MAPPING PLANT BIODIVERSITY HOTSPOTS AT THE COUNTY SCALE:
A NEW TOOL FOR ESTABLISHING RESOURCE CONSERVATION STRATEGIES

A Thesis
Presented to
The Faculty of California Polytechnic State University
San Luis Obispo

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science in Biological Sciences

By
Krisite Haydu
June, 2012
TITLE: Mapping Plant Biodiversity Hotspots at the County Scale: A New Tool for Establishing Resource Conservation Strategies

AUTHOR: Kristie Haydu

DATE SUBMITTED: June, 2012

COMMITTEE CHAIR: Matt Ritter, Ph.D.

COMMITTEE MEMBER: David Keil, Ph.D.

COMMITTEE MEMBER: David Yun, MS, GISP
ABSTRACT
Mapping Plant Biodiversity Hotspots at the County Scale: A New Tool for Establishing Resource Conservation Strategies

Kristie Haydu

Myers first identified the world’s 25 biodiversity hotspots and pioneered innovative ideas about the usefulness of biodiversity models for establishing long-term resource conservation strategies at global scales. Since Myers, most of the subsequent studies using hotspot science for biodiversity modeling have used large spatial scales like countries, provinces or states, and other biogeographic regions. The California Floristic Province continues to be one of the recognized global biodiversity hotspots. Our study site, San Luis Obispo County is within this hotspot and we created a map of plant biodiversity hotspots at the county scale using GIS technology. We wanted to determine the effectiveness and applicability of biodiversity hotspot mapping at this scale with anticipation that the map will serve as a new tool for establishing long-term resource conservation strategies in the County. Our plant biodiversity hotspot map is based on distribution data collected from herbarium specimens of San Luis Obispo County’s rare flora. These data were extracted from the Hoover Herbarium at Cal Poly and manually digitized into GIS. We built a model with GIS to identify, locate, and quantify the resultant hotspots from the data. The overall approach was successful at identifying and quantifying the attributes and geographic extents of plant biodiversity hotspots at the county scale. Our results are highly applicable for establishing local and regional plant conservation priorities at lower resolutions, which is frequently where land acquisition and reserve establishment occurs. We conclude that biodiversity hotspot modeling with GIS is an effective tool that can be applied to many other finer-scale biological inventories for conservation purposes.

Index terms: biodiversity hotspot, endemism, rarity, geographic information system (GIS)
ACKNOWLEDGEMENTS

We thank the Wertman Foundation, Northern California Botanists, and the San Luis Obispo California Native Plant Society (SLO-CNPS) Chapter for their generous funding of this research. We recognize and thank the Cal Academy of Sciences, Santa Barbara Botanical Garden, Jepson Flora Project and Herbarium, and the State CNPS Rare Plant Program Staff for their valuable input, expertise, and outstanding technical assistance.

I would like to personally thank my thesis committee because completion of this project would not have been possible without their invaluable help. First, I would like to give many thanks to my committee chair advisor Dr. Matt Ritter, who provided encouragement and enthusiasm throughout the duration of my research. Dr. Ritter has taught me several important lessons. His charismatic attitude and zest for California’s natural history and botany are a constant source of inspiration in my pursuits to achieve at a higher level and to obtain a greater understanding of our environment. I would like to thank Dr. David Keil, one of my professors and thesis committee members for his time, support, and committed participation in this study. Dr. Keil’s instruction, patience, and love for the study of botany are a tremendous influence to me. I am grateful for every opportunity that I’ve had to learn from Dr. Keil’s lectures, to conduct herbaria studies with his assistance, to observe his herbaria studies, to read his writings and research; and most paramount- to be in the field observing the wildflowers of San Luis Obispo County with him and the other great botanists that he also inspires. I want to also thank David Yun, M.S. and GIS Manager for the City of San Luis Obispo, one of my professors, and a thesis committee member for his assistance, generosity, and instruction with GIS. Without his participation in this study, it would not exist in its present scope, capacity, and meaning. He literally enabled me to gain the technical understanding and skills necessary to execute and complete the project. His knowledge, patience in teaching, and mastery of GIS are a source of continued amazement for me. I want to acknowledge the California Polytechnic State University Department of Biological Sciences and Department of Natural Resources. I would like to thank my faithful and loving husband for his support of my pursuits of higher education and my parents and brother for their encouragement, strength, and pride.
Table of Contents

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

LIST OF APPENDICES ... ix

GENERAL INTRODUCTION .. 1-3

CHAPTER

I. BACKGROUND AND LITERATURE REVIEW 4-19
 i. BIODIVERSITY .. 4
 ii. HOTSPOT SCIENCE ... 6
 iii. CALIFORNIA FLORISTIC PROVINCE 8
 iv. SAN LUIS OBISPO COUNTY .. 9

II. HERBARIUM, GIS, MODELING, AND MAPPING PLANT BIODIVERSITY
 HOTSPOTS IN SAN LUIS OBISPO COUNTY 19-59
 i. RESEARCH QUESTIONS ... 19
 ii. METHODS ... 19
 iii. RESULTS .. 25
 iv. DISCUSSION .. 55

CONCLUSION ... 59

LITERATURE CITED ... 61-66
LIST OF TABLES

TABLE:

1. Biodiversity Hotspot Weighted Value Scheme .. 23
2. Results Summary – Plant Biodiversity Hotspots Identified in San Luis Obispo County.. 28
3. San Luis Obispo – Plant Biodiversity Hotspot .. 30
4. Arroyo de La Cruz – Plant Biodiversity Hotspot ... 34
5. Morro Bay Area – Plant Biodiversity Hotspot.. 38
6. Big Coreopsis Hill – Plant Biodiversity Hotspot------------------------------ 42
7. Red Hill Mesa – Plant Biodiversity Hotspot... 46
8. Indian Knob – Plant Biodiversity Hotspot... 49
9. Carpenter Canyon – Plant Biodiversity Hotspot.. 52
LIST OF FIGURES

FIGURE:

1. Myers 25 Global Biodiversity Hotspots .. 7
2. San Luis Obispo County Within the Context of the California Floristic Province…. 11
3. Hoover (1970) Map of San Luis Obispo County 14
4. Topographic Map of San Luis Obispo County .. 16
5. Aerial Photograph of San Luis Obispo County .. 18
6. Diagram of the Plant Biodiversity Hotspot GIS Model 26
7. Plant Biodiversity Hotspots within San Luis Obispo County 27
8. San Luis Obispo Region Plant Biodiversity Hotspot 33
9. Arroyo de La Cruz Plant Biodiversity Hotspot 37
10. Morro Bay Area Plant Biodiversity Hotspot .. 41
11. Big Coreopsis Hill Plant Biodiversity Hotspot 45
12. Red Hill Mesa Plant Biodiversity Hotspot .. 48
13. Indian Knob Plant Biodiversity Hotspot ... 51
14. Carpenter Canyon Plant Biodiversity Hotspot 54
LIST OF APPENDICES

APPENDIX:

A. Scientific Database Query Results
B. Special Status Plant Species of San Luis Obispo County
C. Special Status Plant Species Not Included in the Analysis
GENERAL INTRODUCTION

The intention of this chapter is to provide some additional insight into why I wanted to conduct this research and to explain the overall organization of my thesis project. I have worked as a botanist for environmental consulting firms for more than eight years. My primary duties as a consulting botanist are to help facilitate accordance with the current state and federal regulations that pertain to botanical and biological resources for a variety of private, county, and city development, restoration, and infrastructure projects. This experience has been valuable and certainly educational.

However on many levels, my consulting experience increased my awareness regarding the vast differences between the academic environment and the body of scientific theories associated with conservation biology and ecology and the various ways such disciplines are actually being practiced in the professional fields of natural resource management and regional planning. Ideally, conservation policies and practices should be based on well-supported scientific data analyses and the resultant principles. Unfortunately, my experiences have made it apparent that this is frequently not the case. Often natural resource management and regional planning decisions are more heavily based on the current political climates and agendas of their jurisdictions and are also typically dictated by their existing economic constraints and limitations. In theory, conserving biodiversity is straightforward, but in practice it is convoluted, nebulous, and seemingly distant from the everyday mandated practices, policies, and procedures generally employed by planning departments and natural resource agencies. The various differences I observed between the theory and practice of conservation biology and
ecology in my professional and academic pursuits were a fundamental inspiration for this project. I wanted to create something practical and functional that I could give to my community and to the pertinent resource agencies that is based on modern scientific analysis for use in the formation of planning strategies for regional plant conservation.

Chapter 1 provides the background information and literature review for this thesis project. It begins by providing a working definition of biodiversity because it is a fundamental concept to both ecology and conservation biology and the basis of the project. The next section of this chapter discusses the history, uses, and current developments of biodiversity hotspot science because this discipline and approach provide the primary framework of this analysis. The California Floristic Province is one of the currently recognized global biodiversity hotspots (Williams et al. 2011). After the discussion on hotspot science, Chapter 1 provides some of the reasons the California Floristic Province is a global biodiversity hotspot and introduces several of its unique characteristics and attributes. Chapter 1 concludes with an introduction to our study site, San Luis Obispo County. The last section of Chapter 1 discusses the natural history, geology, and introduces the floristic diversity of San Luis Obispo County.

Chapter 2 addresses and explains the more technical aspects of this work. The Chapter begins by presenting the four research questions we sought to answer with our analysis. The next section of the chapter discusses the methods we used to answer these research questions. It is broken up into several components that more or less parallel the timeline and trajectory that the research was conducted. We explain that the dataset used
for this research was distribution data for the rare flora of San Luis Obispo County and that these data were collected from the Hoover Herbarium at California Polytechnic State University San Luis Obispo. We discuss the process of how we digitized the collection location data into GIS, how we designed our model to identify the plant biodiversity hotspots, and the other technical aspects of the mapping procedures associated with the project. After the methods, Chapter 2 presents our results. We successfully identified seven plant biodiversity hotspot areas in San Luis Obispo County and the various attributes of the hotspots are discussed individually. The chapter concludes with a thorough discussion of our results. The discussion states that our model was based on species richness, rarity, and endemism; while more traditional hotspot models are based on species richness, endemism, and degree of threat. We discuss some of the differences between these two approaches and why ours utilized rarity instead of degree of threat. We also discuss the significance of the scale we used for the analysis, which is a county scale. Chapter 2 concludes with an examination of how our results could potentially be used to form long-term regional conservation strategies.
I. BACKGROUND AND LITERATURE REVIEW

This chapter presents the background information associated with this project and includes a thorough literature review of the body of existing work associated with our research. The chapter is divided into the following sections: biodiversity, hotspot science, the California Floristic Province, and San Luis Obispo County, which is our study site. Noticeably, the material presented in this chapter is initially quite broad and then progressively narrows in scope to a local county scale. We presented the material in this way intentionally because the scale of biodiversity analyses is a prominent theme that permeates this work.

BIODIVERSITY

While seemingly fundamental to the study of biology, the term biodiversity was coined fairly recently and became popularized within the scientific literature about 20 years ago (Harper and Hawksworth 1994). Its literal meaning- the diversity of life, is relatively simple in comparison to what the word has come to represent; the whole of biological complexity spanning from the level of individual genes across a myriad of scales up to the level of ecosystems and the abiotic processes associated with them (Freeman 2008; Melchias 2001; Ferrier 2002). As a result of this broad definition, it is paramount to define the particular scale at which biodiversity is being addressed. Biodiversity measures and analyses are typically conducted at the genetic, species, or ecosystem-level of organization.
Biodiversity has incredible value to humanity because it is fundamental to our understanding of the totality of life on Earth and to our abilities to find solutions to some of the most challenging global problems we currently face; such as overpopulation, global climate change, and the perceived extinction crisis (Raven et al. 2011 and Thomas et al. 2004). Yet, it is estimated that more than 86% of terrestrial species and 91% of aquatic species have not yet been described by science and are awaiting discovery (Mora et al. 2011). We value biodiversity for numerous reasons that are often grouped into several interrelated categories. These include: ethical reasons such as intrinsic worth, notions of environmental stewardship, spirituality, and esthetics; direct and indirect economic values that range from food sources, medicines, and natural resources like timber, natural gas, and minerals, to furnishing humanity with a healthy environment, clean air and water, and sustained economic productivity; and essential ecosystem services such as pollination, perpetuation of nutrient cycling, decomposition and detoxification of waste products and pollutants, and ongoing maintenance of critical environmental thresholds such as flood protection, disease prevention, pest control, and climate regulation (Ehrlich and Ehrlich 1992; Duffy 2009; Farber et al. 2002; Boyd and Banzhaf 2007; Groot et al. 2002). For these reasons, biodiversity became a focus for global conservation where the underlying goal was to identify geographic regions that harbor high amounts of biodiversity in order to protect and preserve them as a means of offsetting the rate of species extinctions and habitat loss worldwide (Melchias 2001).
HOTSPOT SCIENCE

Biodiversity concepts continued to provide a practical framework for conservation planning and prioritization and these efforts ultimately led to a seminal publication that identified 25 global biodiversity hotspots (Myers et al. 2000). This map is presented as Figure 1. The hotspots were defined as geographic areas that have high species richness, exceptionally high concentrations of endemic species, which also face an alarming degree of threat from habitat loss (Myers 1988). It is important to recognize that hotspot science is based upon species distribution datasets and that these data are the fundamental source of all hotspot models. Similarly, the distributions and status of plant species have been and continue to be the primary baseline indicators for hotspot science as opposed to some other taxonomic group. This is because plant species distributions are the most known and have been well documented historically (Myers 1988; Myers 1990; Myers et al. 2000; Mittermeier et al. 2001). The global biodiversity hotspot analyses have been periodically refined and now 35 total hotspots are recognized worldwide (Williams et al. 2011). Hotspot science has had a tremendous impact on conservation biology, governmental policies, and land use planning since its inception and it has generated more than $750 million for global conservation efforts since its development. This the most significant sum ever allocated towards a single conservation strategy (Myers 2003).
Figure 1. Myers 25 Global Biodiversity Hotspots. This map first appeared in the journal Nature in the year 2000. The publication of this article brought worldwide attention to biodiversity analyses and hotspot science, which forever changed how we approach and formulate global resource conservation strategies (Myers et al. 2000).
CALIFORNIA FLORISTIC PROVINCE

One of the global biodiversity hotspots identified by Myers that continues to satisfy the existing hotspot criteria is the California Floristic Province (CA-FP or Province). After the initial hotspot publication, which emphasized biodiversity hotspots within tropical forest ecosystems (Myers 1988), the researchers expanded their criteria and required that hotspots have a more substantial proportion of endemic plant species. They required that the hotspots consist of at least 0.5% of all plant species known to science, or at minimum 1,500 endemic vascular plant species (Myers 1990; Zachos and Habel 2011). With this new requirement several hotspots from Mediterranean eco-regions were added to the global biodiversity hotspot list, including the CA-FP. The Province is considered one of the most genetically complex eco-regions in the world and it is the largest geographic subdivision recognized in California (Calsbeek et al. 2003 and Baldwin et al. 2012). The CA-FP currently ranks 20th among the recognized global biodiversity hotspots in terms of total numbers of endemic plant and vertebrate genera. It has 52 endemic plant and four endemic vertebrate genera (Mittermeier et al. 2004 and Williams et al. 2011). Its original geographic extent is estimated to be 293,804 square kilometers (113,438 square miles) in size. Of this approximately 73,451 square kilometers (28,359 square miles or roughly 25%) of the original vegetation remains in what is considered a relatively undisturbed condition. The CA-FP biodiversity hotspot includes: approximately 7,030 vascular plant species total; of these 2,124 are considered endemics. The CA-FP also has four endemic and threatened birds, five endemic and threatened mammals, and eight endemic and threatened amphibians that collectively contribute to its status as a global biodiversity hotspot. Two species are thought to have
gone extinct within this hotspot since the year 1500 (Conservation International 2012 and Mittermeier et al. 2004).

The CA-FP comprises about 70% of the state of California. It extends beyond the California boundaries north into southwestern Oregon, slightly east into the western-most corner of Nevada, and south into northern Baja. The Province occupies all of what is referred to as ‘cismontane’ California, which is the entire geographic region that occurs west of the crests of the Sierra Nevada and Cascade mountain ranges, north of the crests of the Transverse Ranges, and west over the Peninsular Ranges. Two other floristic provinces occur to the east, outside the boundary of the CA-FP; the Great Basin Province (GB-FP) and the Desert Province (D-FP) and these two regions collectively occupy what is referred to as ‘transmontane’ California. The GB-FP is located within the northeastern two-thirds of California, east of the crest of the Sierra Nevadas and the D-FP occurs within the southeastern third of the state (Baldwin et al. 2012; Holland and Keil 1995; Raven and Axelrod 1978). Within California exclusively, the Province is further subdivided into six distinct geographic regions, 17 sub-regions, and 18 districts that compose a complete hierarchical system that is widely used by scientists and researchers to communicate about the diverse vegetation and geography within this massive state (Baldwin et al. 2012).

SAN LUIS OBISPO COUNTY

Our study site, San Luis Obispo County (SLO Co. or County) is located within the CA-FP biodiversity hotspot. A map of the County of San Luis Obispo within the
context of the CA-FP is presented as Figure 2 below. It occurs within both the Central Western (CW) and Great Valley (GV) California geographic regions and includes portions of both the outer and inner South Coast Ranges (SCoR) district as well as portions of the San Joaquin Valley (SnJV) district (Baldwin et al. 2012). The County is approximately 9,365 square kilometers (3,616 square miles) in size and has about 161 kilometers (100 miles) of coastline. SLO Co. is bordered by Kings and Monterey counties to the north, Kern County to the east, Santa Barbara County to the South, and the Pacific Ocean to the west. The highest elevation in the County is approximately 1,556 meters (5,106 feet) and it occurs at the top of Caliente Peak, which is located in the southeastern corner.

In general, SLO Co. has a Mediterranean climate, where most of the rainfall occurs during the winter months and the summer months are warm and dry. However, the western portions of the County are strongly influenced by the Pacific Ocean and the eastern portions exhibit more desert-like climatic cycles. On average SLO Co. receives about 50 centimeters (22 inches) of precipitation annually (Holland and Keil 1995). However, the annual amount of rainfall it receives is highly variable from year to year. Approximately 269,637 people live within the County and like the global population, this number is increasing (United States Census Bureau 2010).

SLO Co. has a dynamic geologic history consisting of 15 distinct stratigraphic units known to occur within it (Chipping 1987 and Jennings et al. 2010). The County has an abundance of serpentine rock outcrops and other ultramafic formations.
Figure 2. San Luis Obispo County Within the Context of the California Floristic Province. The red star indicates the approximate central location of the County within the Province. (*Image source unresolved- personal communications and lecture materials from Dr. Ritter and Dr. Keil).
These formations have had a dramatic edaphic effect on the plant assemblages associated with them. The serpentinite formations within SLO Co. support numerous rare and endemic plant species and novel plant communities (Kruckeberg 1984; Holland and Keil 1995; Harrison and Inouye 2002; and Barbour et al. 2007). Three different fault zones occur within SLO Co.; the San Simeon Fault, the Los Osos Fault, and the infamous San Andreas Fault, which is why it is still considered a seismically active region (San Luis Obispo Planning and Building Department 2012). Another distinct geologic feature within SLO Co. that is associated with seismic activity is the morros. The morros, also called the seven (occasionally nine) sisters are a linear chain of volcanic mountains located inland from Morro Bay that trend in a southeastern direction. The morros are another example of the County’s distinctive geology that characterizes the region (Dickerson 1990).

The County has several mountain ranges that provide a considerable amount of topographic variation and facilitate the many microclimates that exist throughout it. In general, all of the County’s mountain ranges trend in a northwest to southeast direction. The largest mountain range in SLO Co. is the Santa Lucia Range which is located primarily in the western half of the County. The San Luis Range is much smaller, generally located southwest of the City of San Luis Obispo. The more inland mountain ranges include the La Panza Range, the Caliente Range, and the Temblor Range. The La Panza Range is the most centrally located, situated northeast of the unincorporated community of Pozo. Southeast of the La Panzas is the Caliente Range and it is more or less adjacent to the eastern half of Route 166, until it flattens out into the Cuyama Valley.
State Route 166 is also the southern boundary of SLO Co. The most interior mountain range in the County is the Temblor Range which is located intermittently within the northeastern boundaries of SLO Co. Like its many mountain ranges, the County has an abundance of lakes and drainages. The largest river in SLO Co. is the Salinas, more or less bisecting the County from north to south until it is diverted at Santa Margarita Lake. The County has several large-sized coastal streams that flow west from the interior uplands and outlet directly into the Pacific Ocean. The Santa Maria/Cuyama River flows east to west and parallels Route 166 along the southern boundary of SLO Co. There are numerous other smaller waterways throughout the County that create a matrix of watersheds throughout the landscape. One of the other most prominent natural features within SLO Co. is Soda Lake. This lake is an endorheic, or closed alkaline lake, that is situated in the middle of the Carrizo Plain. This lake is a dry, lowland enclosure between the Temblors and the La Panza and Caliente Ranges. Surface waters from the adjacent mountains flow into the Carrizo Plain and because it does not have an outlet, the waters accumulate within Soda Lake until they eventually evaporate and the salty sediments remain (Hoover 1970 and Holland and Keil 1995). A map from Hoover (1970) of the County that illustrates the approximate locations of the major mountain ranges and streams is presented as Figure 3.
Figure 3. Hoover (1970) Map of San Luis Obispo County.
The combined edaphic, topographic, and climatic heterogeneity found in SLO Co. has given rise to a more diverse and speciose regional flora than the County’s size suggests. A topographic map of SLO Co. is provided as Figure 4 to illustrate the amount of relief over the terrain and heterogeneity that occurs throughout the County. Most generally speaking, the combined influences of climate, geology, and topography are responsible for the amount of plant diversity observed throughout SLO Co. (Hoover 1970; Holland and Keil 1995; Ritter 2006; and Raven and Axelrod 1978).

