings representing the

alternatives for fuzzy matching the remaining portion of the child node’s text.

For each iterative search the fuzz consumed is the same but the remaining search

string differs depending on how many words in the search text should be passed

on to the child search to generate the best match. This variance means these

child nodes must each be searched len(text)− len(match) + 1 times to cover all

the possibilities for how many words are inserted verses replaced.

Scanning every child of a node is generally not too bad, since most nodes have

a relatively low branching factor. The root, on the other hand, has a very high

branching factor so it is handled differently. Optimal matches always begin with a

match, since any match starting with a mismatch will always score lower than the

same match starting one word later. So since matches only start from the root,

fuzzy matching every child node would be less efficient than just fuzzy matching

the one child that begins with the same word as the query string. Additionally to

bring back matches that might skip the first word in the query text, the root is

searched for every sub-string in the query text identical to the Exact Sub-String

Matching algorithm above.
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As the fuzzy match algorithm descends to a new node, the maximum allow-

able edit distance is decreased by the edit distance from the query string to the

new node. Once the edit distance is zero, calculation reverts to the previously

mentioned exact search algorithm.

Algorithm 3.3: Fuzzy Match
1 de f fuzzyRSearch ( node , words , r e s t r i c t , fuzzFactor ) :
2 r e s u l t={}
3 i f l en ( words ) == 0 :
4 f o r doc in node . d o c po s i t i o n s :
5 r e s u l t [ doc ] = node . g e tF i r s tLoca t i on ( doc )
6 re turn r e s u l t
7

8 i f fuzzFactor <= 0 :
9 re turn wrapFuzzy ( rSearch ( node , words ) , node )

10

11 nodes = [ ]
12 i f node == root :
13 i f words [ 0 ] not in root . c h i l d r en :
14 re turn d i c t ( )
15 nodes = [ root . c h i l d r en [ words [ 0 ] ] ]
16 e l s e :
17 nodes = node . ch i l d r en . va lue s ( )
18

19 f o r c h i l d in nodes :
20 stra ightMatch = fuzzyCommonPrefixLength (
21 words , c h i l d . words , fuzzFactor , r e s t r i c t )
22

23 matchesToTry = [ ]
24

25 i f s t ra ightMatch . matchCount :
26 matchesToTry . append ( stra ightMatch )
27

28 i f fuzzFactor > 0 and stra ightMatch . l ength < l en ( ch i l d . words )
and l en ( ch i l d . words ) − stra ightMatch . l ength <= fuzzFactor −
stra ightMatch . fuzz and l en ( ch i l d . c h i l d r en ) > 0 :

29 s i z e = len ( ch i l d . words )
30 d i f f e r e n c e = s i z e − stra ightMatch . l ength
31 c u t o f f = min ( d i f f e r e n c e , l en ( words ) −

stra ightMatch . wordsConsumed )
32 f o r i in range (0 , c u t o f f +1) :
33 preFuzz = s i z e
34 i f s t ra ightMatch . wordsConsumed :
35 preFuzz = stra ightMatch . preFuzz
36 matchesToTry . append (FuzzyMatch (
37 f uzz=stra ightMatch . fuzz + d i f f e r e n c e ,
38 l ength=s i z e ,
39 preFuzz=preFuzz ,
40 matchCount=stra ightMatch . matchCount ,
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41 wordsConsumed=stra ightMatch . wordsConsumed + i ,
42 r e s t r i c t=UNRESTRICTED) )
43

44 f o r match in matchesToTry :
45 r e s u l t 2={}
46 i f match . l ength == len ( ch i l d . words ) and \
47 l en ( words ) − match . wordsConsumed > 0 :
48 r e s u l t 2 = fuzzyRSearch (
49 ch i ld ,
50 words [ match . wordsConsumed : ] ,
51 match . r e s t r i c t ,
52 fuzzFactor − match . fuzz )
53