Approximately 2,889 plant taxa occur within SLO Co. (Calflora Database 2012). Of these, 1,850 are considered native plant taxa; meaning that they existed in California before European contact, which is generally thought to have occurred in the late 1700s (Ritter 2006 and Ritter 2012). The County has 214 special status plant taxa that are afforded protection by the various resource agencies and 25 are endemic solely to the County. It ranks seventh in the state in terms of the number of special status plant taxa per county (CNPS 2012a). A diverse and unusual variety of plant communities occur in SLO Co. The following generalized plant communities occur within the County, but this list is by no means an exhaustive vegetation classification: beach strand, coastal dune, coastal salt marsh, dune scrub, coastal scrub, maritime chaparral, coastal prairie, freshwater marsh, riparian woodland, chaparral, oak woodland, non-native and perennial grasslands, closed-cone coniferous forest, mixed evergreen forest, desert scrub, desert woodland, alkali sink, vernal pool, saltbush scrub, and urban/ruderal/developed (Ritter 2006; Holland and Keil 1995; Hoover 1970; Barbour et al. 2007; and Sawyer et al. 2009).
The California Department of Fish and Game (CDFG) recognize 13 designated rare vegetation communities within SLO Co. Yet the amount of plant diversity and distinct vegetative assemblages contained within this distance far surpasses reasonable expectation because there are numerous other places throughout California where one could conduct the same length transect and only encounter a few limited types of vegetation. According to Hoover, regarding the flora of SLO Co., “…diversity is the rule…The difference in environmental conditions is greater than this distance would suggest. It would be hard to find a more marked contrast than that between the cool damp north coast and the intensely hot and arid Cuyama Valley” (Hoover 1970). An aerial photograph flown in 2009 is presented as Figure 5 to illustrate the extent and variety of the vegetation communities within SLO Co.
II. HERBARIUM, GIS, MODELING, AND MAPPING PLANT BIODIVERSITY HOTSPOTS IN SAN LUIS OBISPO COUNTY

This chapter presents the various technical aspects of this work. First, it presents the four research questions we addressed. It explains the methodologies we used starting in the Herbarium, during the digitization phase of the project, how we designed the model to identify the plant biodiversity hotspots, and while mapping. After the methods, this chapter presents our results. The results section is followed by a discussion where we emphasize how our analysis varies from other hotspot studies and reiterates the significance and novelty of using a county scale. The chapter closes with an explanation of how we hope to use our results in collaboration with other local and regional resource entities to develop long-term resource conservation strategies.

RESEARCH QUESTIONS

Here we address four primary questions that are pertinent to biodiversity hotspot modeling: 1) Where are the plant biodiversity hotspots in SLO Co.; 2) Can we use the geographic information system (GIS)-based model we developed to detect them; 3) Is hotspot science methodology applicable at the county scale; and 4) Can it be used to develop regional resource conservation strategies?

METHODS

Herbarium

We queried three scientific databases to obtain comprehensive lists of all the special status plant species considered to occur within San Luis Obispo County by the
pertinent resource agencies. These include: the California Native Plant Society’s (CNPS) Online Inventory of Rare and Endangered Plants (CNPS 2012a), the CDFG California Natural Diversity Database (CNDDB) RareFind (CDFG 2003), and the United States Fish and Wildlife Service’s (USFWS) Information, Planning, and Conservation (IPaC) Online System (USFWS 2012). The results of these various scientific database queries are presented as Appendix A. Then we compiled the scientific database query results into a single table that includes general information about the nomenclature, regulatory status, distributions, habitat requirements, and phenology of the special status plants that occur in SLO Co. (Appendix B).

Recent nomenclatural changes became a source of confusion because the resource agencies have not yet fully accepted the treatments published within the new edition of the Jepson Manual because several of the taxa are no longer recognized as distinct entities, which could potentially result in them not being recognized as having special status. The release of the new Jepson Manual has initiated a statewide status review of all the special status plants in California and the process is likely to going to take multiple years to complete (CNPS 2012b and Baldwin et al. 2012). CNPS has begun the status review process, but each species must be evaluated on a case-by-case basis. We have attempted to the maximum extent feasible to stay up to date on the status review as this information becomes available. CNPS in particular, may continue to recognize certain taxa under the former first edition treatments (Hickman 1993) and it is the lead agency spearheading the statewide status review. In order to address these issues, we use the
name given to the taxon that is afforded special regulatory status and have included the new names as well, if applicable.

We collected distribution data for the County’s rare flora from the Hoover Herbarium (OBI) at the California State Polytechnic University, San Luis Obispo (Cal Poly) and utilized all of the available specimens for these special status plants within the OBI collections. We entered the accession number, collector(s), geographic location information, and collection date from each herbarium specimen label into a database and also took a digital photograph of each specimen. Several taxa did not have any collections within the herbarium and a few others were checked out on loan to other institutions or independent researchers. We were able to collect data for 177 of the 214 special status taxa (83%) and compiled the distribution information from 1599 total available specimens. The minimum number of specimens digitized for any taxon was one; several taxa had only one or two specimens. The maximum number of specimens digitized for any taxon was 41 specimens. The 37 taxa that are not represented comprise approximately 17% of the County’s rare flora. The family name, scientific name, common name, and regulatory status of each of the 37 taxa not included in the study are presented in Appendix C.

Weighted Value Scheme

Some of the taxa included in the study are rarer than others and are therefore afforded a greater level of protection from the resource agencies. For example, in the CNPS listing system a California Rare Plant Rank (CRPR) List 4 species is not nearly as
rare as a List 1B species. Taxa may be recognized by multiple resource agencies simultaneously. Marsh sandwort (*Arenaria paludicola*) for example is a CRPR List 1B.1 taxon, is federally endangered, and is listed as endangered by the state of California. We wanted to account for this inherent variability of status in our study and wanted to integrate rarity into the biodiversity hotspot model. To do so we created a weighted value scheme for the data and assigned a particular score to each taxon according to the various levels of special status that it has been assigned. If a taxon is listed by multiple agencies the total score given to it in the weighted value scheme is the sum of all the point values. According to the scheme state and/or federally listed taxa are given five points. If a taxon is endemic to SLO Co.; meaning that its distribution is confined to a reduced geographical area and it only occurs within the County, that taxon was given three additional points. Plant species designated as CRPR List 1B taxa were given four points, List 2 taxa were given three, List 3 were given two, and List 4 were given one point. The weighted value scheme we used is summarized below in Table 1.
Table 1. Biodiversity Hotspot Weighted Value Scheme. The various point values are allocated to each special status taxon individually for every level of status it is afforded.

<table>
<thead>
<tr>
<th>Status</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>State/Federally- Listed CR, CT, CE and FT, FE</td>
<td>5</td>
</tr>
<tr>
<td>Endemic to San Luis Obispo County (Occurs only within boundaries of County)</td>
<td>3</td>
</tr>
<tr>
<td>CRPR 1B Plants rare, threatened or endangered in CA and elsewhere</td>
<td>4</td>
</tr>
<tr>
<td>CRPR 2 Plants rare, threatened or endangered in CA but more elsewhere</td>
<td>3</td>
</tr>
<tr>
<td>CRPR 3 Plants about which more information is required, A review list</td>
<td>2</td>
</tr>
<tr>
<td>CRPR 4 Plants of limited distribution, A Watch List</td>
<td>1</td>
</tr>
</tbody>
</table>

GIS and Digitizing

We entered and managed the data with Geographic Information System (GIS) software by Environmental Systems Research Institute (ESRI) Inc., in ArcMap - ArcGIS Desktop Version 10 (ESRI 2011). We digitized, or digitally mapped, the geographic locations of all the herbarium specimens as stated on the herbarium labels by hand. We digitized the geographic locations as individual polygons and assembled these data into a single shapefile layer, titled specimens. As mentioned earlier, this information was previously compiled into a database for use during the digitization phase of the project. We used several background reference layers to assist in the mapping and to maximize the accuracy of the polygon placement in GIS. These include several data layers acquired from ESRI online: an aerial photograph flown in 2009, United States Geological Survey (USGS) Topographic Map, and Bing Road Map; and several data
layers obtained from the County and/or City of San Luis Obispo: County boundary, SLO Co. Public Lands Parcels layer, County Parcels layer, County Streams layer, County Roads layer, and SLO Co. Serpentine Soils layer. We also used *Durham’s Place-Names of California’s Central Coast* to assist in identification of historical places and other more cryptic geographical inferences encountered within the herbarium data (Durham 2000).

Building the Model

Once all the herbarium specimen location polygons were digitized, we used ModelBuilder, which is an analysis application in ArcMap to construct an automated model that was used to systematically organize the specimen data to identify and quantify the resultant plant biodiversity hotspots. Two basic spatial analyst tools were used to build the model; dissolve and union. The dissolve tool aggregates features based on specified attributes. With our data it was used to take multiple herbarium records of a single taxon and merge them, or ‘dissolve’ them into a single layer for that taxon. The union tool computes a geometric ‘union’ of the input features and overwrites them as a new output feature class from the areas of polygon overlap based on the original input features. In other words, if there are two different polygon layers for two different taxa, taxon A and taxon B, respectively; the union tool identifies the areas where the taxa A and B polygons overlap. After recognition of the overlap, the union tool merges those polygons and then designates them as a new and unique output, feature class C in this scenario. Feature class C now includes the entire area previously mapped for the former taxa A and B, including the areas where those polygons overlap. In addition to these basic applications, the model was designed to integrate the weighted value scheme into
the analysis. As built, the model functions as an iterative process that systematically integrates the weighted value scheme to sum all values within areas of polygon overlap and this is how the model calculates and locates the biodiversity hotspots. A diagram of the complete model is presented in Figure 6. It takes approximately 18 seconds to run the model and obtain the results. When categorizing the results, we used the ESRI Natural Breaks default, which is five classes of diversity. We illustrated the classes of diversity on a primary color scale with the red class having the highest diversity and the darker green class having the lowest diversity. Once we ran the analysis and finalized the results, we constructed the plant biodiversity hotspot map for the County.

RESULTS

The model successfully identified seven plant biodiversity hotspots within the County (Figure 7). The hotspots have a cumulative weighted value of 40 to 108 points. Specifically, the red hotspot regions have a cumulative weighted value of 63 to 108 points and the orange hotspot regions have a cumulative weighted value of 40 to 63 points. The plant biodiversity hotspots were named by location or according to some other associated and characteristic geologic feature. In order from the most diverse to the least diverse, the plant biodiversity hotspots include the following: San Luis Obispo Region, Arroyo de La Cruz, Morro Bay Area, Big Coreopsis Hill, Red Hill Mesa, Indian Knob, and Carpenter Canyon. A summary of our results is presented in Table 2 below, which includes the total number of taxa within each identified hotspot and the vegetation community types present within each hotspot. The hotspots are discussed individually with greater detail below.
Figure 6. Diagram of the Plant Biodiversity Hotspot GIS Model.
Figure 7. Plant Biodiversity Hotspots within San Luis Obispo County.
Table 2. Results Summary – Plant Biodiversity Hotspots Identified in San Luis Obispo County. The names, number of taxa, and community types present at each of the resultant hotspots are listed in the order from most diverse to least diverse.

<table>
<thead>
<tr>
<th>Name of Hotspot</th>
<th>Number of Taxa</th>
<th>Community Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Luis Obispo Region</td>
<td>32</td>
<td>Serpentine chaparral, oak woodland, riparian, and serpentine perennial grassland</td>
</tr>
<tr>
<td>Arroyo de La Cruz</td>
<td>28</td>
<td>Maritime chaparral, coastal bluff grassland, and riparian</td>
</tr>
<tr>
<td>Morro Bay Area</td>
<td>23</td>
<td>Sand dunes, salt marsh, coastal scrub, and coastal dune scrub</td>
</tr>
<tr>
<td>Big Coreopsis Hill</td>
<td>20</td>
<td>Sand dunes and coastal dune scrub</td>
</tr>
<tr>
<td>Red Hill Mesa</td>
<td>13</td>
<td>Annual grassland, vernal pools, and oak woodland</td>
</tr>
<tr>
<td>Indian Knob</td>
<td>9</td>
<td>Annual grassland, oak woodland, chaparral, coastal scrub, and riparian</td>
</tr>
<tr>
<td>Carpenter Canyon</td>
<td>6</td>
<td>Oak woodland, chaparral, and coastal scrub</td>
</tr>
</tbody>
</table>

San Luis Obispo Region Hotspot

The San Luis Obispo Region hotspot is the most diverse hotspot identified in the study. A total of 32 special status taxa occur within this hotspot. Table 3 provides the scientific name, common name, and regulatory status of the special status taxa that comprise the San Luis Obispo Region Hotspot. Please note: for sake of clarity and to avoid taxonomic confusion, the names utilized in each of the individual hotspot tables presented within the Results Section follow the taxonomy used by CNPS in the Online Inventory of Rare and Endangered Plants (CNPS 2012a). The vegetation communities present within the hotspot include serpentine and non-serpentine chaparral, oak woodland, riparian, coastal scrub, serpentine perennial grassland, and non-native grassland. All of the individual polygon areas within the collective San Luis Obispo Region hotspot are located on the west side of Interstate Highway 101 and the majority
occurs on serpentinite substrates. From the north to the south they include a small area on West Cuesta Ridge, Poly Canyon- which is part of the Cal Poly campus, areas associated with O’Conner Way, Laguna Lake Park, and the ridge-tops between Perfumo Canyon and See Canyon. The hotspot is named after the City of San Luis Obispo, which is located in close proximity to the various areas identified in this hotspot region. The San Luis Obispo Region hotspot is the most centrally located hotspot within the County. The total hotspot area detected in the analysis is approximately 241 hectares (595 acres, about one square mile). Figure 8 is a map of the San Luis Obispo Region Plant Biodiversity Hotspot at a higher resolution.
Table 3. San Luis Obispo Region – Plant Biodiversity Hotspot. Summary of special status taxa that comprise the hotspot. The scientific and common names; federal, state, and CRPR status; and if the taxon is endemic is included. Please refer to Appendix B for specific status code information and abbreviations.

<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CRPR Status</th>
<th>Endemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrostis hooveri
Hoover’s bent grass</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Arctostaphylos cruzensis
Arroyo de la Cruz manzanita</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Arctostaphylos morroensis
Morro manzanita</td>
<td>FT</td>
<td>NA</td>
<td>1B.1</td>
<td>Y</td>
</tr>
<tr>
<td>Arctostaphylos obispoensis
bishop manzanita</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Arctostaphylos pechoensis
pecho manzanita</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Arctostaphylos pilosula
Santa Margarita manzanita</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Calandrinia breweri
Brewer’s calandrinia</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Calochortus clavatus var. clavatus
club-haired mariposa lily</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Calochortus obispoensis
San Luis mariposa lily</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Calochortus simulans
La Panza mariposa lily</td>
<td>NA</td>
<td>NA</td>
<td>1B.3</td>
<td>N</td>
</tr>
<tr>
<td>Calystegia subcaudalis ssp. episcopalis
Cambría morning-glory</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Carex obispoensis
San Luis Obispo sedge</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Castilleja densiflora ssp. obispoensis San Luis Obispo owl’s clover</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Centromadia parryi ssp. congdonii Congdon’s tarplant</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Chlorogallum pomeridianum var. minus dwarf soapplant</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Chorizanthe brewerii Brewer’s spineflower</td>
<td>NA</td>
<td>NA</td>
<td>1B.3</td>
<td>N</td>
</tr>
<tr>
<td>Chorizanthe palmeri Palmer’s spineflower</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Cirsium fontinale var. obispoense San Luis Obispo fountain thistle</td>
<td>FE</td>
<td>CE</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Delphinium parryi ssp. eastwoodiae Eastwood’s larkspur</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Dudleya abramsii ssp. bettinae Betty’s dudleya</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Dudleya abramsii ssp. marina mouse-gray dudleya</td>
<td>NA</td>
<td>NA</td>
<td>1B.3</td>
<td>Y</td>
</tr>
<tr>
<td>Eleocharis parvula small spikerush</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Layia jonesii Jones’ layia</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Lomatium parvifolium small-flowered leptosiphon</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Monardella palmeri Palmer’s monardella</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Perideridia pringlei adobe yampah</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Pinus radiata Monterey pine</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Sanicula hoffmannii Hoffmann’s sanicle</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Sanicula maritima adobe sanicle</td>
<td>NA</td>
<td>CR</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Senecio aphanactis San Gabriel ragwort</td>
<td>NA</td>
<td>NA</td>
<td>2.2</td>
<td>N</td>
</tr>
<tr>
<td>Sidalcea hickmanii ssp. anomala Cuesta Pass checkerbloom</td>
<td>NA</td>
<td>CR</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Streptanthus albidus ssp. peramoenus most beautiful jewel-flower</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
</tbody>
</table>
Figure 8. San Luis Obispo Region Plant Biodiversity Hotspot.
Arroyo de La Cruz Hotspot

Arroyo de La Cruz is the next most diverse hotspot identified in the study and 28 special status taxa occur within it. However, as indicated by the abundant area of red coloration in the hotspot, it has a higher weighted value than the other hotspots, which are predominantly orange in appearance. This is because the species composition of this hotspot is composed of more rare and endemic taxa. Table 4 below provides the scientific name, common name, and regulatory status of the special status taxa that comprise the Arroyo de La Cruz Hotspot. The vegetation communities that compose this hotspot include maritime chaparral, coastal bluff grassland, and riparian. Arroyo de La Cruz is an intermittent stream carries flows from the Santa Lucia Range and empties into the Pacific Ocean on the west side of State Highway 1 and it is the most prominent feature that this hotspot was named after. The Arroyo de La Cruz hotspot occurs in the northwestern corner of the County. The total hotspot area detected in the analysis is approximately 637 hectares (1,575 acres or about 2.5 square miles) in size. Figure 9 is a map of the Arroyo de La Cruz Plant Biodiversity Hotspot at a higher resolution.

<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CRPR Status</th>
<th>Endemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium hickmanii Hickman’s onion</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Arctostaphylos cruzensis Arroyo de La Cruz manzanita</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Arctostaphylos hookeri ssp. hearstiorum Hearst’s manzanita</td>
<td>NA</td>
<td>CE</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Astragalus nuttallii var. nuttallii ocean bluff milk-vetch</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Baccharis plummerae ssp. glabrata San Simeon baccharis</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Bloomeria humilis dwarf goldenstar</td>
<td>NA</td>
<td>CR</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Calandrinia breweri Brewer’s calandrinia</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Calochortus clavatus var. recurvifolius Arroyo de La Cruz mariposa lily</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Calochortus uniflorus large-flowered mariposa lily</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Calystegia subacaulis ssp. episcopalis Cambria morning-glory</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Carex obispoensis San Luis Obispo sedge</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Castilleja ambiguus ssp. insalutata no common name</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Castilleja densiflora ssp. obispoensis San Luis Obispo owl’s clover</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Ceanothus hearstiorum Hearst’s ceanothus</td>
<td>NA</td>
<td>CR</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Ceanothus maritimus maritime ceanothus</td>
<td>NA</td>
<td>CR</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Chorizanthe palmeri</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Palmer’s spineflower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirsium occidentale var. compactum</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>compact cobwebby thistle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corethrogyne leucophylla</td>
<td>NA</td>
<td>NA</td>
<td>3.2</td>
<td>N</td>
</tr>
<tr>
<td>branching beach aster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erigeron sanctarum</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>saint’s daisy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasthenia californica ssp.</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>macrantha perennial goldfields</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lomatium parvifolium</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>small-leaved lomatium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lotus formosissimus</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>harlequin lotus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microseris paludosa</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>marsh microseris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monolopia gracilens</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>woodland woolythreads</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedicularis dudleyi</td>
<td>NA</td>
<td>CR</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Dudley’s lousewort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perideridia gairdneri</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>ssp. gairdneri</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gairdner’s yampah</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanicula hoffmanii</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Hoffmann’s sanicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanicula maritima</td>
<td>NA</td>
<td>CR</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>adobe sanicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 9. Arroyo de La Cruz Plant Biodiversity Hotspot.
Morro Bay Area Hotspot

After Arroyo de La Cruz, the Morro Bay Area is the next most diverse hotspot. A total of 23 special status taxa occur within the Morro Bay Area. Table 5 provides the scientific name, common name, and regulatory status of the special status taxa that comprise the Morro Bay Area Hotspot. There are three separate regions within this hotspot; a small polygon at the Sweet Springs Nature Preserve, the Morro Bay Sandspit, and another polygon that is located within Montaña de Oro State Park. The vegetation communities associated with this hotspot are sand dunes, salt marsh, coastal scrub, and coastal dune scrub. Morro Bay is a large and relatively pristine estuary. As such, it is subject to regular tidal influences and it is a highly dynamic wetland system where both fresh and salt waters mix and interact. Morro Bay is characteristic of this hotspot and is the feature attributed to this hotspot name. The Morro Bay Region hotspot is located in the western portion of the County, right along the coast. The total area detected in the analysis for the Morro Bay Area hotspot is approximately 437 hectares (1,079 acres or approximately 1.7 square miles). Figure 10 is a map of the Morro Bay Area Plant Biodiversity Hotspot at a higher resolution.

Table 5. Morro Bay Area – Plant Biodiversity Hotspot. Summary of special status taxa that comprise the hotspot. The scientific and common names; federal, state, and CRPR status; and if the taxon is endemic is included. Please refer to Appendix B for specific status code information and abbreviations.