54 f o r doc in ch i l d . d o c po s i t i o n s :
55 preLength = 0
56 i f node != root :
57 preLength = getLength ( node . d o c po s i t i o n s [ doc ] [ 0 ] )
58 newMatch = None
59 i f doc in r e s u l t 2 and r e s u l t 2 [ doc ] . matchCount > 0 :
60 newMatch = r e s u l t 2 [ doc ] . extend ( preLength , match )
61 e l i f match . matchCount > 0 :
62 s ta r t , end = ch i l d . d o c po s i t i o n s [ doc ] [ 0 ]
63 newMatch = FuzzyMatchLocation (
64 s t a r t= s ta r t ,
65 end= end ,
66 o f f s e t= match . preFuzz ,
67 f uzz= match . fuzz − match . preFuzz ,
68 matchCount= match . matchCount )
69 i f newMatch and ( doc not in r e s u l t or
70 newMatch . betterThan ( r e s u l t [ doc ] ) ) :
71 r e s u l t [ doc ] = newMatch
72 re turn r e s u l t
73

74 de f fuzzyCommonPrefixLength ( pattern , text , maxFuzz , r e s t r i c t ) :
75 minLength = min ( l en ( pattern ) , l en ( t ex t ) )
76 pre = commonPrefixLength ( pattern , t ex t )
77

78 best = None
79 i f pre < min and maxFuzz > 0 :
80 i f pre or r e s t r i c t != NO INSERT: # try i n s e r t
81 match = fuzzyCommonPrefixLength (
82 pattern [ pre : ] ,
83 t ex t [ pre +1 : ] ,
84 maxFuzz−1,
85 NO OMIT)
86 i f match . matchCount > 0 :
87 best = match
88 best . preFuzz += 1
89 best . l ength += 1
90 i f pre or r e s t r i c t != NO INSERT: # try omit
91 match = fuzzyCommonPrefixLength (
92 pattern [ pre +1 : ] ,
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93 t ex t [ pre : ] ,
94 maxFuzz−1,
95 NO INSERT)
96 i f ( ( bes t == None and match . matchCount > 0) or
97 ( bes t and match . matchCount > best . matchCount ) ) :
98 best = match
99 best . wordsConsumed += 1

100 i f pre or r e s t r i c t != NO INSERT: # try s ub s t i t u t e
101 match = fuzzyCommonPrefixLength (
102 pattern [ pre +1 : ] ,
103 t ex t [ pre +1 : ] ,
104 maxFuzz−1,
105 UNRESTRICTED)
106 i f ( ( bes t == None and match . matchCount > 0) or
107 ( bes t and match . matchCount > best . matchCount ) ) :
108 best = match
109 best . preFuzz += 1
110 best . l ength += 1
111 best . wordsConsumed += 1
112 #end i f pre < min nad maxFuzz > 0
113 i f bes t :
114 best . fuzz += 1
115 i f pre :
116 best . matchCount += pre
117 best . wordsConsumed += pre
118 best . l ength += pre
119 best . preFuzz = 0
120 e l s e :
121 best = FuzzyMatch (
122 f uzz=0,
123 l ength=pre ,
124 preFuzz=0,
125 matchCount=pre ,
126 wordsConsumed=pre ,
127 r e s t r i c t=UNRESTRICTED)
128 re turn best

Revisiting our example tree in Figure 3.1 and our query string ”suffix tree

search algorithm” again the search begins the same, with a look-up of ”suffix”

and recursive call on the child node for the string ”suffix tree.” Now for a fuzzy

match though we scan all of the children of this node and calculate the best

match possible for each node. Scanning either child node here results in a zero

length best match, so the match must be expanded to the length of the child

node (2 words) before the search can continue with the child node. Here we’ll
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need to recursively search the ”exact match” and ”fuzzy match” nodes twice,

once where both words are considered insertions and once where one word is

considered an insertion and the other a substitution which consumes one word

from the query text as well. Normally an additional search with 2 substitutions

would be attempted however our query text is too short for that. Recursing on

either node with two insertions, or with the query text ”search algorithm” will

find a match for search and return a match. Recursing with one substitution will

have the query text ”algorithm” which will also find a match. In all we’ll find four

approximate matches for ”suffix tree search algorithm”: ”suffix tree exact match

algorithm,” ”suffix tree exact match search,” ”suffix tree fuzzy match algorithm,”

and ”suffix tree fuzzy match search.”