<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CRPR Status</th>
<th>Endemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abronia maritima red sand-verbena</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Arctostaphylos morroensis Morro manzanita</td>
<td>FT</td>
<td>NA</td>
<td>1B.1</td>
<td>Y</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Arctostaphylos pechoensis pecho manzanita</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Calandrinia breweri Brewer's calandrinia</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Ceanothus cuneatus var. fascicularis Lompoc ceanothus</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Chenopodium littoreum coastal goosefoot</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Chloropyron maritimum ssp. maritimum salt marsh bird’s-beak</td>
<td>FE</td>
<td>CE</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Cicuta maculata var. bolanderi Bolander’s water-hemlock</td>
<td>NA</td>
<td>NA</td>
<td>2.1</td>
<td>N</td>
</tr>
<tr>
<td>Dithyrea maritima beach spectaclepod</td>
<td>NA</td>
<td>CT</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Eriodictyon altissimum Indian Knob mountainbalm</td>
<td>FE</td>
<td>CE</td>
<td>1B.1</td>
<td>Y</td>
</tr>
<tr>
<td>Erigeron blochmaniae Blochman’s leafy daisy</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Erigeron sanctarum saint’s daisy</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Erysimum suffrutescens suffrutescent wallflower</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Horkelia cuneata var. sericea Kellogg’s horkelia</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Juncus acutus ssp. leopoldii southwestern spiny rush</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Lasthenia glabrata ssp. coulteri Coulter’s goldfields</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Malacothrix incana dunedelion</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Mucronea californica California spineflower</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Poa diaboli Diablo Canyon blue grass</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Prunus fasciculata var. punctata sand almond</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Senecio aphanactis San Gabriel ragwort</td>
<td>NA</td>
<td>NA</td>
<td>2.2</td>
<td>N</td>
</tr>
<tr>
<td>Senecio blochmaniae Blochman’s ragwort</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Suaeda californica California seablite</td>
<td>FE</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
</tbody>
</table>
Figure 10: Morro Bay Area Plant Biodiversity Hotspot.
Big Coreopsis Hill Hotspot

Big Coreopsis Hill is the next most diverse hotspot in the study and it has a total of 20 special status taxa within it. **Table 6** below provides the scientific name, common name, and regulatory status of the special status taxa that comprise the Big Coreopsis Hill Hotspot. The vegetation communities that occur within this hotspot are sand dunes and coastal dune scrub. The Big Coreopsis hotspot is located in the southwestern portion of the County, just slightly inland from the coast. Several separate polygons comprise the total hotspot area, which is approximately 42 hectares (104 acres or 0.2 square mile) in size. **Figure 11** is a map of the Big Coreopsis Hill Plant Biodiversity Hotspot at a higher resolution.

Table 6. Big Coreopsis Hill – Plant Biodiversity Hotspot. Summary of special status taxa that comprise the hotspot. The scientific and common names; federal, state, and CRPR status; and if the taxon is endemic is included. Please refer to Appendix B for specific status code information and abbreviations.

<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CRPR Status</th>
<th>Endemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abronia maritima red sand-verbena</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Astragalus nuttallii var. nuttallii ocean bluff milk-vetch</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Chenopodium littoreum coastal goosefoot</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Cirsium occidentale var. compactum compact cobwebby thistle</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Cirsium rhothophilum surf thistle</td>
<td>NA</td>
<td>CT</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Cirsium scariosum var. loncholepis La Graciosa thistle</td>
<td>FE</td>
<td>CT</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Corethrogynne leucophylla branching beach aster</td>
<td>NA</td>
<td>NA</td>
<td>3.2</td>
<td>N</td>
</tr>
<tr>
<td>Delphinium gypsophilum ssp. gypsophilum gypsum-loving larkspur</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Dithyrea maritima beach spectaclepod</td>
<td>NA</td>
<td>CT</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Erigeron blochmaniae Blochman’s leafy daisy</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Horkelia cuneata var. sericea Kellogg’s horkelia</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Leptodactylon californicum ssp. tomentosum fuzzy prickly-phlox</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Lupinus nipomensis Nipomo Mesa lupine</td>
<td>FE</td>
<td>CE</td>
<td>1B.1</td>
<td>Y</td>
</tr>
<tr>
<td>Malacothrix incana dunedelion</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Monardella undulata curly-leaved monardella</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Mucronea californica California spineflower</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Nasturtium gambelii Gambel’s water cress</td>
<td>FE</td>
<td>CT</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Phacelia ramosissima var. australitoralis south coast branching phacelia</td>
<td>NA</td>
<td>NA</td>
<td>3.2</td>
<td>N</td>
</tr>
<tr>
<td>Prunus fasciculata var. punctata sand almond</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Senecio blochmaniae</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Blochman’s ragwort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 11. Big Coreopsis Hill Plant Biodiversity Hotspot.
Red Hill Mesa Hotspot

The Red Hill Mesa hotspot is one of the smallest hotspots identified in the study and it has 13 special status taxa within it. Table 7 below provides the scientific name, common name, and regulatory status of the special status taxa that comprise the Red Hill Hotspot. The vegetation communities that occur within this hotspot are annual grassland, vernal pools, and oak woodland. The soils on the mesa are a unique type of well-drained clays that give them a characteristic red appearance. This hotspot occurs in the eastern portion of the County and it’s located near the intersection of State Highway 58 and Red Hill Road. The Red Hill Mesa hotspot is approximately five hectares (12 acres or 0.02 square mile) in size. Figure 12 is a map of the Red Hill Mesa Plant Biodiversity Hotspot at a higher resolution.

Table 7. Red Hill Mesa – Plant Biodiversity Hotspot. Summary of special status taxa that comprise the hotspot. The scientific and common names; federal, state, and CRPR status; and if the taxon is endemic is included. Please refer to Appendix B for specific status code information and abbreviations.

<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CRPR Status</th>
<th>Endemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthomintha obovata ssp. cordata heart-leaved thorn-mint</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Amsinckia douglasiana Douglas’ fiddleneck</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Calycadenia villosa dwarf calycadenia</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Castilleja densiflora ssp. obispoensis San Luis Obispo owl’s clover</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Caulanthus lemmonnii</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Lemmon’s jewelflower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorogalum purpureum var. reductum Camatta Canyon amole</td>
<td>FT</td>
<td>CR</td>
<td>1B.1</td>
<td>Y</td>
</tr>
<tr>
<td>Eschscholzia rhombipetala diamond-petaled California poppy</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Galium andrewsii ssp. gatense phlox-leaved serpentine bedstraw</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>Juncus luciensis Santa Lucia dwarf rush</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Layia heterotricha pale-yellow layia</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Lessingia tenuis spring lessingia</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
<tr>
<td>Madia radiata showy golden madia</td>
<td>NA</td>
<td>NA</td>
<td>1B.1</td>
<td>N</td>
</tr>
<tr>
<td>Malacothamnus jonesii</td>
<td>NA</td>
<td>NA</td>
<td>4.3</td>
<td>N</td>
</tr>
</tbody>
</table>
Figure 12. Red Hill Mesa Plant Biodiversity Hotspot.
Indian Knob Hotspot

The Indian Knob hotspot is the next most diverse hotspot after Red Hill Mesa and 9 special status taxa occur within it. Like the Arroyo de La Cruz hotspot, Indian Knob has a portion of it that appears red; meaning that the taxa at this hotspot sum to a higher weighted value than the others that appear orange. **Table 8** below provides the scientific name, common name, and regulatory status of the special status taxa that comprise the Indian Knob Hotspot. The vegetation communities at this hotspot include annual grassland, oak woodland, chaparral, coastal scrub, and riparian. However, chaparral communities dominate the landscape at Indian Knob. Indian Knob is a prominent mountain peak in the southeastern portion of the San Luis Range and it occurs south of the City of San Luis Obispo. It’s located on the east side of Interstate Highway 101 and this hotspot is named after this feature. The total hotspot area is approximately 162 hectares (401 acres or 0.6 square mile) in size. **Figure 13** is a map of the Indian Knob Plant Biodiversity Hotspot at a higher resolution.

Table 8. Indian Knob – Plant Biodiversity Hotspot. Summary of special status taxa that comprise the hotspot. The scientific and common names; federal, state, and CRPR status; and if the taxon is endemic is included. Please refer to Appendix B for specific status code information and abbreviations.

<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CRPR Status</th>
<th>Endemic</th>
</tr>
</thead>
</table>
| *Agrostis hooveri*
Hoover’s bent grass | NA | NA | 1B.2 | N |
| *Arctostaphylos pilosula*
Santa Margarita manzanita | NA | NA | 1B.2 | N |
| *Calochortus obispoensis*
San Luis mariposa lily | NA | NA | 1B.2 | Y |
<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CRPR Status</th>
<th>Endemic</th>
</tr>
</thead>
</table>
| *Castilleja densiflora ssp. obispoensis*
San Luis Obispo owl's clover | NA | NA | 1B.2 | Y |
| *Clarkia speciosa ssp. immaculata*
Pismo clarkia | FE | CR | 1B.1 | Y |
| *Eriodictyon altissimum*
Indian Knob mountainbalm | FE | CE | 1B.1 | Y |
| *Leptodactylon californicum ssp. tomentosum*
fuzzy prickly-phlox | NA | NA | 4.2 | N |
| *Lupinus ludovicianus*
San Luis Obispo County lupine | NA | NA | 1B.2 | Y |
| *Scrophularia atrata*
black-flowered figwort | NA | NA | 1B.2 | N |
Figure 13. Indian Knob Plant Biodiversity Hotspot.
Carpenter Canyon Hotspot

The final hotspot detected in the study is Carpenter Canyon. Six special status taxa occur within it and it is also the smallest sized hotspot identified. Table 9 below provides the scientific name, common name, and regulatory status of the special status taxa that comprise the Carpenter Canyon Hotspot. The vegetation communities present at the Carpenter Canyon hotspot are oak woodland, chaparral, and coastal scrub. Carpenter Canyon is not only the name of the major canyon in this region, but it is also the name of the portion of State Highway 227 south of the intersection of Edna Road and Price Canyon Road. This hotspot is named for the road and after the canyon associated with this area. The Carpenter Canyon hotspot is located in the southwestern portion of the County. This hotspot occurs along the west side of Carpenter Canyon Road and it is approximately five hectares (12 acres or 0.02 square mile) in size. Figure 14 is a map of the Carpenter Canyon Plant Biodiversity Hotspot at a higher resolution.

Table 9. Carpenter Canyon – Plant Biodiversity Hotspot. Summary of special status taxa that comprise the hotspot. The scientific and common names; federal, state, and CRPR status; and if the taxon is endemic is included. Please refer to Appendix B for specific status code information and abbreviations.

<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Federal Status</th>
<th>State Status</th>
<th>CRPR Status</th>
<th>Endemic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrostis hooveri</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Hoover’s bent grass</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Arctostaphylos pilosula</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Santa Margarita manzanita</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>N</td>
</tr>
<tr>
<td>Calochortus obispoensis</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>San Luis mariposa lily</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Federal Status</td>
<td>State Status</td>
<td>CRPR Status</td>
<td>Endemic</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Clarkia speciosa ssp. immaculate</td>
<td>FE</td>
<td>CR</td>
<td>1B.1</td>
<td>Y</td>
</tr>
<tr>
<td>Pismo clarkia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupinus ludovicianus</td>
<td>NA</td>
<td>NA</td>
<td>1B.2</td>
<td>Y</td>
</tr>
<tr>
<td>San Luis Obispo County lupine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucronea californica</td>
<td>NA</td>
<td>NA</td>
<td>4.2</td>
<td>N</td>
</tr>
<tr>
<td>California spineflower</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 14. Carpenter Canyon Plant Biodiversity hotspot.
DISCUSSION

Our analysis was successful at identifying plant biodiversity hotspots in SLO Co. Seven hotspot areas were detected with the GIS model that we designed. The hotspot areas we identified have high levels of species richness, rarity, and endemism at a county scale. While the use of GIS technology is advancement because it greatly increases our capacity to identify, quantify, and store information about biodiversity, it is also a deviation from the original biodiversity hotspot methodologies (Myers et al. 2000). However, the fundamental application of this conceptual framework produced substantive results at the county scale for use to develop localized resource conservation strategies.

As mentioned, the most frequently used indicators for identifying biodiversity hotspots are species richness, endemism, and degree of threat (Zachos and Habel 2011; Dunstan et al. 2012; Gould 2000). This study strayed slightly from these traditional indicators. Our study used distribution data for the rare flora of SLO Co. as a proxy for plant species richness as opposed to complete or exhaustive data for all plant species known to occur within the County. Time, labor intensity, and budgetary constraints were certainly factors that influenced this decision; but more importantly, the prevalence of non-native species can skew the results of plant biodiversity hotspot models. Hotspots models based too heavily on species richness can actually have low levels of species rarity and endemism because the composition can be largely comprised of non-native and invasive species. Orme et al. (2005) found that global avian biodiversity hotspots based on species richness were not congruent with endemism or threat. Newer hotspot analyses
are beginning to emphasize biodiversity models that select conservation areas for both patterns of diversity and the evolutionary processes required to sustain them. Such criteria as evolutionarily significant units (ESU) and other genetic diversity indicators are being afforded much greater emphasis in recent hotspot analyses (Morowitz 2002; Cowling et al. 2003; Vandergast et al. 2008; Hughes et al. 2008).

Our model is based on 1) species richness, 2) rarity, and 3) endemism. Unlike traditional biodiversity models, degree of threat is not addressed. We are aware of the global mass extinction event that is currently underway, the exponential growth in population that humans are experiencing, and various scenarios regarding species homogenization and global climate change (Malcolm et al. 2006; Loarie et al. 2008; Midgley et al. 2002; Schwartz et al. 2006; Keinan and Clark 2012; and Poh et al. 2004). Therefore our model assumes a constant, inherent, and uniform degree of threat throughout the County. We did not have (what we considered) an appropriate framework to accurately assess degree of threat without additional input from other regional planning and resource entities. Integration of degree of threat into our model is a component that would require further studies.

We are interested in conservation at the county scale for several reasons. Foremost, the county is the scale that a significant proportion of conservation activities actually occur; such as land acquisition for reserve establishment, mitigation banking, land use designation and zoning, General Plan development and amendments, and conservation easements. Most land management decisions occur at smaller spatial scales
than the scales of most existing biodiversity models (Dunk et al. 2006). Likewise, regional conservation planning decisions, like the actual locations of new biodiversity reserves, tend to occur at finer spatial scales (Ferrier 2002 and Ferrier et al. 2004). County jurisdictions are typically one of the most influential and authoritative entities responsible for determinations associated with which lands are developed and which are preserved. With the onslaught of budgetary crises in the U.S. and particularly within California, the frequency and scope of discretionary permits issued by county jurisdictions is increasing. For example, the number of multi-family housing construction permits issued from Los Angeles County increased 116% in less than a year (LAEDC 2012). In the central Puget Sound region the number of building permits issued increased 34% from 2009 to 2010 (PST 2012). Federally mandated initiatives associated with economic stimulus programs have increased the number of large-scale construction undertakings occurring at county scales. These types of projects are typically related to renewable energy, like wind and solar development; infrastructure replacement projects, like bridges and highways; and utility upgrades for power from electricity and natural gas. At present at least 16 solar energy project are undergoing review in California counties (CEC 2012). Given these dynamics, we intend to engage the County with our results so that biodiversity conservation will receive consideration during its land use planning permit review processes.

Though the body of literature associated with biodiversity hotspots has had a significant influence on development of conservation strategies globally, at national scales, and within the scientific community; primarily by shifting the focus from single
species conservation approaches to ecosystems conservation, these ideas are still largely under utilized by local and regional governments (Probst and Crow 1991; Burton et al. 1992; and Franklin 1993). Few studies have attempted to quantify the amount of consideration biodiversity conservation receives at county scales. Miller et al. (2008) evaluated staff from planning departments at three metropolitan regions in the U.S. and determined that five percent or less of staff time was given to activities related to biodiversity conservation and 14-20% of the respondents admittedly spent no time at all considering biodiversity-related conservation endeavors. Certainly, biodiversity conservation is pertinent to these jurisdictions and land use planning tools designed to achieve these goals exist. These tools and layers of analysis can be integrated into the planning processes and procedures used at the county and at other regional scales.

We intend to continue to refine this analysis and to use our results to identify under collected regions within the County because we recognize the inherent bias associated with models derived from herbaria collections. Potential sources of such bias include roadside affinity, collector tendencies, and access restrictions (Kadmon et al. 2004). Roadside bias is a result of the locations of existing roads. It tends to influence where botanists collect because they can easily access areas that are within close proximity to or adjacent to roads. Collector bias results from the fact that certain collectors just like particular areas or groups of plants. Botanists tend to return to the same collection sites year after year and this can influence the overall distribution of herbaria collections. Another form of bias is the result of restricted access. Botanists are not always permitted to collect in certain areas like private properties or military lands.
For these reasons, bias is something to consider when interpreting the results of analyses derived from herbaria. Having generated this map, we will gain a greater sense of the locations of under-collected or unsurveyed regions in our County. We also aim to promote and participate in future studies that utilize herbarium datasets because we acknowledge and value their role in biodiversity conservation and informatics.

CONCLUSION

Chapter 1 provided the background information and a literature review of the body of work associated with biodiversity hotspot analyses. It presented our study site, San Luis Obispo County, which is novel because most hotspot analyses are conducted at much larger spatial scales. Our study site occurs within one of the world’s currently recognized global biodiversity hotspots, the California Floristic Province. Chapter 2 explains the methods we used; including an explanation of our dataset, how we designed our GIS model, how we digitized our data, and ultimately how we created our final map. Our analysis was successful and seven plant biodiversity hotspots were detected. This study provides support and substantive evidence that biodiversity hotspot techniques are applicable to smaller spatial scales. We would like to create working partnerships with the local and regional entities responsible for land use planning and natural resource management in our area so that our data will be considered in these processes because we think biodiversity conservation is a legitimate and worthy approach. We understand the implications of poor planning decisions, untethered habitat loss, and recognize that extinction is forever. However idealistic, we anticipate the future where science can
inform policy to develop long-term resource conservation planning strategies to conserve biodiversity at all scales.
LITERATURE CITED

CNPS. 2012b. Personal communications. Aaron Simms, CNPS Rare Plant Botanist. Sacramento, California.

APPENDIX A

SCIENTIFIC DATABASE QUERY RESULTS
This resource list is to be used for planning purposes only — it is not an official species-list.

Endangered Species Act species-list information for your project is available online and listed below for the following FWS Field Offices:

VENTURA FISH AND WILDLIFE OFFICE
2493 PORTOLA ROAD, SUITE B
VENTURA, CA 93003
(805) 644-1766

Endangered Species Act species-list information for your project is NOT available online for the following FWS Field Offices:

SACRAMENTO FISH AND WILDLIFE OFFICE
FEDERAL BUILDING
2800 COTTAGE WAY, ROOM W-2605
SACRAMENTO, CA 95825
(916) 414-6600

Project Name:
KH Thesis

Project Counties:
San Luis Obispo, CA

Project Type:
Vegetation Management
Endangered Species Act Species-list

There are a total of 37 species in your species-list

Species that may be affected by your project: [View all critical habitat on one map](#)

<table>
<thead>
<tr>
<th>Amphibians</th>
<th>Status</th>
<th>Link</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroyo toad (Bufo californicus)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>California Tiger Salamander (Ambystoma californiense)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Population: U.S.A. (CA - Santa Barbara County)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Tiger Salamander (Ambystoma californiense)</td>
<td>Threatened</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Population: U.S.A. (Central CA DPS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California red-legged frog (Rana draytonii)</td>
<td>Threatened</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Population: Entire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Clapper rail (Rallus longirostris obsoletus)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>California Least tern (Sterna antillarum browni)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
</tbody>
</table>
Natural Resources of Concern

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>Species info</th>
<th>Critical Habitat</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>California condor</td>
<td>Endangered</td>
<td>species info</td>
<td>Final designated critical habitat</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>(Gymnogyps californianus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population: U.S.A. only</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Least Bell's vireo</td>
<td>Endangered</td>
<td>species info</td>
<td></td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>(Vireo bellii pusillus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marbled murrelet</td>
<td>Threatened</td>
<td>species info</td>
<td></td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>(Brachyramphus marmoratus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population: CA, OR, WA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southwestern Willow flycatcher</td>
<td>Endangered</td>
<td>species info</td>
<td></td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>(Empidonax traillii extimus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Snowy plover</td>
<td>Threatened</td>
<td>species info</td>
<td>Final designated critical habitat</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>(Charadrius alexandrinus nivosus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustaceans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vernal Pool fairy shrimp</td>
<td>Threatened</td>
<td>species info</td>
<td>Final designated critical habitat</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>(Branchinecta lynchi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowering Plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California jewelflower</td>
<td>Endangered</td>
<td>species info</td>
<td></td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>(Caulanthus californicus)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California seablite</td>
<td>Endangered</td>
<td>species info</td>
<td></td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>(Suaeda californica)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species Name</td>
<td>Endangered Status</td>
<td>Species Information</td>
<td>Ventura Fish and Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Chorro Creek Bog thistle</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>(Cirsium fontinale var. obispoense)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gambel's watercress</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>(Rorippa gambellii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaviota Tarplant</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>(Deinandra increscens ssp. villosa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indian Knob mountain balm</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>(Eriodictyon altissimum)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La Graciosa thistle</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>(Cirsium loncholepis)</td>
<td></td>
<td>Final designated critical habitat</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>Marsh Sandwort</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>(Arenaria paludicola)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monterey spineflower</td>
<td>Threatened</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>(Chorizanthe pungens var. pungens)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morro manzanita</td>
<td>Threatened</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
<td></td>
</tr>
<tr>
<td>(Arctostaphylos morroensis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Natural Resources of Concern

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>Additional Information</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nipomo Mesa lupine (Lupinus nipomensis)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Pismo clarkia (Clarkia speciosa ssp. immaculata)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Purple amole (Chlorogalum purpureum)</td>
<td>Threatened</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Salt Marsh bird's-beak (Cordylanthus maritimus ssp. maritimus)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>San Joaquin wooly-threads (Monolopia congdonii)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Spreading navarretia (Navarretia fossalis)</td>
<td>Threatened</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
</tbody>
</table>

Insects

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>Additional Information</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Segundo Blue butterfly (Euphilotes battoides allyni)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Kern Primrose Sphinx moth (Euproserpinus euterpe)</td>
<td>Threatened</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
</tbody>
</table>
Natural Resources of Concern

<table>
<thead>
<tr>
<th>Species Name</th>
<th>Status</th>
<th>Additional Information</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith's Blue butterfly (Euphilotes enoptes smithi)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant kangaroo rat (Dipodomys ingens)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Morro Bay kangaroo rat (Dipodomys heermanni morroensis)</td>
<td>Endangered</td>
<td>species info Final designated critical habitat</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>San Joaquin Kit fox (Vulpes macrotis mutica)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Southern Sea otter (Enhydra lutris nereis)</td>
<td>Threatened</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Population: except where EXPN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blunt-Nosed Leopard lizard (Gambelia silus)</td>
<td>Endangered</td>
<td>species info</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Snails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morro Shoulderband snail (Helminthoglypta walkeriana)</td>
<td>Endangered</td>
<td>species info Final designated critical habitat</td>
<td>Ventura Fish And Wildlife Office</td>
</tr>
<tr>
<td>Population: except where EXPN</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FWS National Wildlife Refuges

There are 2 refuges in your refuge list

<table>
<thead>
<tr>
<th>Refuge Name</th>
<th>Phone Number</th>
<th>Address</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitter Creek National Wildlife Refuge</td>
<td>(805) 644-5185</td>
<td>C/O HOPPER MOUNTAIN NWR COMPLEX P.O. BOX 5839</td>
<td>refuge profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VENTURA, CA93005</td>
<td></td>
</tr>
<tr>
<td>Guadalupe-nipomo Dunes National Wildlife Refuge</td>
<td>(805) 343-9151</td>
<td>P.O. BOX 9</td>
<td>refuge profile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GUADALUPE, CA93434</td>
<td></td>
</tr>
</tbody>
</table>

FWS Migratory Birds

Not yet available through IPaC.