Similar Document Searches

Since documents with common sub-strings have similar contents and likely

similar topics, it makes a good basis for a document similarity metric. Suffix

trees can find common sub-strings quickly, so adding a similar document query

makes a natural addition. Similar documents are found by counting the number

of common strings between the given document and all the other documents.

The common sub-strings are found by walking the entire tree, or at least every

branch that matches the given document and at least one other document.

3.1.3 Scoring

A scoring algorithm must be used to rank the search results. The algorithm

used depends on the search strategy. The scoring algorithms used here are quite

simple. For Exact Sub-String Matching, the score is simply the percentage of
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search terms found, or matchCount
query where matchCount is the number of query

terms found and query is the length of, or number of words in, the query. This

metric provides adequate ranking since few documents match equally well with

any long queries.

For Fuzzy Sub-String Matching the algorithm gets more complicated as it

must incorporate a fuzziness factor to rank more accurate matches higher. The

equation used is currently (Kmax+1)∗matchCount+Kmax−K
(Kmax+1)∗query+Kmax

, where Kmax is the maxi-

mum allowed edit distance, K is the actual edit distance between the matched

sub-string and the query text. Basically this ranks primarily on how many terms

were matched and secondarily on the edit distance between the strings, so all n

term matches rank higher than any n− 1 term matches and for any n the strings

closer to the query term rank higher than strings further away, in terms of edit

distance.

For computing the document similarity score, I counted the number of oc-

currences of each length of common sub-strings from 1− n, and then computed

the score as the sum of the number of common sub-strings of length times their

length and divided by a constant (100) to bring the range to approximately [0−1].

This scoring metric does not guarantee similarity scores are between 0 and 1, but

it seems to give decent scores in practice. The data I had did not have large

numbers of documents with large common sub-strings, so scaling it so only an

exact match got a score of 1 pushed all the other scores below 0.01.

Algorithm 3.4: Similar Document Search
1 de f simSearch ( node , tg t ) :
2 s c o r e s = d i c t ( )
3 f o r c h i l d in node . ch i l d r en . va lue s ( ) :
4 i f l en ( ch i l d . d o c po s i t i o n s ) > 1 and tg t in ch i l d . d o c po s i t i o n s :
5 r e cSco r e s = simSearch ( ch i ld , tg t )
6 f o r doc in ch i l d . d o c po s i t i o n s . keys ( ) :
7 i f doc == tgt :
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8 cont inue
9 s co r e = RawSimScore ( )

10 i f doc in s c o r e s :
11 s co r e = s c o r e s [ doc ]
12 e l s e :
13 s c o r e s [ doc ] = sco r e
14 i f doc in r e cSco r e s :
15 s co r e . add sco r e s ( r e cSco r e s [ doc ] , l en ( ch i l d . words ) )
16 s co r e . add ( l en ( ch i l d . d o c po s i t i o n s [ doc ] ) , l en ( c h i l d . words ) )
17 re turn s c o r e s
18

19 c l a s s RawSimScore ( ) :
20 de f i n i t ( s e l f ) :
21 s e l f . s c o r e s = d i c t ( )
22

23 de f add ( s e l f , count , l ength ) :
24 i f l ength in s e l f . s c o r e s :
25 count += s e l f . s c o r e s [ l ength ]
26 s e l f . s c o r e s [ l ength ] = count
27

28 de f add sco r e s ( s e l f , other , p r e f i x ) :
29 f o r length , count in other . s c o r e s . i tems ( ) :
30 s e l f . add ( count , l ength + p r e f i x )
31

32 de f g e t s c o r e ( s e l f ) :
33 re turn sum( l ∗c f o r l , c in s e l f . s c o r e s . i tems ( ) )

Using the same suffix tree from Figure3.1 to illustrate the similar document

search algorithm we’ll search for documents similar to ”suffix tree exact match

search” also known as document 0 in the tree. We begin by calling simSearch

with the root, the document to search for, and 0 for the matched depth so far.

At each node we scan its children for nodes referencing the target document. For

each node referencing the target and at least one other node, we recursively search

it then pad the scores it returned to account for the length of the current child’s

sub-string and account record matches for any other matched documents as well.

Long matches end up being weighted fairly heavily since their sub-matches are

also counted.
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3.2 Lucene Component

The Lucene search component adapts Lucene’s components to the SearchEngine

interface, as well as providing a simple document store apart from Lucene’s index.

It is possible to store the full text of the documents entirely within the Lucene

index but it had negative effects on its size and query speed, as well as going

against accepted Lucene best practices.

3.3 Caveats

Since Lucene is a mature project no attempt was made to compete in terms of

speed or storage efficiency. Most significantly along this line I made no attempt

to find an efficient serialized form for a suffix tree instead utilizing Java’s built-in

serialization mechanism. This decision results in the suffix tree needing to be

small enough to be able to be serialized/de-serialized which is smaller than the

largest tree representable in the same amount of memory. The comparison with

Lucene is primarily to compare the results returned, not how quickly they are

returned or how efficiently the index can be stored.
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Chapter 4

Evaluation

To investigate the effectiveness of the suffix tree based search index two dif-

ferent evaluation methods were used. First we demonstrated the proof of concept

implementation to a group of users to gather their opinions. Second we conducted

a more objective evaluation using the Reuters RCV1 data set [8].

The Reuters corpora volume 1 (RCV1) is a collection of Reuters news wire

articles from August 20th, 1996 through August 19th, 1997. It contains about

810,000 news stories.

4.1 User Evaluation

To evaluate how well the suffix tree search index works, experiments were set

up where it could be directly compared against a Lucene search index. A small

number of users were asked to use both, and give their impressions of how well

the suffix tree search engine worked for them. The document set was a week’s

worth of Slashdot stories pulled via their RSS feed.
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The results were fairly predictable, namely keyword search seems to work bet-

ter for most people most of the time. The users surveyed have years of experience

with standard keyword based search engines, like Lucene, and are accustomed to

how they work. Many expressed difficulty even thinking up phrase queries to

make against the data set, that had interesting results. Though the size of the

document set and fairly short length of the documents in it limits the number of

phrases that have any results beyond single word partial matches.

4.2 Objective Evaluation

The objective evaluation was done with the Reuters data set. The plan was

to compare the results with other algorithms and accepted benchmarks, but no

comparable uses of the Reuters data set could be found. It is used for many text

retrieval tasks but efficacy of document indexing algorithms is not one of them.

It still provided a good document set for direct comparison against a Lucene

index for a more objective evaluation of the suitability of suffix tree based search

indexes.

Here, the proof-of-concept implementation met some setbacks. Due to loading

the entire suffix tree into memory, the number of documents that could be stored

in a single index was limited by the Java heap size. Interestingly, heap usage

peaks during de-serialization, resulting in being able to construct and save suffix

trees that could not be loaded again. With a 2GB heap the suffix tree would

become too large around 2,500 Reuters articles. This restriction meant only a

small subset of the Reuters data set could be used, so separate indexes were built

per category, the testing here was done using the index for the science category

which contained 2,410 articles.

30



The suffix tree for the science category still managed some impressive stats.

It contained 801, 062 nodes with 182, 972 non-leaf nodes and 618, 090 leaf nodes.