FWS Delineated Wetlands

Not yet available through IPaC.
<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Element Code</th>
<th>Federal Status</th>
<th>State Status</th>
<th>GRank</th>
<th>SRank</th>
<th>CDFG or CNPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Abies bracteata bristlecone fir</td>
<td>PGPIN01030</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.3</td>
<td>1B.3</td>
</tr>
<tr>
<td>2 Agrostis hooveri Hoover's bent grass</td>
<td>PMPOA040M0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>3 Allium hickmanii Hickman's onion</td>
<td>PMLIL02140</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>4 Antirrhinum ovatum oval-leaved snapdragon</td>
<td>PDSCR2K010</td>
<td></td>
<td></td>
<td>G3</td>
<td>S3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>5 Arctostaphylos cruzensis Arroyo de la Cruz manzanita</td>
<td>PDERI040B0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>6 Arctostaphylos hookeri ssp. hearstiorm Hearst's manzanita</td>
<td>PDERI040J4</td>
<td>Endangered</td>
<td></td>
<td>G3T2</td>
<td>S2</td>
<td>1B.2</td>
</tr>
<tr>
<td>7 Arctostaphylos luciana Santa Lucia manzanita</td>
<td>PDERI040N0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>8 Arctostaphylos montereyensis Toro manzanita</td>
<td>PDERI040R0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.1</td>
<td>1B.2</td>
</tr>
<tr>
<td>9 Arctostaphylos morroensis Morro manzanita</td>
<td>PDERI040S0</td>
<td>Threatened</td>
<td></td>
<td>G2</td>
<td>S2</td>
<td>1B.1</td>
</tr>
<tr>
<td>10 Arctostaphylos osoensis Oso manzanita</td>
<td>PDERI042S0</td>
<td></td>
<td></td>
<td>G1</td>
<td>S1.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>11 Arctostaphylos pechoensis Pecho manzanita</td>
<td>PDERI04140</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>12 Arctostaphylos pilosula Santa Margarita manzanita</td>
<td>PDERI04160</td>
<td></td>
<td></td>
<td>G3</td>
<td>S3</td>
<td>1B.2</td>
</tr>
<tr>
<td>13 Arctostaphylos rudis sand mesa manzanita</td>
<td>PDERI041E0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>14 Arctostaphylos tomentosa ssp. dacitica dacite manzanita</td>
<td>PDERI041HD</td>
<td></td>
<td></td>
<td>G4T1</td>
<td>S1.1</td>
<td>1B.1</td>
</tr>
<tr>
<td>15 Arenaria paludicola marsh sandwort</td>
<td>PDCAR040L0</td>
<td>Endangered</td>
<td>Endangered</td>
<td>G1</td>
<td>S1</td>
<td>1B.1</td>
</tr>
<tr>
<td>16 Aristocapsa insignis Indian Valley spineflower</td>
<td>PDPGN0U010</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>17 Astragalus didymocarpus var. milesianus Miles' milk-vetch</td>
<td>PDFAB0F2X3</td>
<td></td>
<td></td>
<td>G5T2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>18 Atriplex cordulata heartscale</td>
<td>PDACHE040B0</td>
<td></td>
<td></td>
<td>G2?</td>
<td>S2.2?</td>
<td>1B.2</td>
</tr>
<tr>
<td>19 Atriplex coronata var. vallicola Lost Hills crownscale</td>
<td>PDACHE04250</td>
<td></td>
<td></td>
<td>G4T2</td>
<td>S2</td>
<td>1B.2</td>
</tr>
<tr>
<td>20 Atriplex coulteri Coulter's saltbush</td>
<td>PDACHE040E0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>21 Atriplex joaquiniana San Joaquin spearscale</td>
<td>PDACHE041F3</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2</td>
<td>1B.2</td>
</tr>
<tr>
<td>22 Atriplex serenana var. davidsonii Davidson's saltscale</td>
<td>PDACHE041T1</td>
<td></td>
<td></td>
<td>G5T2?</td>
<td>S2?</td>
<td>1B.2</td>
</tr>
<tr>
<td>23 Baccharis plummerae ssp. glabrata San Simeon baccharis</td>
<td>PDAST0W0D1</td>
<td></td>
<td></td>
<td>G3T1</td>
<td>S1.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Element Code</td>
<td>Federal Status</td>
<td>State Status</td>
<td>GRank</td>
<td>SRank</td>
<td>CDFG or CNPS</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>24 Bloomeria humilis dwarf goldenstar</td>
<td>PMLIL0B020</td>
<td>Rare</td>
<td></td>
<td>G1</td>
<td>S1.1</td>
<td>1B.2</td>
</tr>
<tr>
<td>25 California macrophylla round-leaved filaree</td>
<td>PDGER01070</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1B.1</td>
</tr>
<tr>
<td>26 Calochortus clavatus var. recurvifolius Arroyo de la Cruz mariposa-lily</td>
<td>PMLIL0D098</td>
<td>G4T1</td>
<td>S1.2</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>27 Calochortus fimbriatus late-flowered mariposa-lily</td>
<td>PMLIL0D1J2</td>
<td>G3G4</td>
<td>S2.2</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>28 Calochortus obispoensis La Panza mariposa-lily</td>
<td>PMLIL0D110</td>
<td>G2</td>
<td>S2.1</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>29 Calochortus palmeri var. palmeri Palmer's mariposa-lily</td>
<td>PMLIL0D122</td>
<td>G2T2</td>
<td>S2.1</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>30 Calochortus simulans San Luis Obispo mariposa-lily</td>
<td>PMLIL0D170</td>
<td>G2</td>
<td>S2.3</td>
<td></td>
<td></td>
<td>1B.3</td>
</tr>
<tr>
<td>31 Calycadenia villosa dwarf calycadenia</td>
<td>PDAST1P0B0</td>
<td>G2</td>
<td>S2.1</td>
<td></td>
<td></td>
<td>1B.1</td>
</tr>
<tr>
<td>32 Calytridium parryi var. hesseae Santa Cruz Mountains pussypaws</td>
<td>PDPOR09052</td>
<td>G3G4T2</td>
<td>S2</td>
<td></td>
<td></td>
<td>1B.1</td>
</tr>
<tr>
<td>33 Calystegia subacaulis ssp. episcopalis Cambria morning-glory</td>
<td>PDCON040J1</td>
<td>G3T3</td>
<td>S3</td>
<td></td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>34 Camissonia hardhamiae Hardham's evening-primrose</td>
<td>PDONA030N0</td>
<td>G1Q</td>
<td>S1</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>35 Carex obispoensis San Luis Obispo sedge</td>
<td>PMCYP039J0</td>
<td>G2</td>
<td>S2.2</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>36 Castilleja ambigua ssp. insalutata pink Johnny-nip</td>
<td>PDSCR0D403</td>
<td>G4T1</td>
<td>S1</td>
<td></td>
<td></td>
<td>1B.1</td>
</tr>
<tr>
<td>37 Castilleja densiflora ssp. obispoensis San Luis Obispo owl's-clover</td>
<td>PDSCR0D453</td>
<td>G5T2</td>
<td>S2.2</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>38 Caulanthus californicus California jewel-flower</td>
<td>PDBRA31010</td>
<td>Endangered</td>
<td>Endangered</td>
<td>G1</td>
<td>S1</td>
<td>1B.1</td>
</tr>
<tr>
<td>39 Caulanthus lemmonei Lemmon’s jewel-flower</td>
<td>PDBRA0M0E0</td>
<td>G2</td>
<td>S2.2</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>40 Ceanothus hearstiorum Hearst’s ceanothus</td>
<td>PDRHA040J0</td>
<td>Rare</td>
<td>G1</td>
<td>S1.2</td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>41 Ceanothus maritimus maritime ceanothus</td>
<td>PDRHA040T0</td>
<td>Rare</td>
<td>G2</td>
<td>S2.2</td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>42 Centromadia parryi ssp. congdonii Congdon’s tarplant</td>
<td>PDAST4R0P1</td>
<td>G4T2</td>
<td>S2</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>43 Centromadia parryi ssp. parryi pappose tarplant</td>
<td>PDAST4R0P2</td>
<td>G4T1</td>
<td>S1</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>44 Chenopodium littoreum coastal goosefoot</td>
<td>PDCHE091Z0</td>
<td>G2</td>
<td>S2</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>45 Chlorogalum pomeridianum var. minus dwarf soaproot</td>
<td>PMLIL0G042</td>
<td>G5T2</td>
<td>S2</td>
<td></td>
<td></td>
<td>1B.2</td>
</tr>
<tr>
<td>46 Chlorogalum purpureum var. purpureum Santa Lucia purple amole</td>
<td>PMLIL0G051</td>
<td>Threatened</td>
<td>G2T2</td>
<td>S2</td>
<td></td>
<td>1B.1</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Element Code</td>
<td>Federal Status</td>
<td>State Status</td>
<td>GRank</td>
<td>SRank</td>
<td>CDFG or CNPS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| *Chlorogalum purpureum var. reductum*
Camatta Canyon amole | PMLIL0G052 | Threatened | Rare | G2T1 | S1 | 1B.1 |
| *Chloropyron maritimum ssp. maritimum*
salt marsh bird's-beak | PDSCR0J0C2 | Endangered | Endangered | G4?T1 | S1 | 1B.2 |
| *Chorizanthe breweri*
Brewer's spineflower | PDPGN04050 | | | G2 | S2.2 | 1B.3 |
| *Chorizanthe pungens var. pungens*
Monterey spineflower | PDPGN040M2 | Threatened | | G2T2 | S2 | 1B.2 |
| *Chorizanthe rectispina*
straight-awned spineflower | PDPGN040N0 | | | G1 | S1.2 | 1B.3 |
| *Cirsium fontinale var. obispoense*
Chorro Creek bog thistle | PDAST2E162 | Endangered | Endangered | G2T2 | S2 | 1B.2 |
| *Cirsium occidentale var. compactum*
compact cobwebby thistle | PDAST2E1Z1 | | | G3G4T2 | S2.1 | 1B.2 |
| *Cirsium occidentale var. lucianum*
Cuesta Ridge thistle | PDAST2E1Z6 | Threatened | | G3G4T2 | S2 | 1B.2 |
| *Cirsium rhophophilum*
surf thistle | PDAST2E2J0 | Threatened | | G1 | S1 | 1B.2 |
| *Cirsium scariosum var. loncholepis*
La Graciosa thistle | PDAST2E1N0 | Endangered | Threatened | G5T1 | S1 | 1B.1 |
| *Cladium californicum*
California saw-grass | PMCYP04010 | | | G4 | S2.2 | 2.2 |
| *Cladonia firma*
firm cup lichen | NLT0008460 | | | G4 | S1.1 | |
| *Clarkia speciosa ssp. immaculata*
Pismo clarkia | PDONA05111 | Endangered | Rare | G4T1 | S1 | 1B.1 |
| *Deinandra halliana*
Hall's tarplant | PDAST4R0C0 | | | G2 | S2 | 1B.1 |
| *Deinandra increcens ssp. foliosa*
leafy tarplant | PDAST4R0U4 | | | G4G5T2 | S2.2 | 1B.2 |
| *Delphinium parryi ssp. blochmaniae*
dune larkspur | PDRAN0B1B1 | | | G4T2 | S2.2 | 1B.2 |
| *Delphinium parryi ssp. eastwoodiae*
Eastwood's larkspur | PDRAN0B1B2 | | | G4T2 | S2 | 1B.2 |
| *Delphinium recurvatum*
recurved larkspur | PDRAN0B1J0 | | | G3 | S3 | 1B.2 |
| *Delphinium umbraculorum*
umbrella larkspur | PDRAN0B1W0 | | | G2G3 | S2S3.3 | 1B.3 |
| *Dithyrea maritima*
beach spectaclepod | PDBRA10020 | Threatened | | G2 | S2.1 | 1B.1 |
| *Dudleya abramsii ssp. bettinae*
Betty's dudleya | PDCRA04011 | | | G3T1 | S1.2 | 1B.2 |
| *Dudleya abramsii ssp. murina*
mouse-gray dudleya | PDCRA04012 | | | G3T2 | S2.3 | 1B.3 |
| *Dudleya blochmaniae ssp. blochmaniae*
Blochman's dudleya | PDCRA04051 | | | G2T2 | S2.1 | 1B.1 |
<table>
<thead>
<tr>
<th>Scientific Name/Common Name</th>
<th>Element Code</th>
<th>Federal Status</th>
<th>State Status</th>
<th>GRank</th>
<th>SRank</th>
<th>CDFG or CNPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 Entosthodon kochii</td>
<td>NBMUS2P050</td>
<td></td>
<td></td>
<td>G1</td>
<td>S1</td>
<td>1B.3</td>
</tr>
<tr>
<td>Koch's cord moss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71 Eriastrum hooveri</td>
<td>PDPLM03070</td>
<td></td>
<td>Delisted</td>
<td>G3</td>
<td>S3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Hoover's eriastrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72 Eriastrum luteum</td>
<td>PDPLM03080</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>yellow-flowered eriastrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73 Erigeron blochmaniae</td>
<td>PDAST3M5J0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>Blochman's leafy daisy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74 Eriodictyon altissimum</td>
<td>PDHYD04010</td>
<td></td>
<td>Endangered</td>
<td>G1</td>
<td>S1</td>
<td>1B.1</td>
</tr>
<tr>
<td>Indian Knob mountainbalm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 Eriogonum temblorense</td>
<td>PDPGN085P0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>Temblor buckwheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76 Eryngium aristatum var. hooveri</td>
<td>PDAPI0Z043</td>
<td></td>
<td></td>
<td>G5T2</td>
<td>S2.1</td>
<td>1B.1</td>
</tr>
<tr>
<td>Hoover's button-celery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77 Eryngium spinosepalum</td>
<td>PDAPI0Z0Y0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>spiny-sepaled button-celery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78 Eschscholzia rhombipetala</td>
<td>PDPAP0A0D0</td>
<td></td>
<td></td>
<td>G1</td>
<td>S1.1</td>
<td>1B.1</td>
</tr>
<tr>
<td>diamond-petaled California poppy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79 Fritillaria agrestis</td>
<td>PMLIL0V010</td>
<td></td>
<td></td>
<td>G3</td>
<td>S3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>stinkbells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 Fritillaria ojaensis</td>
<td>PMLIL0V0N0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2</td>
<td>1B.2</td>
</tr>
<tr>
<td>Ojai fritillary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81 Fritillaria viridea</td>
<td>PMLIL0V0L0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2</td>
<td>1B.2</td>
</tr>
<tr>
<td>San Benito fritillary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82 Galium californicum ssp. luciense</td>
<td>PDRUB0N0E3</td>
<td></td>
<td></td>
<td>G5T2</td>
<td>S2.3</td>
<td>1B.3</td>
</tr>
<tr>
<td>Cone Peak bedstraw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83 Galium hardhamiae</td>
<td>PDRUB0N0Y0</td>
<td></td>
<td></td>
<td>G2</td>
<td>S2.3</td>
<td>1B.3</td>
</tr>
<tr>
<td>Hardham's bedstraw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84 Horkelia cuneata ssp. puberula</td>
<td>PDROS0W045</td>
<td></td>
<td></td>
<td>G4T2</td>
<td>S2.1</td>
<td>1B.1</td>
</tr>
<tr>
<td>mesa horkelia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85 Horkelia cuneata ssp. sericea</td>
<td>PDROS0W043</td>
<td></td>
<td></td>
<td>G4T1</td>
<td>S1.1</td>
<td>1B.1</td>
</tr>
<tr>
<td>Kellogg's horkelia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86 Juncus luciensi</td>
<td>PMJUN013J0</td>
<td></td>
<td></td>
<td>G2G3</td>
<td>S2S3</td>
<td>1B.2</td>
</tr>
<tr>
<td>Santa Lucia dwarf rush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87 Lasthenia californica ssp. macrantha</td>
<td>PDAST5L0C5</td>
<td></td>
<td></td>
<td>G3T2</td>
<td>S2.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>perennial goldfields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88 Lasthenia glabrata ssp. coulteri</td>
<td>PDAST5L0A1</td>
<td></td>
<td></td>
<td>G4T3</td>
<td>S2.1</td>
<td>1B.1</td>
</tr>
<tr>
<td>Coulter's goldfields</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89 Lepidium jaredii ssp. album</td>
<td>PDBRA1M0G2</td>
<td></td>
<td></td>
<td>G1T1</td>
<td>S1.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>Panoche pepper-grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 Layia jonesii</td>
<td>PDAST5N090</td>
<td></td>
<td></td>
<td>G1</td>
<td>S1.1</td>
<td>1B.2</td>
</tr>
<tr>
<td>Jones' layia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91 Layia munzii</td>
<td>PDAST5N0B0</td>
<td></td>
<td></td>
<td>G1</td>
<td>S1.1</td>
<td>1B.2</td>
</tr>
<tr>
<td>Munz's tidy-tips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92 Lepidium jaredii ssp. album</td>
<td>PDBRA1M0G2</td>
<td></td>
<td></td>
<td>G1T1</td>
<td>S1.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Element Code</td>
<td>Federal Status</td>
<td>State Status</td>
<td>GRank</td>
<td>SRank</td>
<td>CDFG or CNPS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>Lepidium jaredii ssp. jaredii</td>
<td>PDBRA1M0G1</td>
<td>G1T1</td>
<td>S1.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jared's pepper-grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupinus ludovicianus</td>
<td>PDFAB2B2G0</td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Luis Obispo County lupine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lupinus nipomensis</td>
<td>PDFAB2B550</td>
<td></td>
<td>Endangered</td>
<td>G1</td>
<td>S1</td>
<td>1B.1</td>
</tr>
<tr>
<td>Nipomo Mesa lupine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madia radiata</td>
<td>PDAST650E0</td>
<td>G2</td>
<td>S2.1</td>
<td>1B.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>showy golden madia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malacothamnus davidsonii</td>
<td>PDMAL0Q040</td>
<td>G1</td>
<td>S1.1</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davidson's bush-mallow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malacothamnus palmeri var. involucratus</td>
<td>PDMAL0Q0B1</td>
<td>G3T2Q</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmel Valley bush-mallow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malacothamnus palmeri var. palmeri</td>
<td>PDMAL0Q0B5</td>
<td>G3T2Q</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Lucia bush-mallow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malacothrix saxatilis var. arachnoidea</td>
<td>PDAST660C2</td>
<td>G5T2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmel Valley malacothrix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microseris paludosa</td>
<td>PDAST6E0D0</td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>marsh microseris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monardella crispa</td>
<td>PDLAM18070</td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crisp monardella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monardella frutescens</td>
<td>PDLAM180X0</td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Luis Obispo monardella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monardella palmeri</td>
<td>PDLAM180H0</td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmer's monardella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monolopia congdonii</td>
<td>PDASTA8010</td>
<td>G3</td>
<td>S3</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Joaquin woollythreads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monolopia gracilens</td>
<td>PDAST6G010</td>
<td>G2G3</td>
<td>S2S3</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>woodland woollythreads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasturtium gambelii</td>
<td>PDBRA270V0</td>
<td>G1</td>
<td>S1</td>
<td>1B.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gambel’s water cress</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navarretia fossalis</td>
<td>PDPLM0C080</td>
<td>G1</td>
<td>S1</td>
<td>1B.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spreading navarretia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navarretia nigelliformis ssp. radians</td>
<td>PDPLM0C0J2</td>
<td>G4T2</td>
<td>S2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shining navarretia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navarretia prostrata</td>
<td>PDPLM0C0Q0</td>
<td>G2</td>
<td>S2</td>
<td>1B.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prostrate vernal pool navarretia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemacladus secundiflorus var. robbinsii</td>
<td>PDCAM0F0B2</td>
<td>G3T2T3</td>
<td>S2S3</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robbins' nemacladus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orobanche parishii ssp. brachyloba</td>
<td>PDORO040A2</td>
<td>G4T3</td>
<td>S3.2</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>short-lobed broomrape</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pecticularis dudleyi</td>
<td>PDSKR1K0D0</td>
<td>Rare</td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
</tr>
<tr>
<td>Dudley's lousewort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>PGPIN040V0</td>
<td>G1</td>
<td>S1.1</td>
<td>1B.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monterey pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiobothrys uncinatus</td>
<td>PDBOR0V170</td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hooked popcorn-flower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name/Common Name</td>
<td>Element Code</td>
<td>Federal Status</td>
<td>State Status</td>
<td>GRank</td>
<td>SRank</td>
<td>CDFG or CNPS</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>116 Poa diaboli</td>
<td>PMPOA4Z390</td>
<td></td>
<td></td>
<td>G1</td>
<td>S1.2</td>
<td>1B.2</td>
</tr>
<tr>
<td>Diablo Canyon blue grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117 Sanicula maritima</td>
<td>PDAPI1Z0D0</td>
<td>Rare</td>
<td>G2</td>
<td>S2.2</td>
<td>1B.1</td>
<td></td>
</tr>
<tr>
<td>adobe sanicle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118 Scrophularia atrata</td>
<td>PDSCR1S010</td>
<td></td>
<td>G2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
</tr>
<tr>
<td>black-flowered figwort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119 Senecio aphanactus</td>
<td>PDAST8H060</td>
<td></td>
<td>G3?</td>
<td>S1.2</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>chaparral ragwort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 Sidalcea hickmanii ssp. anomalal</td>
<td>PDMAL110A1</td>
<td>Rare</td>
<td>G3T1</td>
<td>S1</td>
<td>1B.2</td>
<td></td>
</tr>
<tr>
<td>Cuesta Pass checkerbloom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121 Sidalcea hickmanii ssp. parishii</td>
<td>PDMAL110A3</td>
<td>Rare</td>
<td>G3T1</td>
<td>S1.2</td>
<td>1B.2</td>
<td></td>
</tr>
<tr>
<td>Parish's checkerbloom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122 Streptanthus albidus ssp. peramoenus</td>
<td>PDBRA2G012</td>
<td></td>
<td>G2T2</td>
<td>S2.2</td>
<td>1B.2</td>
<td></td>
</tr>
<tr>
<td>most beautiful jewel-flower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123 Stylocline masonii</td>
<td>PDAST8Y080</td>
<td></td>
<td>G1</td>
<td>S1.1</td>
<td>1B.1</td>
<td></td>
</tr>
<tr>
<td>Mason's neststraw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124 Suaeda californica</td>
<td>PDCHE0P020</td>
<td>Endangered</td>
<td>G1</td>
<td>S1</td>
<td>1B.1</td>
<td></td>
</tr>
<tr>
<td>California seablite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125 Sulcaria isidiifera</td>
<td>NLTEST0020</td>
<td></td>
<td>G1</td>
<td>S1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>splitting yarn lichen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126 Symphyotrichum defoliatum</td>
<td>PDASTE80C0</td>
<td></td>
<td>G2</td>
<td>S2</td>
<td>1B.2</td>
<td></td>
</tr>
<tr>
<td>San Bernardino aster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127 Trifolium hydrophilum</td>
<td>PDFAB400R5</td>
<td></td>
<td>G2</td>
<td>S2</td>
<td>1B.2</td>
<td></td>
</tr>
<tr>
<td>saline clover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128 Triteleia ixioides ssp. cookii</td>
<td>PMLIL210A2</td>
<td></td>
<td>G5T2</td>
<td>S2.3</td>
<td>1B.3</td>
<td></td>
</tr>
<tr>
<td>Cook's triteleia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129 Tropidocarpum capparideum</td>
<td>PDBRA2R010</td>
<td></td>
<td>G1</td>
<td>S1.1</td>
<td>1B.1</td>
<td></td>
</tr>
<tr>
<td>caper-fruitd tropidocarpum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plant List