618, 090 leaf nodes means there are 256 leaves for each document, or 256 unique

suffixes per document, or that the documents averaged 256 words in length (not

counting stop-words, or small insignificant words like to, or, or the, which were

filtered from the documents before they were indexed.) A break down of nodes

by depth is presented in Table 4.1 which provides a quick view of the shallow but

very broad tree that a suffix tree tends towards.

Depth Node Count Non-Leaf Nodes Leaf Nodes
0 1 1 0
1 31726 18923 12803
2 320467 87542 232925
3 271690 49958 221732
4 118975 18525 100450
5 41104 5811 35293
6 12445 1660 10785
7 3497 430 3067
8 890 99 791
9 212 22 190

10 53 1 52
11 2 2

total 801062 182972 618090

Table 4.1: Nodes by Depth

Some other relevant stats are given in Table 4.2. Of particular interest is the

out degree for the root level. Due to large number of nodes directly below the

root, the fuzzy match algorithm does not scan the root node’s children like it

does at other levels. On other levels the out degree is significantly smaller with

only 5 nodes with an out degree above 1, 000 and a single outlier node in the first

level with an out degree of 3, 214.
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All Node Stats
Depth Node Count Text Length Out-Degree

min avg max min avg max
0 1 1 1.00 1 31726 31726.00 31726
1 31726 1 52.20 840 0 10.10 3214
2 320467 1 116.60 884 0 0.85 885
3 271690 1 121.56 879 0 0.44 182
4 118975 1 116.11 804 0 0.35 47
5 41104 1 114.17 660 0 0.30 20
6 12445 1 110.08 604 0 0.28 13
7 3497 1 106.19 499 0 0.25 7
8 890 1 110.62 467 0 0.24 7
9 212 1 99.07 429 0 0.25 7

10 53 1 78.68 289 0 0.04 2
11 2 16 25.50 35 0 0.00 0

total 801062 1 115.37 884 0 1.00 31726

Table 4.2: All Node Stats

Non-Leaf Node Stats
Depth Node Count Text Length Out-Degree

min avg max min avg max
0 1 1 1.00 1 31726 31726.00 31726
1 18923 1 4.19 816 2 16.94 3214
2 87542 1 19.90 816 2 3.10 885
3 49958 1 29.55 813 2 2.38 182
4 18525 1 29.65 763 2 2.22 47
5 5811 1 27.62 443 2 2.14 20
6 1660 1 27.30 414 2 2.11 13
7 430 1 23.63 277 2 2.07 7
8 99 1 27.53 251 2 2.14 7
9 22 1 20.86 182 2 2.41 7

10 1 5 5.00 5 2 2.00 2
total 182972 1 22.22 816 2 4.38 31726

Table 4.3: Non-Leaf Node Stats
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Leaf Node Stats
Depth Node Count Text Length Out-Degree

min avg max min avg max
1 12803 1 123.16 840 0 0.00 0
2 232925 1 152.95 884 0 0.00 0
3 221732 1 142.29 879 0 0.00 0
4 100450 1 132.05 804 0 0.00 0
5 35293 1 128.42 660 0 0.00 0
6 10785 1 122.83 604 0 0.00 0
7 3067 1 117.77 499 0 0.00 0
8 791 1 121.02 467 0 0.00 0
9 190 1 108.12 429 0 0.00 0

10 52 1 80.10 289 0 0.00 0
11 2 16 25.50 35 0 0.00 0

total 618090 1 142.95 884 0 0.00 0

Table 4.4: Leaf Node Stats

The evaluation consisted of generating test queries, querying with the gener-

ated queries, and evaluating the results. The test queries were generated manu-

ally, trying to find queries with numerous results but without biasing towards one

index or another, or picking strings verbatim from the articles. The 20 queries

used can be found in Table 4.5.

Querying with the query list was simple to automate and could quickly return

results for both the suffix tree index and the Lucene index with varying degrees of

fuzz, or tolerance. However, analyzing the results was a time consuming manual

process.