214 matches found. *Click on scientific name for details*

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Family</th>
<th>Lifeform</th>
<th>Rare Plant Rank</th>
<th>State Rank</th>
<th>Global Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies bracteata</td>
<td>bristlecone fir</td>
<td>Pinaceae</td>
<td>perennial evergreen tree</td>
<td>1B.3</td>
<td>S2.3</td>
<td>G2</td>
</tr>
<tr>
<td>Abronia maritima</td>
<td>red sand-verbenia</td>
<td>Nyctaginaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3?</td>
<td>G4?</td>
</tr>
<tr>
<td>Acanthomintha obovata ssp. cordata</td>
<td>heart-leaved thorn-mint</td>
<td>Lamiaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2?</td>
<td>G3?T3?</td>
</tr>
<tr>
<td>Acanthomintha obovata ssp. obovata</td>
<td>San Benito thorn-mint</td>
<td>Lamiaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2?</td>
<td>G3?T3?</td>
</tr>
<tr>
<td>Agrostis hooveri</td>
<td>Hoover's bent grass</td>
<td>Poaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Allium hickmanii</td>
<td>Hickman's onion</td>
<td>Alliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Allium howellii var. clokeyi</td>
<td>Mt. Pinos onion</td>
<td>Alliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.3</td>
<td>S2.3</td>
<td>G4T2</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Family</td>
<td>Life Form</td>
<td>4</td>
<td>S</td>
<td>G</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Amsinckia douglasiana</td>
<td>Douglas' fiddleneck</td>
<td>Boraginaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Amsinckia furcata</td>
<td>forked fiddleneck</td>
<td>Boraginaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G4</td>
</tr>
<tr>
<td>Androsace elongata ssp. acuta</td>
<td>California androsace</td>
<td>Primulaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td></td>
</tr>
<tr>
<td>Antirrhinum ovatum</td>
<td>oval-leaved snapdragon</td>
<td>Plantaginaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Arctostaphylos crustacea ssp. subcordata</td>
<td>Santa Cruz Island manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>4.2</td>
<td>S3.2</td>
<td>G4T3</td>
</tr>
<tr>
<td>Arctostaphylos cruzensis</td>
<td>Arroyo de la Cruz manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Arctostaphylos hookeri ssp. hearstiorum</td>
<td>Hearst's manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S2</td>
<td>G3T2</td>
</tr>
<tr>
<td>Arctostaphylos hooveri</td>
<td>Hoover's manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Arctostaphylos luciana</td>
<td>Santa Lucia manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Arctostaphylos montereyensis</td>
<td>Toro manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S2.1</td>
<td>G2</td>
</tr>
<tr>
<td>Arctostaphylos morroensis</td>
<td>Morro manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.1</td>
<td>S2</td>
<td>G2</td>
</tr>
<tr>
<td>Arctostaphylos obispoensis</td>
<td>Bishop manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>4.3</td>
<td>S3</td>
<td>G3</td>
</tr>
<tr>
<td>Arctostaphylos osoensis</td>
<td>Oso manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S1.2</td>
<td>G1</td>
</tr>
<tr>
<td>Arctostaphylos pechoensis</td>
<td>Pecho manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Arctostaphylos pilosula</td>
<td>Santa Margarita manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S3</td>
<td>G3</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Section</td>
<td>Subsection</td>
<td>Group</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>---------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Arctostaphylos rudis</td>
<td>sand mesa manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S.2.2</td>
<td>G.2</td>
</tr>
<tr>
<td>Arctostaphylos tomentosa ssp. dacitica</td>
<td>dacite manzanita</td>
<td>Ericaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.1</td>
<td>S.1.1</td>
<td>G4T.1</td>
</tr>
<tr>
<td>Arenaria paludicola</td>
<td>marsh sandwort</td>
<td>Caryophyllaceae</td>
<td>perennial stoloniferous herb</td>
<td>1B.1</td>
<td>S.1</td>
<td>G.1</td>
</tr>
<tr>
<td>Aristocapsa insignis</td>
<td>Indian Valley spineflower</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S.2.2</td>
<td>G.2</td>
</tr>
<tr>
<td>Aspidotis carlotta-halliae</td>
<td>Carlotta Hall's lace fern</td>
<td>Pteridaceae</td>
<td>perennial rhizomatous herb</td>
<td>4.2</td>
<td>S.3.2</td>
<td>G.3</td>
</tr>
<tr>
<td>Astragalus didymocarpus var. milesianus</td>
<td>Miles' milk-vetch</td>
<td>Fabaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S.2.2</td>
<td>G5T.2</td>
</tr>
<tr>
<td>Astragalus macrodon</td>
<td>Salinas milk-vetch</td>
<td>Fabaceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S.3.3</td>
<td>G.3</td>
</tr>
<tr>
<td>Astragalus nuttallii var. nuttallii</td>
<td>ocean bluff milk-vetch</td>
<td>Fabaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S.3.2</td>
<td>G3T.3</td>
</tr>
<tr>
<td>Atriplex cordulata var. cordulata</td>
<td>heartscale</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S.2.2?</td>
<td>G2?</td>
</tr>
<tr>
<td>Atriplex coronata var. coronata</td>
<td>crownscale</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S.3.2</td>
<td>G4T.3</td>
</tr>
<tr>
<td>Atriplex coronata var. vallicola</td>
<td>Lost Hills crownscale</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S.2</td>
<td>G4T.2</td>
</tr>
<tr>
<td>Atriplex coulteri</td>
<td>Coulter's saltbush</td>
<td>Chenopodiaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S.2.2</td>
<td>G.2</td>
</tr>
<tr>
<td>Atriplex joaquinana</td>
<td>San Joaquin spearscale</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S.2</td>
<td>G.2</td>
</tr>
<tr>
<td>Atriplex serenana var. davidsonii</td>
<td>Davidson's saltscale</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S.2?</td>
<td>G5T.2?</td>
</tr>
<tr>
<td>Baccharis plummerae ssp. glabrata</td>
<td>San Simeon baccharis</td>
<td>Asteraceae</td>
<td>perennial deciduous shrub</td>
<td>1B.2</td>
<td>S.1.2</td>
<td>G3T.1</td>
</tr>
<tr>
<td>Baccharis plummerae ssp. plummerae</td>
<td>Plummer's baccharis</td>
<td>Asteraceae</td>
<td>perennial deciduous shrub</td>
<td>4.3</td>
<td>S.3.2</td>
<td>G3T.3</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Family</td>
<td>Growth Habit</td>
<td>Code 1</td>
<td>Code 2</td>
<td>Code 3</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Bloomeria humilis</td>
<td>dwarf goldenstar</td>
<td>Themidaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S1.1</td>
<td>G1</td>
</tr>
<tr>
<td>Calandrinia breweri</td>
<td>Brewer's calandrinia</td>
<td>Montiaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2?</td>
<td>G4</td>
</tr>
<tr>
<td>California macrophylla</td>
<td>round-leaved filaree</td>
<td>Geraniaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S2</td>
<td>G2</td>
</tr>
<tr>
<td>Calochortus catalinae</td>
<td>Catalina mariposa lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Calochortus clavatus var. clavatus</td>
<td>club-haired mariposa lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>4.3</td>
<td>S3</td>
<td>G4T3</td>
</tr>
<tr>
<td>Calochortus clavatus var. recurvifolius</td>
<td>Arroyo de la Cruz mariposa lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S1.2</td>
<td>G4T1</td>
</tr>
<tr>
<td>Calochortus fimbriatus</td>
<td>late-flowered mariposa lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G3G4</td>
</tr>
<tr>
<td>Calochortus obispoensis</td>
<td>San Luis mariposa lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S2.1</td>
<td>G2</td>
</tr>
<tr>
<td>Calochortus palmeri var. palmeri</td>
<td>Palmer's mariposa lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S2.1</td>
<td>G2T2</td>
</tr>
<tr>
<td>Calochortus simulans</td>
<td>La Panza mariposa lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.3</td>
<td>S2.3</td>
<td>G2</td>
</tr>
<tr>
<td>Calochortus uniflorus</td>
<td>large-flowered mariposa lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>4.2</td>
<td>S3</td>
<td>G4</td>
</tr>
<tr>
<td>Calycadenia villosa</td>
<td>dwarf calycadenia</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S2.1</td>
<td>G2</td>
</tr>
<tr>
<td>Calyptridium parryi var. hesseeae</td>
<td>Santa Cruz Mountains pussypaws</td>
<td>Montiaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S2</td>
<td>G3G4T2</td>
</tr>
<tr>
<td>Calystegia subacaulis ssp. episcopalis</td>
<td>Cambria morning-glory</td>
<td>Convolvulaceae</td>
<td>perennial rhizomatous herb</td>
<td>4.2</td>
<td>S3</td>
<td>G3T3</td>
</tr>
<tr>
<td>Camissoniopsis hardhamiae</td>
<td>Hardham's evening-primrose</td>
<td>Onagraceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S1</td>
<td>G1Q</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Group 1</td>
<td>Group 2</td>
<td>Group 3</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Carex obispoensis</td>
<td>San Luis Obispo sedge</td>
<td>Cyperaceae</td>
<td>perennial rhizomatous herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Castilleja ambigua ssp. ambiguа</td>
<td>Johnny-nip</td>
<td>Orobanchaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3</td>
<td>G4T3T4</td>
</tr>
<tr>
<td>Castilleja ambigua ssp. insalutata</td>
<td></td>
<td>Orobanchaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G4T1</td>
</tr>
<tr>
<td>Castilleja densiflora ssp. obispoensis</td>
<td>San Luis Obispo owl's-clover</td>
<td>Orobanchaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G5T2</td>
</tr>
<tr>
<td>Castilleja plagiota</td>
<td>Mojave paintbrush</td>
<td>Orobanchaceae</td>
<td>perennial herb (hemiparasitic)</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Caulanthus californicus</td>
<td>California jewel-flower</td>
<td>Brassicaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G1</td>
</tr>
<tr>
<td>Caulanthus lemmontii</td>
<td>Lemmon's jewelflower</td>
<td>Brassicaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Ceanothus cuneatus var. fascicularis</td>
<td>Lompoc ceanothus</td>
<td>Rhamnaceae</td>
<td>perennial evergreen shrub</td>
<td>4.2</td>
<td>S3.2</td>
<td>G5T3</td>
</tr>
<tr>
<td>Ceanothus hearstiorum</td>
<td>Hearst's ceanothus</td>
<td>Rhamnaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S1.2</td>
<td>G1</td>
</tr>
<tr>
<td>Ceanothus maritimus</td>
<td>maritime ceanothus</td>
<td>Rhamnaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Ceanothus rigidus</td>
<td>Monterey ceanothus</td>
<td>Rhamnaceae</td>
<td>perennial evergreen shrub</td>
<td>4.2</td>
<td>S3.2</td>
<td>G5T3</td>
</tr>
<tr>
<td>Centromadia parryi ssp. congonii</td>
<td>Congdon's tarplant</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G4T2</td>
</tr>
<tr>
<td>Centromadia parryi ssp. parryi</td>
<td>Pappose tarplant</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S1</td>
<td>G4T1</td>
</tr>
<tr>
<td>Chenopodium littoreum</td>
<td>Coastal goosefoot</td>
<td>Chenopodiaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G2</td>
</tr>
<tr>
<td>Chlorogalum pomeridianum var. minus</td>
<td>Dwarf soaproot</td>
<td>Agavaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G5T2</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Group</td>
<td>Subgroup</td>
<td>Sub-subgroup</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Chlorogalum purpureum var. purpureum</td>
<td>Santa Lucia purple amole</td>
<td>Agavaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.1</td>
<td>S2</td>
<td>G2T2</td>
</tr>
<tr>
<td>Chlorogalum purpureum var. reductum</td>
<td>Camatta Canyon amole</td>
<td>Agavaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G2T1</td>
</tr>
<tr>
<td>Chloropyron maritimum ssp. maritimum</td>
<td>salt marsh bird's-beak</td>
<td>Orobancheae</td>
<td>annual herb (hemiparasitic)</td>
<td>1B.2</td>
<td>S1</td>
<td>G4?T1</td>
</tr>
<tr>
<td>Chorizanthe breweri</td>
<td>Brewer's spineflower</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>1B.3</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Chorizanthe douglasii</td>
<td>Douglas' spineflower</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Chorizanthe palmeri</td>
<td>Palmer's spineflower</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2?</td>
<td>G3?</td>
</tr>
<tr>
<td>Chorizanthe pungens var. pungens</td>
<td>Monterey spineflower</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G2T2</td>
</tr>
<tr>
<td>Chorizanthe rectispina</td>
<td>straight-awned spineflower</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>1B.3</td>
<td>S1.2</td>
<td>G1</td>
</tr>
<tr>
<td>Chorizanthe ventricosa</td>
<td>potbellied spineflower</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Cicuta maculata var. bolanderi</td>
<td>Bolander's water-hemlock</td>
<td>Apiaceae</td>
<td>perennial herb</td>
<td>2.1</td>
<td>S2</td>
<td>G5T3T4</td>
</tr>
<tr>
<td>Cirsium fontinale var. obispoense</td>
<td>San Luis Obispo fountain thistle</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G2T2</td>
</tr>
<tr>
<td>Cirsium occidentale var. compactum</td>
<td>compact cobwebby thistle</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2.1</td>
<td>G3G4T2</td>
</tr>
<tr>
<td>Cirsium occidentale var. lucianum</td>
<td>Cuesta Ridge thistle</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G3G4T2</td>
</tr>
<tr>
<td>Cirsium rhothophilum</td>
<td>Surf thistle</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S1</td>
<td>G1</td>
</tr>
<tr>
<td>Cirsium scariosum var. loncholepis</td>
<td>La Graciosa thistle</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G5T1</td>
</tr>
<tr>
<td>Cladium californicum</td>
<td>California sawgrass</td>
<td>Cyperaceae</td>
<td>perennial rhizomatous herb</td>
<td>2.2</td>
<td>S2.2</td>
<td>G4</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Cycle</td>
<td>Page</td>
<td>Section</td>
<td>Trait</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Clarkia speciosa ssp. immaculata</td>
<td>Pismo clarkia</td>
<td>Onagraceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G4T1</td>
</tr>
<tr>
<td>Clinopodium mimuloides</td>
<td>monkey-flower savory</td>
<td>Lamiaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Convolvulus simulans</td>
<td>small-flowered morning-glory</td>
<td>Convolvulaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Corethrogyne leucophylla</td>
<td>branching beach aster</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>3.2</td>
<td>S3.2</td>
<td>G3Q</td>
</tr>
<tr>
<td>Deinandra halliana</td>
<td>Hall's tarplant</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S2</td>
<td>G2</td>
</tr>
<tr>
<td>Deinandra increcens ssp. foliosa</td>
<td>leafy tarplant</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G4G5T2</td>
</tr>
<tr>
<td>Delphinium gypsophilum ssp. gypsophilum</td>
<td>gypsum-loving larkspur</td>
<td>Ranunculaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G4T3</td>
</tr>
<tr>
<td>Delphinium gypsophilum ssp. parviflorum</td>
<td>small-flowered gypsum-loving larkspur</td>
<td>Ranunculaceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G4T3</td>
</tr>
<tr>
<td>Delphinium parryi ssp. blochmaniae</td>
<td>dune larkspur</td>
<td>Ranunculaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G4T2</td>
</tr>
<tr>
<td>Delphinium parryi ssp. eastwoodiae</td>
<td>Eastwood's larkspur</td>
<td>Ranunculaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G4T2</td>
</tr>
<tr>
<td>Delphinium recurvatum</td>
<td>recurved larkspur</td>
<td>Ranunculaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S3</td>
<td>G3</td>
</tr>
<tr>
<td>Delphinium umbraculorum</td>
<td>umbrella larkspur</td>
<td>Ranunculaceae</td>
<td>perennial herb</td>
<td>1B.3</td>
<td>S2S3.3</td>
<td>G2G3</td>
</tr>
<tr>
<td>Dithyrea maritima</td>
<td>beach spectaclepod</td>
<td>Brassicaceae</td>
<td>perennial rhizomatous herb</td>
<td>1B.1</td>
<td>S2.1</td>
<td>G2</td>
</tr>
<tr>
<td>Dudleya abramsii ssp. bettinae</td>
<td>Betty's dudleya</td>
<td>Crassulaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S1.2</td>
<td>G3T1</td>
</tr>
<tr>
<td>Dudleya abramsii ssp. murina</td>
<td>mouse-gray dudleya</td>
<td>Crassulaceae</td>
<td>perennial leaf succulent</td>
<td>1B.3</td>
<td>S2.3</td>
<td>G3T2</td>
</tr>
<tr>
<td>Dudleya blochmaniae ssp. blochmaniae</td>
<td>Blochman's dudleya</td>
<td>Crassulaceae</td>
<td>perennial herb</td>
<td>1B.1</td>
<td>S2.1</td>
<td>G2T2</td>
</tr>
<tr>
<td>Botanical Name</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Rating</td>
<td>Section</td>
<td>Group</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Eleocharis parvula</td>
<td>small spikerush</td>
<td>Cyperaceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G5</td>
</tr>
<tr>
<td>Entosthodon kochii</td>
<td>Koch's cord moss</td>
<td>Funariaceae</td>
<td>moss</td>
<td>1B.3</td>
<td>S1</td>
<td>G1</td>
</tr>
<tr>
<td>Eremalche kernensis</td>
<td>Kern mallow</td>
<td>Malvaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G3?T1Q</td>
</tr>
<tr>
<td>Eriastrum hooveri</td>
<td>Hoover's eriastrum</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Eriastrum luteum</td>
<td>yellow-flowered eriastrum</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Erigeron blochmaniae</td>
<td>Blochman's leafy daisy</td>
<td>Asteraceae</td>
<td>perennial rhizomatous herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Erigeron sanctarum</td>
<td>saint's daisy</td>
<td>Asteraceae</td>
<td>perennial rhizomatous herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Eriodictyon altissimum</td>
<td>Indian Knob mountainbalm</td>
<td>Hydrophyllaceae</td>
<td>perennial evergreen shrub</td>
<td>1B.1</td>
<td>S1</td>
<td>G1</td>
</tr>
<tr>
<td>Eriogonum elegans</td>
<td>elegant wild buckwheat</td>
<td>Polygalaceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3</td>
<td>G3</td>
</tr>
<tr>
<td>Eriogonum gossypinum</td>
<td>cottony buckwheat</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Eriogonum nudum var. indictum</td>
<td>protruding buckwheat</td>
<td>Polygonaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G5T3</td>
</tr>
<tr>
<td>Eriogonum temblorense</td>
<td>Temblor buckwheat</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Eryngium aristulatum var. hooveri</td>
<td>Hoover's button-celery</td>
<td>Apiaceae</td>
<td>annual / perennial herb</td>
<td>1B.1</td>
<td>S2.1</td>
<td>G5T2</td>
</tr>
<tr>
<td>Eryngium spinosepalum</td>
<td>spiny-sepaled button-celery</td>
<td>Apiaceae</td>
<td>annual / perennial herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Erysimum capitatum var. lompocense</td>
<td>San Luis Obispo wallflower</td>
<td>Brassicaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G5T3</td>
</tr>
<tr>
<td>Erysimum suffrutescens</td>
<td>suffrutescent wallflower</td>
<td>Brassicaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Eschscholzia hyncoide</td>
<td>San Benito poppy</td>
<td>Papaveraceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Eschscholzia rhombipetala</td>
<td>diamond-petaled</td>
<td>Papaveraceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S1.1</td>
<td>G1</td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Rating</td>
<td>Survey Rating</td>
<td>Zone</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>Fritillaria agrestis</td>
<td>California poppy</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Fritillaria ojaiensis</td>
<td>Ojai fritillary</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G2</td>
</tr>
<tr>
<td>Fritillaria viridea</td>
<td>San Benito fritillary</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G2</td>
</tr>
<tr>
<td>Galium andrewsii ssp. gatense</td>
<td>phlox-leaf serpentine bedstraw</td>
<td>Rubiaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G5T3</td>
</tr>
<tr>
<td>Galium californicum ssp. luciense</td>
<td>Cone Peak bedstraw</td>
<td>Rubiaceae</td>
<td>perennial herb</td>
<td>1B.3</td>
<td>S2.3</td>
<td>G5T2</td>
</tr>
<tr>
<td>Galium cliftonsmithii</td>
<td>Santa Barbara bedstraw</td>
<td>Rubiaceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Galium hardhamiae</td>
<td>Hardham’s bedstraw</td>
<td>Rubiaceae</td>
<td>perennial herb</td>
<td>1B.3</td>
<td>S2.3</td>
<td>G2</td>
</tr>
<tr>
<td>Gilia latiflora ssp. cuyamensis</td>
<td>Cuyama gilia</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G57T3</td>
</tr>
<tr>
<td>Gilia leptantha ssp. pinetorum</td>
<td>pine gilia</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G4T3</td>
</tr>
<tr>
<td>Gilia tenuiflora ssp. amplifacialis</td>
<td>trumpet-throated gilia</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3G4T3</td>
</tr>
<tr>
<td>Grindelia hirsutula var. maritima</td>
<td>San Francisco gumplant</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>3.2</td>
<td>S1</td>
<td>G5T1Q</td>
</tr>
<tr>
<td>Hesperevax caulescens</td>
<td>hogwallow starfish</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Horkelia cuneata var. puberula</td>
<td>mesa horkelia</td>
<td>Rosaceae</td>
<td>perennial herb</td>
<td>1B.1</td>
<td>S2.1</td>
<td>G4T2</td>
</tr>
<tr>
<td>Horkelia cuneata var. sericea</td>
<td>Kellogg’s horkelia</td>
<td>Rosaceae</td>
<td>perennial herb</td>
<td>1B.1</td>
<td>S1.1</td>
<td>G4T1</td>
</tr>
<tr>
<td>Horkelia yadonii</td>
<td>Santa Lucia horkelia</td>
<td>Rosaceae</td>
<td>perennial rhizomatous herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Juncus acutus ssp. leopoldii</td>
<td>southwestern spiny rush</td>
<td>Juncaceae</td>
<td>perennial rhizomatous herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G5T5</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Section</td>
<td>Series</td>
<td>Subseries</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Juncus luciensis</td>
<td>Santa Lucia dwarf rush</td>
<td>Juncaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2S3</td>
<td>G2G3</td>
</tr>
<tr>
<td>Lasthenia californica ssp.</td>
<td>macrantha</td>
<td>Asteraceae</td>
<td>perennial goldfields</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G3T2</td>
</tr>
<tr>
<td>Lasthenia ferrisie</td>
<td>Ferris' goldfields</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Lasthenia glabrata ssp. coulteri</td>
<td>Coulter's goldfields</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S2.1</td>
<td>G4T3</td>
</tr>
<tr>
<td>Lasthenia lepatera</td>
<td>Salinas Valley goldfields</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Lasthenia heterotricha</td>
<td>pale-yellow layia</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S2</td>
<td>G2</td>
</tr>
<tr>
<td>Lasthenia jonesii</td>
<td>Jones' layia</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S1.1</td>
<td>G1</td>
</tr>
<tr>
<td>Lepidium munzii</td>
<td>Munz's tidy-tips</td>
<td>Brassicaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S1.1</td>
<td>G1</td>
</tr>
<tr>
<td>Lepidium jaredii ssp. album</td>
<td>Panoche pepper-grass</td>
<td>Brassicaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S1.2</td>
<td>G1T1</td>
</tr>
<tr>
<td>Lepidium jaredii ssp. jaredii</td>
<td>Jared's pepper-grass</td>
<td>Brassicaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S1.2</td>
<td>G1T1</td>
</tr>
<tr>
<td>Leptodactylon californicum ssp. tomentosum</td>
<td>fuzzy prickly-phlox</td>
<td>Polemoniaceae</td>
<td>perennial deciduous shrub</td>
<td>4.2</td>
<td>S3.2</td>
<td>G5T3</td>
</tr>
<tr>
<td>Leptosiphon grandiflorus</td>
<td>large-flowered leptosiphon</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Lessingia tenuis</td>
<td>spring lessingia</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Lilium humboldti ssp. ocellatum</td>
<td>ocellated Humboldt lily</td>
<td>Liliaceae</td>
<td>perennial bulbiferous herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G4T3</td>
</tr>
<tr>
<td>Lomatium parvifolium</td>
<td>small-leaved lomatium</td>
<td>Apiaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3</td>
<td>G3</td>
</tr>
<tr>
<td>Lotus formosissimus</td>
<td>harlequin lotus</td>
<td>Fabaceae</td>
<td>perennial rhizomatous herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G4</td>
</tr>
<tr>
<td>Lupinus cervinus</td>
<td>Santa Lucia lupine</td>
<td>Fabaceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Lupinus ludovicianus</td>
<td>San Luis Obispo County lupine</td>
<td>Fabaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Lupinus nipomensis</td>
<td>Nipomo Mesa lupine</td>
<td>Fabaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G1</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Location Code</td>
<td>Elevation Code</td>
<td>Group Code</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Madia radiata</td>
<td>Showy golden madia</td>
<td>Asteraceae</td>
<td>Annual herb</td>
<td>1B.1</td>
<td>S2.1</td>
<td>G2</td>
</tr>
<tr>
<td>Malacothamnus davidsonii</td>
<td>Davidson's bush-mallow</td>
<td>Malvaceae</td>
<td>Perennial deciduous shrub</td>
<td>1B.2</td>
<td>S1.1</td>
<td>G1</td>
</tr>
<tr>
<td>Malacothamnus gracilis</td>
<td>Slender bush-mallow</td>
<td>Malvaceae</td>
<td>Perennial deciduous shrub</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3Q</td>
</tr>
<tr>
<td>Malacothamnus jonesii</td>
<td>Jones' bush-mallow</td>
<td>Malvaceae</td>
<td>Perennial deciduous shrub</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Malacothamnus niveus</td>
<td>San Luis Obispo County bush-mallow</td>
<td>Malvaceae</td>
<td>Perennial deciduous shrub</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3Q</td>
</tr>
<tr>
<td>Malacothamnus palmeri var. involucratus</td>
<td>Carmel Valley bush-mallow</td>
<td>Malvaceae</td>
<td>Perennial deciduous shrub</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G3T2Q</td>
</tr>
<tr>
<td>Malacothamnus palmeri var. palmeri</td>
<td>Santa Lucia bush-mallow</td>
<td>Malvaceae</td>
<td>Perennial deciduous shrub</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G3T2Q</td>
</tr>
<tr>
<td>Malacothrix incana</td>
<td>Dunedelion</td>
<td>Asteraceae</td>
<td>Perennial herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Malacothrix phaeocarpa</td>
<td>Dusky-fruited malacothrix</td>
<td>Asteraceae</td>
<td>Annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Malacothrix saxatilis var. arachnoidea</td>
<td>Carmel Valley malacothrix</td>
<td>Asteraceae</td>
<td>Perennial rhizomatous herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G5T2</td>
</tr>
<tr>
<td>Micropus amphibolus</td>
<td>Mt. Diablo cottonweed</td>
<td>Asteraceae</td>
<td>Annual herb</td>
<td>3.2</td>
<td>S3.2?</td>
<td>G3</td>
</tr>
<tr>
<td>Microseris paludosa</td>
<td>Marsh microseris</td>
<td>Asteraceae</td>
<td>Perennial herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Mimulus subsecundus</td>
<td>One-sided monkeyflower</td>
<td>Phrymaceae</td>
<td>Annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Monardella antonina ssp. benitensis</td>
<td>San Benito monardella</td>
<td>Lamiaceae</td>
<td>Perennial rhizomatous herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G4T3</td>
</tr>
<tr>
<td>Monardella frutescens</td>
<td>San Luis Obispo monardella</td>
<td>Lamiaceae</td>
<td>Perennial rhizomatous herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Monardella palmeri</td>
<td>Palmer's monardella</td>
<td>Lamiaceae</td>
<td>Perennial rhizomatous herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Size</td>
<td>Spreading</td>
<td>Global Region</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>Monardella undulata</td>
<td>curly-leaved monardella</td>
<td>Lamiaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Monardella undulata ssp. crispa</td>
<td>crisp monardella</td>
<td>Lamiaceae</td>
<td>perennial rhizomatous herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Monolopia congonii</td>
<td>San Joaquin woollythreads</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S3</td>
<td>G3</td>
</tr>
<tr>
<td>Monolopia gracilens</td>
<td>woodland woollythreads</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2S3</td>
<td>G2G3</td>
</tr>
<tr>
<td>Mucronea californica</td>
<td>California spineflower</td>
<td>Polygonaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3</td>
<td>G3</td>
</tr>
<tr>
<td>Nasturtium gambei</td>
<td>Gambel's water cress</td>
<td>Brassicaceae</td>
<td>perennial rhizomatous herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G1</td>
</tr>
<tr>
<td>Navarretia fossalis</td>
<td>spreading navarretia</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S1</td>
<td>G1</td>
</tr>
<tr>
<td>Navarretia nigelliformis ssp. radians</td>
<td>shining navarretia</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2</td>
<td>G4T2</td>
</tr>
<tr>
<td>Navarretia prostrata</td>
<td>prostrate vernal pool navarretia</td>
<td>Polemoniaceae</td>
<td>annual herb</td>
<td>1B.1</td>
<td>S2</td>
<td>G2</td>
</tr>
<tr>
<td>Nemacladus secundiflorus var. robbinsii</td>
<td>Robbins' nemacladus</td>
<td>Campanulaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2S3</td>
<td>G3T2T3</td>
</tr>
<tr>
<td>Nemacladus secundiflorus var. secundiflorus</td>
<td>large-flowered nemacladus</td>
<td>Campanulaceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3?</td>
<td>G3T3?</td>
</tr>
<tr>
<td>Orobanche parishii ssp. brachyloba</td>
<td>short-lobed broomrape</td>
<td>Orobanchaceae</td>
<td>perennial herb (parasitic)</td>
<td>4.2</td>
<td>S3.2</td>
<td>G4?T3</td>
</tr>
<tr>
<td>Pedicularis dudleyi</td>
<td>Dudley's lousewort</td>
<td>Orobanchaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Pentachaeta fragilis</td>
<td>fragile pentachaeta</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Perideridia gairdneri ssp. gairdneri</td>
<td>Gairdner's yampah</td>
<td>Apiaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G5T3</td>
</tr>
<tr>
<td>Perideridia pringlei</td>
<td>adobe yampah</td>
<td>Apiaceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Phacelia ramosissima var.</td>
<td>south coast branching</td>
<td>Boraginaceae</td>
<td>perennial herb</td>
<td>3.2</td>
<td>S3.2</td>
<td>G5?T3</td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Family</td>
<td>Life Form</td>
<td>Code 1</td>
<td>Code 2</td>
<td>Code 3</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>-----------------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Austrolitoralis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinus radiata</td>
<td>Monterey pine</td>
<td>Pinaceae</td>
<td>perennial evergreen tree</td>
<td>1B.1</td>
<td>S1.1</td>
<td>G1</td>
</tr>
<tr>
<td>Piperia leptopetala</td>
<td>narrow-petaled rein orchid</td>
<td>Orchidaceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Piperia michaelii</td>
<td>Michael's rein orchid</td>
<td>Orchidaceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Plagiobothrys chorisianus var. hickmanii</td>
<td>Hickman's popcorn-flower</td>
<td>Boraginaceae</td>
<td>annual herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3T3Q</td>
</tr>
<tr>
<td>Plagiobothrys uncinatus</td>
<td>hooked popcorn-flower</td>
<td>Boraginaceae</td>
<td>annual herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Poa diaboli</td>
<td>Diablo Canyon blue grass</td>
<td>Poaceae</td>
<td>perennial rhizomatous herb</td>
<td>1B.2</td>
<td>S1.2</td>
<td>G1</td>
</tr>
<tr>
<td>Prunus fasciculata var. punctata</td>
<td>sand almond</td>
<td>Rosaceae</td>
<td>perennial deciduous shrub</td>
<td>4.3</td>
<td>S3.3</td>
<td>G5T3</td>
</tr>
<tr>
<td>Pseudognaphalium leucocephalum</td>
<td>white rabbit-tobacco</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>2.2</td>
<td>S2S3.2</td>
<td>G4</td>
</tr>
<tr>
<td>Ribes sericeum</td>
<td>Santa Lucia gooseberry</td>
<td>Grossulariaceae</td>
<td>perennial deciduous shrub</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Sanicula hoffmannii</td>
<td>Hoffmann's sanicle</td>
<td>Apiaceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S3.3</td>
<td>G3</td>
</tr>
<tr>
<td>Sanicula maritima</td>
<td>adobe sanicle</td>
<td>Apiaceae</td>
<td>perennial herb</td>
<td>1B.1</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Scrophularia atrata</td>
<td>black-flowered figwort</td>
<td>Scrophulariaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S2.2</td>
<td>G2</td>
</tr>
<tr>
<td>Senecio aphanactis</td>
<td>chaparral ragwort</td>
<td>Asteraceae</td>
<td>annual herb</td>
<td>2.2</td>
<td>S1.2</td>
<td>G3?</td>
</tr>
<tr>
<td>Senecio astephanus</td>
<td>San Gabriel ragwort</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>4.3</td>
<td>S3</td>
<td>G3</td>
</tr>
<tr>
<td>Senecio blochmaniae</td>
<td>Blochman's ragwort</td>
<td>Asteraceae</td>
<td>perennial herb</td>
<td>4.2</td>
<td>S3.2</td>
<td>G3</td>
</tr>
<tr>
<td>Sidalcea hickmanii ssp. anomal</td>
<td>Cuesta Pass checkerbloom</td>
<td>Malvaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S1</td>
<td>G3T1</td>
</tr>
<tr>
<td>Sidalcea hickmanii</td>
<td>Parish's checkerbloom</td>
<td>Malvaceae</td>
<td>perennial herb</td>
<td>1B.2</td>
<td>S1.2</td>
<td>G3T1</td>
</tr>
<tr>
<td>Parish</td>
<td>Scientific Name</td>
<td>Common Name</td>
<td>Family</td>
<td>Life-form Description</td>
<td>Status Code 1</td>
<td>Status Code 2</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>parish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stebbinsoseris decipiens</td>
<td>Santa Cruz microseris</td>
<td>Asteraceae annual herb</td>
<td></td>
<td></td>
<td>1B.2</td>
<td>S.2.2</td>
</tr>
<tr>
<td>Stebbinsoseris decipiens</td>
<td>most beautiful jewel-flower</td>
<td>Brassicaceae annual herb</td>
<td></td>
<td></td>
<td>1B.2</td>
<td>S.2.2</td>
</tr>
<tr>
<td>Stylocline masonii</td>
<td>Mason's neststraw</td>
<td>Asteraceae annual herb</td>
<td></td>
<td></td>
<td>1B.1</td>
<td>S.1.1</td>
</tr>
<tr>
<td>Suaeda californica</td>
<td>California seablite</td>
<td>Chenopodiaceae perennial evergreen shrub</td>
<td></td>
<td></td>
<td>1B.1</td>
<td>S.1</td>
</tr>
<tr>
<td>Suaeda taxifolia</td>
<td>woolly seablite</td>
<td>Chenopodiaceae perennial evergreen shrub</td>
<td></td>
<td></td>
<td>4.2</td>
<td>S.2S3</td>
</tr>
<tr>
<td>Symphyotrichum defoliatum</td>
<td>San Bernardino aster</td>
<td>Asteraceae perennial rhizomatous herb</td>
<td></td>
<td></td>
<td>1B.2</td>
<td>S.2</td>
</tr>
<tr>
<td>Systenotheca vortriedei</td>
<td>Vortriede's spineflower</td>
<td>Polygonaceae annual herb</td>
<td></td>
<td></td>
<td>4.3</td>
<td>S.3.3</td>
</tr>
<tr>
<td>Toxicoscordion fontana</td>
<td>marsh zigadenus</td>
<td>Melanthiaceae perennial bulbiferous herb</td>
<td></td>
<td></td>
<td>4.2</td>
<td>S.3.2</td>
</tr>
<tr>
<td>Trifolium hydrophilum</td>
<td>saline clover</td>
<td>Fabaceae annual herb</td>
<td></td>
<td></td>
<td>1B.2</td>
<td>S.2</td>
</tr>
<tr>
<td>Triteleia ixioides ssp. cookii</td>
<td>Cook's triteleia</td>
<td>Themidaceae perennial bulbiferous herb</td>
<td></td>
<td></td>
<td>1B.3</td>
<td>S.2.3</td>
</tr>
<tr>
<td>Tropidocarpum capparideum</td>
<td>caper-fruited tropidocarpum</td>
<td>Brassicaceae annual herb</td>
<td></td>
<td></td>
<td>1B.1</td>
<td>S.1.1</td>
</tr>
</tbody>
</table>