Once the results were available, it became immediately apparent that the

suffix tree algorithm returned way more results than Lucene and that Lucene’s

phrase match does not allow missing words from the query string. Due to the

latter, the results also compare what a non-phrase Lucene query returns. Table

4.6 shows a comparative summary of the results. Lucene limits its results to 100

items at a time, so it did not return a great number of results.
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Number Query String
1 IBM deep blue super computer
2 human cloning ban
3 ban on human cloning
4 nasa mars mission
5 nasa launches mars global surveyor
6 trouble aboard Mir space station
7 awarded nobel prize
8 dolly the cloned sheep
9 real life jurassic park

10 50th anniversary of roswell alien landing
11 launch manned space flights
12 internet the biggest marketplace on the globe
13 internet the biggest marketplace in the world
14 new top level domains
15 safely dispose of radioactive waste
16 four canisters of radioactive plutonium
17 life on mars
18 russian space probe to mars
19 human form of mad cow disease
20 room temperature superconductor

Table 4.5: Test Queries
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Query # STS Lucene Phrase Lucene Normal
Total Length > 1 Total Not in STS > 1 Total Not in STS

1 416 11 0 0 100 0
2 475 67 36 2 100 0
3 475 72 35 0 100 0
4 939 179 9 0 100 0
5 923 46 0 0 100 0
6 1118 624 0 0 100 0
7 74 40 8 0 74 0
8 153 101 41 0 100 0
9 522 12 1 0 100 0
10 252 13 0 0 100 0
11 1129 168 1 0 100 0
12 176 3 1 0 100 0
13 604 15 0 0 100 0
14 1240 10 3 0 100 0
15 136 2 1 0 100 0
16 557 33 3 0 100 0
17 508 62 71 9 100 0
18 1147 411 14 0 100 0
19 787 67 5 0 100 0
20 140 3 0 0 100 0

Table 4.6: Comparative Query Results
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The Suffix Tree Search results are broken into two categories, the total number

of results returned, and the number of results where more than a single word was

matched. Both of the Lucene categories were compared against STS to see how

many documents Lucene returned that STS did not. Lucene’s Phrase query was

compared against the STS matches that contained at least two words. In the cases

where Lucene found a match that STS missed the matches found were inversions

which STS doesn’t handle, so STS could only return single word matches. For

instance the two matches for ’human cloning ban’ that STS missed were: ”ban

the cloning of human beings” and ”ban on cloning human beings.” Which would

be fixed by handling repositioning in the fuzzy match algorithm.

Analyzing the logged results also provides an opportunity to examine the

effectiveness of the fuzzy match algorithm. For some queries there were not

many variations that matched, while others returned many similar sub-string

matches. The results for ”NASA launches mars global surveyor” in Figure 4.1,

and ”four canisters of radioactive plutonium” in Figure 4.2, each include matches

containing several different numbers of matched words and requiring up to 9 extra

words to make the matches. Almost all of the queries in the test set exhibit at

least one of these features: matching with various sub-strings or matching with

many different amounts of extra words interspersed between the matched words;

and many of the queries do fairly well on both. Charts of all the query results

can be found in Appendix A.
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Figure 4.1: Categorized Results for Query 5
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Figure 4.2: Categorized Results for Query 16

37



Chapter 5

Conclusion

The proof-of-concept implementation proved successful in that the suffix tree

indexes were just as capable of returning accurate search results as the standard

flat reverse indexes. The main differences between them center around a few

main areas: the difference in proof-of-concept and production ready systems, the

preserved information in the suffix tree index, and users’ familiarity with flat

indexes.

Suffix trees can be an alternative to flat reverse indexes, but the advantages are

fairly constrained. A suffix tree index handles phrase queries very efficiently, but

our limited user evaluation has suggested that users do not use phrase queries very

often. Additionally a suffix tree index will always be larger than a flat index, due

to the extra information it contains, so performance or memory use might become

a problem with larger indexes. Creating a robust suffix tree index implementation

would be a lot of work and commercial quality open source implementations of

standard flat reverse indexes are readily available.
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5.1 Advantages

The primary advantage of a suffix tree based index is the ability for fast

efficient phrase searches. In a standard flat reverse index matched terms must be

reconstructed into phrases to find a match, but a suffix tree based index can find

phrasal matches much more efficiently.