Suggested Citation
APPENDIX B

SPECIAL STATUS PLANT SPECIES IN
SAN LUIS OBISPO COUNTY
<table>
<thead>
<tr>
<th>Scientific Name/ Common Name/ Family (Jepson Manual-1)</th>
<th>Federal/State/ CRPR Status (Jepson Manual-1)</th>
<th>County Distribution</th>
<th>Habitat Requirements</th>
<th>Phenology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies bracteata bristlecone fir Pinaceae</td>
<td>--/--/1B.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in rocky areas within broadleaved upland forest, chaparral, and lower montane coniferous forest.</td>
<td>Evergreen Tree</td>
</tr>
<tr>
<td>Acanthomintha obovata ssp. cordata heart-leaved thorn-mint Lamiaceae</td>
<td>--/--/4.2</td>
<td>Los Angeles, Monterey, Santa Barbara, San Luis Obispo, and Ventura.</td>
<td>Occurs on clay substrates within opening in chaparral, cismontane woodland, pinyon and juniper woodland, and valley and foothill grassland.</td>
<td>April-July</td>
</tr>
<tr>
<td>Acanthomintha obovata ssp. obovata San Benito thorn-mint Lamiaceae</td>
<td>--/--/4.2</td>
<td>Fresno, Monterey, San Benito, and San Luis Obispo.</td>
<td>Occurs on heavy clay, alkaline soils, and serpentinite substrates within chaparral, cismontane woodland, and valley and foothill grassland.</td>
<td>April-July</td>
</tr>
<tr>
<td>Agrostis hooveri Hoover’s bent grass Poaceae</td>
<td>--/--/1B.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Usually occurs on sandy soils within closed-cone coniferous forest, chaparral, cismontane woodland, and valley and foothill grassland.</td>
<td>April-July</td>
</tr>
<tr>
<td>Allium hickmanii Hickman’s onion Liliaceae</td>
<td>--/--/1B.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in closed-cone coniferous forest, maritime chaparral, coastal prairie, coastal scrub, and valley and foothill grassland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Allium howellii var. clokeyi Mt. Pinos onion Liliaceae</td>
<td>--/-/-1B.3</td>
<td>Kern, Los Angeles?*, Santa Barbara, San Luis Obispo, and Ventura.</td>
<td>Occurs in Great Basin scrub and pinyon and juniper woodland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Amsinckia douglasiana Douglas’ fiddleneck Boraginaceae</td>
<td>--/-/-4.2</td>
<td>Kern, Monterey, Santa Barbara, San Benito, San Luis Obispo, and Ventura.</td>
<td>Occurs on Monterey shale substrates and dry regions within cismontane woodland and valley and foothill grassland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Amsinckia furcata forked fiddleneck Boraginaceae</td>
<td>--/-/-4.2</td>
<td>Fresno, Kings, Kern, Merced, San Benito, and San Luis Obispo.</td>
<td>Occurs in cismontane woodland and valley and foothill grassland.</td>
<td>February-May</td>
</tr>
<tr>
<td>Antirrhinum ovatum oval-leaved snapdragon Scrophulariaceae</td>
<td>--/-/-4.2</td>
<td>Fresno, Kern, Monterey, Santa Barbara, San Benito, San Luis Obispo, and Ventura.</td>
<td>Occurs on clay or gypsum substrates and often in alkaline soils within chaparral, cismontane woodland, pinyon and juniper woodland, and valley and foothill grassland.</td>
<td>May-November</td>
</tr>
<tr>
<td>Arctostaphylos crustacea ssp. subcordata Santa Cruz Island manzanita Ericaceae</td>
<td>--/-/-4.2</td>
<td>Los Angeles, Santa Barbara, Santa Cruz Island, San Luis Obispo?, and Santa Rosa Island.</td>
<td>Occurs on rocky substrates within closed-cone coniferous forest and chaparral.</td>
<td>January-April</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-2)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Arctostaphylos cruzensis Arroyo de la Cruz manzanita Ericaceae</td>
<td>--/-/1B.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on sandy substrates within broadleafed upland forest, coastal bluff scrub, closed-cone coniferous forest, chaparral, coastal scrub, and valley and foothill grassland.</td>
<td>December-March</td>
</tr>
<tr>
<td>Arctostaphylos hookeri ssp. hearstiorum Hearst's manzanita Ericaceae</td>
<td>--/CE/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on sandy substrates within maritime chaparral, coastal prairie, coastal scrub, and valley and foothill grassland.</td>
<td>February-April</td>
</tr>
<tr>
<td>Arctostaphylos hooveri Hoover's manzanita Ericaceae</td>
<td>--/--4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in broadleafed upland forest, rocky areas within chaparral, cismontane woodland, and lower montane coniferous forest.</td>
<td>February-June</td>
</tr>
<tr>
<td>Arctostaphylos luciana Santa Lucia manzanita Ericaceae</td>
<td>--/-/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on shale substrates within chaparral and cismontane woodland.</td>
<td>December-March</td>
</tr>
<tr>
<td>Arctostaphylos montereyensis Toro manzanita Ericaceae</td>
<td>--/-/1B.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on sandy substrates within maritime chaparral, cismontane woodland, and coastal scrub.</td>
<td>February-March</td>
</tr>
<tr>
<td>Arctostaphylos morroensis Morro manzanita Ericaceae</td>
<td>FT/--/1B.1</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on Baywood fine sand substrates within maritime chaparral, cismontane woodland, pre-Flandrian coastal dunes, and coastal scrub.</td>
<td>December-March</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Arctostaphylos obispoensis Bishop manzanita Ericaceae</td>
<td>4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on serpentinite and rocky substrates within closed-cone coniferous forest, chaparral, and cismontane woodland.</td>
<td>February-June</td>
</tr>
<tr>
<td>Arctostaphylos osoensis Oso manzanita Ericaceae</td>
<td>1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on dacite porphyry buttes within chaparral and cismontane woodland.</td>
<td>February-March</td>
</tr>
<tr>
<td>Arctostaphylos pechoensis Pecho manzanita Ericaceae</td>
<td>1B.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs on siliceous shale substrates within closed-cone coniferous forest, chaparral, and coastal scrub.</td>
<td>November-March</td>
</tr>
<tr>
<td>Arctostaphylos pilosula Santa Margarita manzanita Ericaceae</td>
<td>1B.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Sometimes occurs on sandstone substrates within broadleafed upland forest, closed-cone coniferous forest, chaparral, and cismontane woodland.</td>
<td>December-May</td>
</tr>
<tr>
<td>Arctostaphylos rudis sand mesa manzanita Ericaceae</td>
<td>1B.2</td>
<td>Santa Barbara and San Luis Obispo</td>
<td>Occurs on sandy substrates within maritime chaparral and coastal scrub.</td>
<td>November-February</td>
</tr>
<tr>
<td>Arctostaphylos tomentosa ssp. daciticola dacite manzanita Ericaceae</td>
<td>1B.1</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on dacite porphyry buttes within chaparral and cismontane woodland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Arenaria paludicola marsh sandwort Caryophyllaceae</td>
<td>FE/CE/1B.1</td>
<td>Los Angeles, San Bernardino*, Santa Cruz*, San Francisco*, and San Luis Obispo.</td>
<td>Occurs on sandy substrates and in openings within freshwater or brackish marshes and swamps.</td>
<td>May-August</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>--------------------</td>
</tr>
</tbody>
</table>
| Arrostocapsa insignis
Indian Valley spineflower
Polygonaceae | --/-/-1B.2 | Monterey and San Luis Obispo. | Occurs on sandy substrates within cismontane woodland. | May-September |
| Aspidotis carlotta-halliae
Carlotta Hall’s lace fern
Pteridaceae | --/-/-4.2 | Alameda, Monterey, Marin, San Benito, and San Luis Obispo. | Generally occurs on serpentinite substrates within chaparral and cismontane woodland. | January-December |
| Astragalus didymocarpus var. milesianus
Miles’ milk-vetch
Fabaceae | --/-/-1B.2 | Santa Barbara, San Luis Obispo, and Ventura. | Occurs on clay substrates within coastal scrub. | March-June |
| Astragalus macrodon
Salinas milk-vetch
Fabaceae | --/-/-4.3 | Kern, Monterey, San Benito, San Luis Obispo, and Ventura. | Occurs on sandstone, shale, or serpentinite substrates within openings in chaparral, cismontane woodland, and valley and foothill grassland. | April-July |
| Astragalus nuttallii var. nuttallii
ocean bluff milk-vetch
<table>
<thead>
<tr>
<th>Scientific Name/ Common Name/ Family (Jepson Manual-1)</th>
<th>Federal/State/ CRPR Status (Jepson Manual-1)</th>
<th>County Distribution</th>
<th>Habitat Requirements</th>
<th>Phenology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atriplex cordulata heartscale Chenopodiaceae</td>
<td>--/-/-1B.2</td>
<td>Alameda, Butte, Contra Costa, Colusa, Fresno, Glenn, Kern, Madera, Merced, San Joaquin*, San Luis Obispo, Solano, Stanislaus*, Tulare, and Yolo*.</td>
<td>Occurs on saline or alkaline substrates within chenopod scrub, meadows and seeps, and sandy regions within valley and foothill grassland.</td>
<td>April-October</td>
</tr>
<tr>
<td>Atriplex cordulata var. cordulata heartscale</td>
<td>--/-/-1B.2</td>
<td>Alameda, Contra Costa, Fresno, Glenn, Kings, Kern, Merced, Monterey, San Joaquin?, San Luis Obispo, Solano, and Stanislaus.</td>
<td>Occurs on alkaline, often clay substrates within chenopod scrub, valley and foothill grassland, and vernal pools.</td>
<td>March-October</td>
</tr>
<tr>
<td>Atriplex cordulata var. erecticaulis earlimart orach</td>
<td>--/-/-1B.2</td>
<td>Fresno, Kings, Kern, Merced, and San Luis Obispo.</td>
<td>Occurs on alkaline substrates within chenopod scrub, valley and foothill grasslands, and vernal pools.</td>
<td>April-August</td>
</tr>
<tr>
<td>Atriplex coronata var. coronata crownscale Chenopodiaceae</td>
<td>--/-/-4.2</td>
<td>Alameda, Contra Costa, Fresno, Glenn, Kings, Kern, Merced, Monterey, San Joaquin?, San Luis Obispo, Solano, and Stanislaus.</td>
<td>Occurs on alkaline, often clay substrates within chenopod scrub, valley and foothill grassland, and vernal pools.</td>
<td>March-October</td>
</tr>
<tr>
<td>Atriplex vallicola Lost Hills crownscale Chenopodiaceae</td>
<td>--/-/-1B.2</td>
<td>Anacapa Island, Los Angeles, Orange, Santa Barbara, San Bernardino, San Clemente Island, Santa Catalina Island, Santa Cruz Island, San Diego, San Luis Obispo, San Miguel Island, Santa Rosa Island, and Ventura.</td>
<td>Occurs on alkaline or clay substrates within coastal bluff scrub, coastal dunes, coastal scrub, and valley and foothill grassland.</td>
<td>March-October</td>
</tr>
<tr>
<td>Atriplex coulteri Coulter’s saltbush Chenopodiaceae</td>
<td>--/-/-1B.2</td>
<td>Anacapa Island, Los Angeles, Orange, Santa Barbara, San Bernardino, San Clemente Island, Santa Catalina Island, Santa Cruz Island, San Diego, San Luis Obispo, San Miguel Island, Santa Rosa Island, and Ventura.</td>
<td>Occurs on alkaline or clay substrates within coastal bluff scrub, coastal dunes, coastal scrub, and valley and foothill grassland.</td>
<td>March-October</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1) (Jepson Manual-2)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Atriplex joaquiniana San Joaquin spearscale Chenopodiaceae</td>
<td>--/--/1B.2</td>
<td>Alameda, Contra Costa, Colusa, Fresno, Glenn, Merced, Monterey, Napa, San Benito, Santa Clara*, San Joaquin*, San Luis Obispo?, Solano, Tulare?*, and Yolo.</td>
<td>Occurs on alkaline substrates within Chenopod scrub, meadows and seeps, playas, and valley and foothill grassland.</td>
<td>April-October</td>
</tr>
<tr>
<td>Atriplex serenana var. davidsonii Davidson’s saltscale Chenopodiaceae</td>
<td>--/--/1B.2</td>
<td>Los Angeles?, Orange, Riverside, Santa Barbara, Santa Catalina Island, Santa Cruz Island, San Diego, San Luis Obispo, Santa Rosa Island, and Ventura.</td>
<td>Occurs on alkaline substrates within coastal bluff scrub and coastal scrub.</td>
<td>April-October</td>
</tr>
<tr>
<td>Baccharis plummerae ssp. glabrata San Simeon baccharis Asteraceae</td>
<td>--/--/1B.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs within Coastal scrub.</td>
<td>June</td>
</tr>
<tr>
<td>Baccharis plummerae ssp. plummerae Plummer’s baccharis Asteraceae</td>
<td>--/--/4.3</td>
<td>Anacapa Island, Los Angeles, Santa Barbara, Santa Cruz Island, San Luis Obispo, and Ventura.</td>
<td>Occurs on rocky substrates within broadleafed upland forest, chaparral, cismontane woodland, and coastal scrub.</td>
<td>May-October</td>
</tr>
<tr>
<td>Bloomeria humilis dwarf goldenstar Asteraceae</td>
<td>--/CR/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs within coastal bluff scrub, chaparral, and valley and foothill grassland.</td>
<td>June</td>
</tr>
<tr>
<td>Calandrinia breweri Brewer’s calandrinia Portulacaceae</td>
<td>--/--/4.2</td>
<td>Contra Costa, Los Angeles, Mendocino, Monterey, Mariposa, Marin, Napa, Orange, Riverside, Santa Barbara, San Bernardino, Santa Clara, Santa Cruz, Santa Cruz Island, San Diego, Shasta, San Luis Obispo, San Mateo, Sonoma, Santa Rosa Island, and Ventura.</td>
<td>Occurs on sandy or loamy substrates in disturbed sites within chaparral and coastal scrub.</td>
<td>March-June</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1) (Jepson Manual-2)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Calochortus catalinae Catalina mariposa lily Liliaceae</td>
<td>--/--/4.2</td>
<td>Los Angeles, Orange, Santa Barbara, San Bernardino, Santa Catalina Island, Santa Cruz Island, San Diego, San Luis Obispo, Santa Rosa Island, and Ventura.</td>
<td>Occurs in chaparral, cismontane woodland, coastal scrub, and valley and foothill grassland.</td>
<td>February-June</td>
</tr>
<tr>
<td>Calochortus clavatus var. clavatus club-haired mariposa lily Liliaceae</td>
<td>--/--/4.3</td>
<td>Los Angeles, Santa Barbara, San Benito, San Luis Obispo, and Ventura.</td>
<td>Usually occurs on serpentine, clay, and/or rocky substrates within chaparral, cismontane woodland, coastal scrub, and valley and foothill grassland.</td>
<td>May-June</td>
</tr>
<tr>
<td>Calochortus clavatus var. recurvifolius Arroyo de la Cruz mariposa lily Liliaceae</td>
<td>--/--/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs in coastal bluff scrub, maritime chaparral, coastal prairie, and lower montane coniferous forest.</td>
<td>June-July</td>
</tr>
<tr>
<td>Calochortus fimbriatus late-flowered mariposa lily Liliaceae</td>
<td>--/--/1B.2</td>
<td>Kern, Los Angeles, Monterey, Santa Barbara, San Luis Obispo, and Ventura.</td>
<td>Often occurs on serpentine substrates within chaparral, cismontane woodland and riparian woodland.</td>
<td>June-August</td>
</tr>
<tr>
<td>Calochortus obispoensis San Luis mariposa lily Liliaceae</td>
<td>--/--/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Often occurs on serpentine substrates within chaparral, coastal scrub, and valley and foothill grassland.</td>
<td>May-July</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Calochortus palmeri var. palmeri Palmer’s mariposa-lily Liliaceae</td>
<td>--/-/-1B.2</td>
<td>Kern, Los Angeles, Riverside, Santa Barbara, San Bernardino, San Luis Obispo, and Ventura.</td>
<td>Occurs in mesic areas within chaparral, lower montane coniferous forest, and meadows and seeps.</td>
<td>April-July</td>
</tr>
<tr>
<td>Calochortus simulans San Luis Obispo mariposa-lily Liliaceae</td>
<td>--/-/-1B.3</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs on sandy, often granitic, and sometimes serpentine substrates within chaparral, cismontane woodland, lower montane coniferous forest, and valley and foothill grassland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Calochortus uniflorus large-flowered mariposa-lily Liliaceae</td>
<td>--/-/-4.2</td>
<td>Contra Costa, Colusa, Lake, Mendocino, Monterey, Marin, Napa, Santa Cruz, San Luis Obispo, San Mateo, Sonoma, Tehama, and Trinity.</td>
<td>Occurs in coastal prairie, coastal scrub, meadows and seeps, and north coast coniferous forest.</td>
<td>April-June</td>
</tr>
<tr>
<td>Calycadenia villosa dwarf calycadenia Asteraceae</td>
<td>--/-/-1B.1</td>
<td>Fresno, Monterey, Santa Barbara, and San Luis Obispo.</td>
<td>Occurs on rocky substrates and fine soils within chaparral, cismontane woodland, meadows and seeps, and valley and foothill grassland.</td>
<td>May-October</td>
</tr>
<tr>
<td>Calyptridium parryi var. hesseeae Santa Cruz Mountains pussypaws Portulacaceae</td>
<td>--/-/-1B.1</td>
<td>Monterey, Santa Clara, Santa Cruz, San Luis Obispo, and Stanislaus.</td>
<td>Occurs on sandy or gravelly substrates and openings within chaparral and cismontane woodland.</td>
<td>May-August</td>
</tr>
<tr>
<td>Calystegia subcaulis ssp. episcopalis Cambria morning-glory Convolvulaceae</td>
<td>--/-/-4.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Usually occurs on clay substrates within chaparral, cismontane woodland, coastal prairie, and valley and foothill grassland.</td>
<td>March-July</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Camissonia hardamiae Hardham’s evening-primrose Onagraceae</td>
<td>--/-/-1B.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on sandy, decomposed carbonate substrates and disturbed or burned areas within chaparral and cismontane woodland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Camissoniopsis hardhamiae Hardham’s evening-primrose</td>
<td>--/-/-1B.2</td>
<td>Monterey, San Diego, and San Luis Obispo.</td>
<td>Often occurs in serpentine seeps, sometimes gabbro substrates, and often clay soils within closed-cone coniferous forest, chaparral, coastal prairie, coastal scrub, and valley and foothill grassland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Carex obispoensis San Luis Obispo sedge Cyperaceae</td>
<td>--/-/-1B.2</td>
<td>Alameda, Contra Costa, Del Norte, Humboldt, Mendocino, Marin, Napa, Santa Cruz, San Francisco?, San Luis Obispo, San Mateo, and Sonoma.</td>
<td>Occurs within coastal bluff scrub, coastal prairie, coastal scrub, marshes and swamps, valley and foothill grassland, and vernal pool margins.</td>
<td>March-August</td>
</tr>
<tr>
<td>Castilleja ambigua ssp. ambigua Johnny-nip Scrophulariaceae</td>
<td>--/-/-4.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs within coastal prairie and coastal scrub.</td>
<td>May-August</td>
</tr>
<tr>
<td>Castilleja ambigua ssp. insalutata pink Johnny-nip Scrophulariaceae</td>
<td>--/-/-1B.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castilleja densiflora ssp. obispoensis San Luis Obispo owl’s-clover Scrophulariaceae</td>
<td>--/-/-1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on serpentine substrates sometimes, within meadows and seeps and valley and foothill grassland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Castilleja plagiotoma Mojave paintbrush Scrophulariaceae</td>
<td>--/--/4.3</td>
<td>Kern, Los Angeles, San Bernardino, and San Luis Obispo.</td>
<td>Occurs on alluvial substrates within Great Basin scrub, Joshua tree woodland, lower montane coniferous forest, and pinyon and juniper woodland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Caulanthus californicus California jewel-flower Brassicaceae</td>
<td>FE/CE/1B.1</td>
<td>Fresno, Kings*, Kern, Santa Barbara, San Luis Obispo, and Tulare*.</td>
<td>Occurs on sandy substrates within chenopod scrub, pinyon and juniper woodland, and valley and foothill grassland.</td>
<td>February-May</td>
</tr>
<tr>
<td>Caulanthus lemmonii Lemmon’s jewel-flower Brassicaceae</td>
<td>--/--/1B.2</td>
<td>Alameda*, Fresno, Kings, Kern, Merced, Monterey, Santa Barbara, San Benito, San Joaquin, San Luis Obispo, Stanislaus, and Ventura.</td>
<td>Occurs in pinyon and juniper woodland and valley and foothill grassland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Ceanothus cuneatus var. fascicularis Lompoc ceanothus Rhamnaceae</td>
<td>--/--/4.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs on sandy substrates within chaparral.</td>
<td>February-April</td>
</tr>
<tr>
<td>Ceanothus rigidus California-lilac</td>
<td>--/--/4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceanothus hearstiorum Hearst’s ceanothus Rhamnaceae</td>
<td>--/CR/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs in maritime chaparral, coastal prairie, and coastal scrub.</td>
<td>March-April</td>
</tr>
<tr>
<td>Ceanothus maritimus maritime ceanothus Rhamnaceae</td>
<td>--/CR/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on clay substrates within coastal bluff scrub, maritime chaparral, and valley and foothill grassland.</td>
<td>January-April</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Centromadia parryi ssp. parryi pappose tarplant Asteraceae</td>
<td>--/-/-1B.2</td>
<td>Butte, Colusa, Glenn, Lake, Napa, San Luis Obispo, San Mateo, Solano, and Sonoma.</td>
<td>Often occurs on alkaline substrates within chaparral, coastal prairie, meadows and seeps, coastal salt marshes and swamps, and vernaly mesic regions within valley and foothill grassland.</td>
<td>May-November</td>
</tr>
<tr>
<td>Chenopodium littoreum coastal goosefoot Chenopodiaceae</td>
<td>--/-/-1B.2</td>
<td>Los Angeles, Santa Barbara, and San Luis Obispo.</td>
<td>Occurs in coastal dunes.</td>
<td>April-August</td>
</tr>
<tr>
<td>Chlorogalum pomeridianum var. minus dwarf soaprooot Liliaceae</td>
<td>--/-/-1B.2</td>
<td>Colusa, Lake, San Luis Obispo, Sonoma, and Tehama.</td>