A suffix tree based index contains all the information a flat index does so is at

least as capable as a flat index. The added data makes some uses more efficient

since that data doesn’t have to be reconstructed later, such as when determining

word sequence, or searching for phrases.

5.2 Disadvantages

Since a suffix tree based index stores more information than a flat index it

will occupy more space.

Limited user testing suggests that phrase queries are not generally used when

searching for information. At least when users are looking for unknown infor-

mation in unfamiliar data sets, they seem to be used to standard term matching

search methods. Though under different circumstances than those of the test it

remains possible that users could benefit from full phrase matching.

Lastly flat reverse indexes have a long history and are already widely used.

It would take quite a bit of effort to get a suffix tree based reverse index to be

competitive with these existing projects.
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5.3 Possible Applications

Given the trade-offs suffix tree search indexes could be justified for certain

applications. Anything where exact or inexact phrase matching is useful, for

example an application to check documents for plagiarism, or a search tool to

find near-exact quotes from movies, books, or scholarly papers.

I think a plagiarism detection tool would work really well. By adding each

term’s new papers to the index suspiciously similar papers are easily detectable.

Additionally if a user reads a familiar sounding line in a new paper, they can find

any previous papers with a similar line quickly and easily. The near matching

phrase abilities and common sub-string matching are what really benefits this

application.

A near match quote index would be effective as well. A suffix tree index

could quickly find near matches for quotes or lines from movies. Also by indexing

individual lines, the index would remain shallower and consume less space than

one with longer documents. The near matching ability of a suffix tree index really

benefits this sort of use since it will find the right quote when you are off by a

few words, as long as you have some of them in the right places.

In general a suffix tree search index would be more useful when looking for

something similar to the search text, not just something containing the same

words. This feature is why the suffix tree indexes showed no advantage over

Lucene in the user evaluation: the users were not searching for specific strings

but just general term queries. Situations like finding quotes or lyrics, or examining

papers for signs of plagiarism, or anything where you are searching for something

that closely matches your search text, are the situations when a suffix tree search

index would be useful.
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5.4 Scoring Algorithm

The scoring as presented in this paper is geared for recall over precision. When

comparing it to Lucene phrase searches, Lucene returns fewer results since it is

only matching the full phrase and won’t return partial phrase matches, whereas

the suffix tree based index also returns any partial match it can find. It is left

to future research to experiment with the scoring algorithm and achieve a better

harmony among precision, recall, and search performance.

5.5 Future Research

Continued research into using suffix trees as search indexes could take several

directions. Research into effectively searching a suffix tree from disk would serve

to overcome the practical limitations of index size. There is a lot of research into

this already, though most schemes exploit the small alphabet size of their strings

which doesn’t apply here like it does with DNA sequences. Though enumerating

all words in the index could have additional advantages as well.

Enumerating the words in the index could help save space by removing du-

plicate occurrences of a word from the index and replacing it with a unique id.

It may be possible to combine this approach with something like WordNet [10]

and be able to do synonym based similarity scoring at the same time. But Word-

Net enumerates synsets and not unique words, so it cannot be used for the word

enumeration itself, unless exact matching was not important.

Implementing repositioned fuzzy matching would also improve the search al-

gorithm by accurately finding swapped words from the search string. It might

be a fairly simple addition to the implemented algorithm by passing the omitted
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and substituted words along in the match, but further research is still necessary.

Research into where to divide documents could provide more space-efficient

suffix tree indexes. Currently documents are not subdivided at all, treating the

entire document as one long string of words. This allows any sequence of words

in the document to be found but consumes a lot of space. An index built on

paragraphs, chapters, or even sentences, could provide sufficient search fidelity

in many use cases and save enormous amounts of space. I really feel that few

user entered query strings will usefully cross a sentence divide, but that’s just my

intuition. Some uses, such as logs of research papers to detect plagiarism would

necessarily use larger divisions of the documents.
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Appendix A

Charts of Categorized Query

Results

These charts show the number of returned results for each query separated on

the x axis by the number of words matched and color coded by the Levenshtein

distance between the matched sub-string and the query. In general they show

how varying the allowed edit distance can increase the number of returned results.
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Appendix B

Supplemental Python Code

Extra code needed to complete the code given throughout Chapter 4. Defines

a few missing but straightforward methods and objects. The only remotely in-

teresting pieces of code are the betterThan method for keeping the better of any

pair of FuzzyMatchLocations, and the extend method which extends a match

forward since the recursive calls end up building matches from the end forwards.

Algorithm B.1: Supplemental Python Code
1 de f getLength ( l o c ) :
2 s ta r t , end = lo c
3 re turn end − s t a r t + 1
4

5 de f wrapFuzzy ( r e s u l t s , node ) :
6 ’ ’ ’
7 Needs node passed in because rSearch handles the cur rent node

d i f f e r e n t l y than fuzzyRSearch
8 ’ ’ ’
9 fuzzed = d i c t ( )

10 f o r k , ( s t a r t , end ) in r e s u l t s . i tems ( ) :
11 s t a r t += len ( node . words ) # undo what rSearch does d i f f e r e n t l y
12 fuzzed [ k ] = FuzzyMatchLocation ( s ta r t , end , 0 , 0 , getLength (

( s ta r t , end ) ) )
13 re turn fuzzed
14

15 UNRESTRICTED=0
16 NO INSERT=1
17 NO OMIT=2
18
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19 c l a s s TreeNode ( ) :
20 de f i n i t ( s e l f ) :
21 s e l f . words=l i s t ( )
22 s e l f . c h i l d r en=d i c t ( )
23 s e l f . d o c po s i t i o n s=d i c t ( )
24

25 c l a s s FuzzyMatch ( ) :
26 de f i n i t ( s e l f , fuzz , length , matchCount , preFuzz ,

wordsConsumed , r e s t r i c t ) :
27 s e l f . f uzz = fuzz
28 s e l f . l ength = length
29 s e l f . matchCount = matchCount
30 s e l f . preFuzz = preFuzz
31 s e l f . wordsConsumed = wordsConsumed
32 s e l f . r e s t r i c t = r e s t r i c t
33

34 c l a s s FuzzyMatchLocation ( ) :
35 de f i n i t ( s e l f , s t a r t , end , fuzz , o f f s e t , matchCount ) :
36 s e l f . s t a r t = s t a r t
37 s e l f . end = end
38 s e l f . f uzz = fuzz
39 s e l f . o f f s e t = o f f s e t
40 s e l f . matchCount = matchCount
41

42 de f extend ( s e l f , preLength , match ) :
43 i f match . preFuzz == match . l ength :
44 newPreFuzz = s e l f . o f f s e t + match . preFuzz
45 newFuzz = s e l f . f uzz
46 s t a r t = s e l f . s t a r t
47 e l s e :
48 newPreFuzz = s e l f . o f f s e t + match . preFuzz
49 newFuzz = s e l f . f uzz + s e l f . o f f s e t + match . fuzz − match . preFuzz
50 s t a r t = s e l f . s t a r t − s e l f . o f f s e t − match . l ength +

match . preFuzz
51 re turn FuzzyMatchLocation ( s ta r t , s e l f . end , newFuzz , newPreFuzz ,

s e l f . matchCount + match . matchCount )
52

53 de f betterThan ( s e l f , o ther ) :
54 i f s e l f . matchCount != other . matchCount :
55 re turn s e l f . matchCount > other . matchCount
56 e l s e :
57 re turn s e l f . f uzz + s e l f . o f f s e t < other . fuzz + other . o f f s e t
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