<td>Occurs on serpentine substrates within chaparral.</td>
<td>May-August</td>
</tr>
<tr>
<td>Chlorogalum purpureum var. purpureum Santa Lucia purple amole Liliaceae</td>
<td>FT/-/-1B.1</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on gravelly or clay substrates within chaparral, cismontane woodland and valley and foothill grassland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Chlorogalum purpureum var. reductum Camatta Canyon amole Liliaceae</td>
<td>FT/CR/1B.1</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs in cismontane woodland and valley and foothill grassland.</td>
<td>April-May</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Chorizanthe breweri Brewer’s spineflower Polygonaceae</td>
<td>--/-/-1B.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on serpentine, rocky, or gravelly substrates within closed-cone coniferous forest, chaparral, cismontane woodland, and coastal scrub.</td>
<td>April-August</td>
</tr>
<tr>
<td>Chorizanthe douglasii Douglas’ spineflower Polygonaceae</td>
<td>--/-/-4.3</td>
<td>Monterey, San Benito, and San Luis Obispo.</td>
<td>Occurs on sandy or gravelly substrates within chaparral, cismontane woodland, coastal scrub, and lower montane coniferous forest.</td>
<td>April-July</td>
</tr>
<tr>
<td>Chorizanthe palmeri Palmer’s spineflower Polygonaceae</td>
<td>--/-/-4.2</td>
<td>Monterey, Santa Barbara, San Benito?, and San Luis Obispo.</td>
<td>Occurs on rocky or serpentine substrates within chaparral, cismontane woodland, and valley and foothill grassland.</td>
<td>April-August</td>
</tr>
<tr>
<td>Chorizanthe pungens var. pungens Monterey spineflower Polygonaceae</td>
<td>FT/-/-1B.2</td>
<td>Monterey, Santa Cruz, and San Luis Obispo*.</td>
<td>Occurs on sandy substrates within maritime chaparral, cismontane woodland, coastal dunes, coastal scrub, and valley and foothill grassland.</td>
<td>April-August</td>
</tr>
<tr>
<td>Chorizanthe rectispina Straight-awned spineflower Polygonaceae</td>
<td>--/-/-1B.3</td>
<td>Monterey, Santa Barbara, and San Luis Obispo.</td>
<td>Occurs in chaparral, cismontane woodland, and coastal scrub.</td>
<td>April-July</td>
</tr>
<tr>
<td>Chorizanthe ventricosa potbellied spineflower Polygonaceae</td>
<td>--/-/-4.3</td>
<td>Fresno, Monterey, San Benito, and San Luis Obispo.</td>
<td>Occurs on serpentine substrates within cismontane woodland and valley and foothill grassland.</td>
<td>May-September</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Cicuta maculata var. bolanderi Bolander’s water-hemlock Apiaceae</td>
<td>--/--/2.1</td>
<td>Contra Costa, Los Angeles*, Marin, Sacramento, Santa Barbara*, San Luis Obispo*, and Solano.</td>
<td>Occurs in freshwater or brackish marshes and swamps.</td>
<td>July-September</td>
</tr>
<tr>
<td>Cirsium fontinale var. obispoense San Luis Obispo fountain thistle Asteraceae</td>
<td>FE/CE/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on serpentine seeps and drainages within chaparral, cismontane woodland, coastal scrub, and valley and foothill grassland.</td>
<td>February-September</td>
</tr>
<tr>
<td>Cirsium occidentale var. compactum compact cobwebby thistle Asteraceae</td>
<td>--/--/1B.2</td>
<td>Monterey?, San Francisco*, and San Luis Obispo.</td>
<td>Occurs in chaparral, coastal dunes, coastal prairie, and coastal scrub.</td>
<td>April-June</td>
</tr>
<tr>
<td>Cirsium occidentale var. lucianum Cuesta Ridge thistle Asteraceae</td>
<td>--/--/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on serpentine substrates, often on rocky slopes, along disturbed roadsides, and within openings in chaparral.</td>
<td>April-June</td>
</tr>
<tr>
<td>Cirsium rhodophillum surf thistle Asteraceae</td>
<td>--/CT/1B.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs in coastal bluff scrub and coastal dunes.</td>
<td>April-June</td>
</tr>
<tr>
<td>Cirsium scariosum var. loncholepis La Grociosa thistle Asteraceae</td>
<td>FE/CT/1B.1</td>
<td>Monterey, Santa Barbara, and San Luis Obispo.</td>
<td>Occurs in mesic, sandy areas within cismontane woodland, coastal dunes, coastal scrub, brackish marshes and swamps, and valley and foothill grassland.</td>
<td>May-August</td>
</tr>
<tr>
<td>Cladium californicum California sawgrass Cyperaceae</td>
<td>--/--/2.2</td>
<td>Inyo, Los Angeles*, Riverside, Santa Barbara, San Bernardino, and San Luis Obispo.</td>
<td>Occurs in meadows and seeps and alkaline or freshwater marshes and swamps.</td>
<td>June-September</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Clarkia speciosa ssp. immaculata Pismo clarkia Onagraceae</td>
<td>FE/CR/1B.1</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on sandy substrates along margins and openings within chaparral, cismontane woodland, and valley and foothill grassland.</td>
<td>May-July</td>
</tr>
<tr>
<td>Clinopodium mimuloides monkey-flower savory Lamiaceae</td>
<td>--/--/4.2</td>
<td>Los Angeles, Monterey, Santa Barbara, San Luis Obispo, and Ventura.</td>
<td>Occurs along streambanks and in mesic areas within chaparral and north coast coniferous forest.</td>
<td>June-October</td>
</tr>
<tr>
<td>Convolvulus simulans small-flowered morning-glory Convolvulaceae</td>
<td>--/--/4.2</td>
<td>Contra Costa, Fresno, Kern, Los Angeles, Orange, Riverside, Santa Barbara, San Benito, San Clemente Island, Santa Catalina Island, Santa Cruz Island, San Diego, San Joaquin, San Luis Obispo, and Stanislaus.</td>
<td>Occurs on clay substrates and on serpentine seeps within openings in chaparral, coastal scrub, and valley and foothill grassland.</td>
<td>March-July</td>
</tr>
<tr>
<td>Corethrogyne leucophylla branching beach aster Asteraceae</td>
<td>--/--/3.2</td>
<td>Monterey, Santa Cruz, San Luis Obispo, and San Mateo.</td>
<td>Occurs in closed-cone coniferous forest and coastal dunes.</td>
<td>May-December</td>
</tr>
<tr>
<td>Corethrogyne filaginifolia California aster</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deinandra halliana Hall’s tarplant Asteraceae</td>
<td>--/--/1B.1</td>
<td>Fresno, Monterey, San Benito, and San Luis Obispo.</td>
<td>Occurs on clay substrates, chenopod scrub, and cismontane woodland, and valley and foothill grassland.</td>
<td>April-May</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Deinandra increscens ssp. foliosa leafy tarplant Asteraceae</td>
<td>--/-/-1B.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs on sandy substrates within valley and foothill grassland.</td>
<td>June-September</td>
</tr>
<tr>
<td>Deinandra paniculata paniculate tarplant</td>
<td>--/-/4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphinium gypsophilum ssp. gysophilum gypsum-loving larkspur Ranunculaceae</td>
<td>--/-/4.2</td>
<td>Alameda, Fresno, Kings, Kern, Madera, Merced, Monterey, San Benito, San Joaquin, San Luis Obispo, Stanislaus, and Ventura.</td>
<td>Occurs in chenopod scrub, cismontane woodland, and valley and foothill grassland.</td>
<td>February-May</td>
</tr>
<tr>
<td>Delphinium gypsophilum gypsum-loving larkspur</td>
<td>--/-/4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphinium gypsophilum ssp. parviflorum small-flowered gypsum-loving larkspur Ranunculaceae</td>
<td>--/-/4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in cismontane woodland and valley and foothill grassland.</td>
<td>March-June</td>
</tr>
<tr>
<td>Delphinium gypsophilum gypsum-loving larkspur</td>
<td>--/-/4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delphinium parryi ssp. blochmaniae dune larkspur Ranunculaceae</td>
<td>--/-/1B.2</td>
<td>Santa Barbara, San Luis Obispo, and Ventura.</td>
<td>Occurs in maritime chaparral and coastal dunes.</td>
<td>April-May</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------</td>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Delphinium parryi ssp. eastwoodiae Eastwood’s larkspur Ranunculaceae</td>
<td>--/--/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on serpentine substrates in coastal areas within openings in chaparral and valley and foothill grassland.</td>
<td>February-March</td>
</tr>
<tr>
<td>Delphinium recurvatum recurved larkspur Ranunculaceae</td>
<td>--/--/1B.2</td>
<td>Alameda, Butte*, Contra Costa, Colusa*, Fresno, Glenn, Kings, Kern, Madera, Merced, Monterey, San Joaquin, San Luis Obispo, Solano, Sutter, and Tulare.</td>
<td>Occurs on alkaline substrates within Chenopod scrub, cismontane woodland, and valley and foothill grassland.</td>
<td>March-June</td>
</tr>
<tr>
<td>Delphinium umbraculorum umbrella larkspur Ranunculaceae</td>
<td>--/--/1B.2</td>
<td>Monterey, Santa Barbara, San Luis Obispo, and Ventura.</td>
<td>Occurs in cismontane woodland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Dithyrea maritima beach spectaclepod Brassicaceae</td>
<td>--/CT/1B.1</td>
<td>Los Angeles*, Santa Barbara, Santa Catalina Island*, San Luis Obispo, San Miguel Island, San Nicolas Island, and Ventura.</td>
<td>Occurs in coastal dunes and sandy substrates within coastal scrub.</td>
<td>March-May</td>
</tr>
<tr>
<td>Dudleya abramsii ssp. bettinae Betty’s dudleya Crassulaceae</td>
<td>--/--/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on serpentine or rocky substrates within chaparral, coastal scrub, and valley and foothill grassland.</td>
<td>May-July</td>
</tr>
<tr>
<td>Dudleya abramsii ssp. murina mouse-gray dudleya Crassulaceae</td>
<td>--/--/1B.3</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on serpentine substrates within chaparral, cismontane woodland, and valley and foothill grassland.</td>
<td>May-June</td>
</tr>
<tr>
<td>Dudleya blochmaniae ssp. blochmaniae Blochman’s dudleya Crassulaceae</td>
<td>--/--/1B.1</td>
<td>Los Angeles, Orange, Santa Barbara, San Diego, San Luis Obispo, and Ventura.</td>
<td>Occurs on rocky, often clay, or serpentine substrates within coastal bluff scrub, chaparral, coastal scrub, and valley and foothill grassland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| **Eleocharis parvula**
small spikerush
Cyperaceae | --/--/4.3 | Butte, Contra Costa, Glenn, Humboldt, Mono, Napa, Orange, Plumas, Siskiyou, San Luis Obispo, Sonoma, and Ventura. | Occurs in marshes and swamps. | April-September |
| **Entosthodon kochii**
Koch’s cord moss
Funariaceae | --/--/1B.3 | Mendocino, Mariposa, Marin, and San Luis Obispo. | Occurs on soils within cismontane woodland. | Moss |
| **Eremalche kernensis**
Kern mallow
Malvaceae | FE/--/1B.1 | Kern, San Luis Obispo, and Tulare. | Occurs in chenopod scrub and valley and foothill grassland. | March-May |
| **Eriastrum hooveri**
Hoover’s eriastrum
Polemoniaceae | --/--/4.2 | Fresno, Kings, Kern, Los Angeles, Santa Barbara, San Benito, and San Luis Obispo. | Sometimes occurs on gravelly substrates within chenopod scrub, pinyon and juniper woodland, and valley and foothill grassland. | March-July |
| **Eriastrum luteum**
yellow-flowered eriastrum
Polemoniaceae | --/--/1B.2 | Monterey and San Luis Obispo. | Occurs on sandy or gravelly substrates within broadleafed upland forest, chaparral, and cismontane woodland. | May-June |
| **Erigeron blockmaniae**
Blochman’s leafy daisy
Asteraceae | --/--/1B.2 | Santa Barbara and San Luis Obispo. | Occurs in coastal dunes and coastal scrub. | June-August |
| **Erigeron sanctarum**
saint’s daisy
Asteraceae | --/--/4.2 | Santa Barbara, Santa Cruz Island, San Luis Obispo, and Santa Rosa Island. | Occurs in chaparral, cismontane woodland, and coastal scrub. | March-July |
| **Eriodictyon altissimum**
Indian Knob mountainbalm
Hydrophyllaceae | FE/CE/1B.1 | Endemic to San Luis Obispo. | Occurs on sandstone substrates within maritime chaparral, cismontane woodland, and coastal scrub. | March-June |
<table>
<thead>
<tr>
<th>Scientific Name/ Common Name/ Family (Jepson Manual-1)</th>
<th>Federal/State/ CRPR Status (Jepson Manual-1)</th>
<th>County Distribution</th>
<th>Habitat Requirements</th>
<th>Phenology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eriogonum elegans elegant wild buckwheat Polygonaceae</td>
<td>--/--/4.3</td>
<td>Monterey, Santa Barbara, San Benito, San Luis Obispo, and Ventura.</td>
<td>Usually occurs on sandy or gravelly substrates, often in washes, and sometimes roadsides within cismontane woodland and valley and foothill grassland.</td>
<td>May-November</td>
</tr>
<tr>
<td>Eriogonum gossypinum cottony buckwheat Polygonaceae</td>
<td>--/--/4.2</td>
<td>Fresno, Kings, Kern, and San Luis Obispo.</td>
<td>Occurs on clay substrates within chenopod scrub and valley and foothill grassland.</td>
<td>March-September</td>
</tr>
<tr>
<td>Eriogonum nudum var. indictum protruding buckwheat Polygonaceae</td>
<td>--/--/4.2</td>
<td>Fresno, Kern, Merced, Monterey, San Benito, and San Luis Obispo.</td>
<td>Occurs on clay or serpentine substrates within chaparral, chenopod scrub, and cismontane woodland.</td>
<td>May-December</td>
</tr>
<tr>
<td>Eriogonum temblorense Temblor buckwheat Polygonaceae</td>
<td>--/--/1B.2</td>
<td>Fresno, Kern, Monterey, and San Luis Obispo.</td>
<td>Occurs on clay or sandstone substrates within valley and foothill grassland.</td>
<td>April-September</td>
</tr>
<tr>
<td>Eryngium aristulatum var. hooveri Hoover’s button-celery Apiaceae</td>
<td>--/--/1B.1</td>
<td>Alameda, San Benito, Santa Clara*, San Diego, and San Luis Obispo.</td>
<td>Occurs in vernal pools.</td>
<td>July-August</td>
</tr>
<tr>
<td>Eryngium spinosepalum spiny-sepaled button-celery Apiaceae</td>
<td>--/--/1B.2</td>
<td>Fresno, Kern, Madera, Merced, San Luis Obispo, Stanislaus, Tulare, and Tuolumne.</td>
<td>Occurs in valley and foothill grassland and vernal pools.</td>
<td>April-May</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Erysimum capitatum var. lompocense San Luis Obispo wallflower Brassicaceae</td>
<td>none</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs on sandy substrates within chaparral and coastal scrub.</td>
<td>February-May</td>
</tr>
<tr>
<td>Erysimum capitatum var. capitatum western wallflower</td>
<td>--/--/4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eschscholzia hypecoides San Benito poppy Papaveraceae</td>
<td>--/--/4.3</td>
<td>Fresno, Imperial, Mendocino, Monterey, San Benito, and San Luis Obispo.</td>
<td>Occurs on serpentine or clay substrates within chaparral, cismontane woodland, and valley and foothill grassland.</td>
<td>March-June</td>
</tr>
<tr>
<td>Eschscholzia rhombipetala diamond-petaled California poppy Papaveraceae</td>
<td>--/--/1B.1</td>
<td>Alameda, Contra Costa*, Colusa*, San Joaquin, San Luis Obispo, and Stanislaus*.</td>
<td>Occurs on alkaline or clay substrates within valley and foothill grassland.</td>
<td>March-April</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-2)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Fritillaria ojaiensis Ojai fritillary Liliaceae</td>
<td>--/-/1B.2</td>
<td>Monterey?, Santa Barbara, San Luis Obispo?, and Ventura.</td>
<td>Occurs on rocky substrates and mesic areas within broadleaved upland forest, chaparral, and lower montane coniferous forest.</td>
<td>February-May</td>
</tr>
<tr>
<td>Fritillaria viridea San Benito fritillary Liliaceae</td>
<td>--/-/1B.2</td>
<td>Fresno, Monterey, San Benito, and San Luis Obispo.</td>
<td>Occurs on serpentine substrates within chaparral.</td>
<td>March-May</td>
</tr>
<tr>
<td>Galium andresii ssp. gatense phlox-leaf serpentine bedstraw Rubiaceae</td>
<td>--/-/4.2</td>
<td>Alameda, Contra Costa, Colusa, Fresno, Los Angeles, Monterey, San Benito, Santa Clara, and San Luis Obispo.</td>
<td>Occurs on serpentine or rocky substrates within chaparral, cismontane woodland, and lower montane coniferous forest.</td>
<td>April-July</td>
</tr>
<tr>
<td>Galium californicum ssp. luciense Cone Peak bedstraw Rubiaceae</td>
<td>--/-/1B.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in broadleaved upland forest, chaparral, cismontane woodland, and lower montane coniferous forest.</td>
<td>March-September</td>
</tr>
<tr>
<td>Galium cliftonsmithii Santa Barbara bedstraw Rubiaceae</td>
<td>--/-/4.3</td>
<td>Los Angeles, Monterey, Santa Barbara, San Luis Obispo, and Ventura.</td>
<td>Occurs in cismontane woodland.</td>
<td>May-July</td>
</tr>
<tr>
<td>Galium hardamiae Hardham’s bedstraw Rubiaceae</td>
<td>--/-/1B.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on serpentine substrates within closed-cone coniferous forest and chaparral.</td>
<td>April-October</td>
</tr>
<tr>
<td>Gilia latiflora ssp. cuyamensis Cuyama gilia Polemoniaceae</td>
<td>--/-/4.3</td>
<td>Kern, Los Angeles, Santa Barbara, San Luis Obispo?, and Ventura.</td>
<td>Occurs on sandy substrates within pinyon and juniper woodland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Gilia leptantha ssp. pinetorum pine gilia Polemoniaceae</td>
<td>--/--/4.3</td>
<td>Kern, Santa Barbara, San Luis Obispo, and Ventura.</td>
<td>Occurs on rocky or sandy substrates within lower montane coniferous forest.</td>
<td>May-July</td>
</tr>
<tr>
<td>Gilia tenuiflora ssp. amplifaucalis trumpet-throated gilia Polemoniaceae</td>
<td>--/--/4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on sandy substrates within cismontane woodland and valley and foothill grassland.</td>
<td>March-April</td>
</tr>
<tr>
<td>Grindelia hirsutula var. maritima San Francisco gumplant Asteraceae</td>
<td>--/--/3.2</td>
<td>Monterey?, Marin, Santa Cruz?, San Francisco, San Luis Obispo, and San Mateo.</td>
<td>Occurs on sandy or serpentinite substrates within coastal bluff scrub, coastal scrub, and valley and foothill grassland.</td>
<td>June-September</td>
</tr>
<tr>
<td>Hesperoevax caulescens hogwallow starfish Asteraceae</td>
<td>--/--/4.2</td>
<td>Alameda, Amador, Butte, Contra Costa, Colusa, Fresno, Glenn, Kern, Merced, Monterey, Napa*, Sacramento, San Diego*, San Joaquin, San Luis Obispo, Solano, Stanislaus, Sutter, Tehama, and Yolo.</td>
<td>Occurs on mesic areas and clay substrates within valley and foothill grassland and in shallow vernal pools.</td>
<td>March-June</td>
</tr>
<tr>
<td>Horkelia cuneata ssp. puberula mesa horkelia Rosaceae</td>
<td>--/--/1B.1</td>
<td>Los Angeles, Orange, Riverside*, Santa Barbara, San Bernardino, San Diego*, San Luis Obispo, and Ventura.</td>
<td>Occurs on sandy or gravelly substrates within maritime chaparral, cismontane woodland, and coastal scrub.</td>
<td>February-September</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Horkelia cuneata ssp. sericea Kellogg’s horkelia</td>
<td>--/--/1B.1</td>
<td>Alameda*, Monterey,</td>
<td>Occurs on sandy or</td>
<td>April-</td>
</tr>
<tr>
<td>Rosaceae</td>
<td></td>
<td>Marin*, Santa</td>
<td>gravelly substrates</td>
<td>September</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barbara, Santa Cruz,</td>
<td>and in openings</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Francisco*, San</td>
<td>within closed-cone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luis Obispo, and San</td>
<td>coniferous forest,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mateo.</td>
<td>maritime chaparral,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>coastal dunes, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>coastal scrub.</td>
<td></td>
</tr>
<tr>
<td>Horkelia yadonii Santa Lucia horkeliaRosaceae</td>
<td>--/--/4.2</td>
<td>Monterey, Santa</td>
<td>Occurs on granitic</td>
<td>April-July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barbara, and San</td>
<td>or sandy substrates</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luis Obispo.</td>
<td>within broadleafed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>upland forest,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>chaparral, cismonte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ane woodland,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>meadows and seeps,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and riparian woodland.</td>
<td></td>
</tr>
<tr>
<td>Juncus acutus ssp. leopoldii southwestern spiny</td>
<td>--/--/4.2</td>
<td>Imperial?, Los</td>
<td>Occurs in mesic</td>
<td>March-June</td>
</tr>
<tr>
<td>Juncaceae</td>
<td></td>
<td>Angeles, Orange,</td>
<td>areas within</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santa Barbara, San</td>
<td>coastal dunes,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diego, San Luis</td>
<td>alkaline meadows and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Obispo, and Ventura.</td>
<td>seeps, and coastal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>salt marshes and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>swamps.</td>
<td></td>
</tr>
<tr>
<td>Juncus luciensis Santa Lucia dwarf rush Juncaceae</td>
<td>--/--/1B.2</td>
<td>Lassen, Monterey,</td>
<td>Occurs in chaparral,</td>
<td>April-July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modoc, Napa, Nevada,</td>
<td>Great Basin scrub,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Placer, Plumas,</td>
<td>lower montane</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Riverside, Santa</td>
<td>coniferous forest,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barbara, San Benito,</td>
<td>meadows and seeps,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, Shasta,</td>
<td>and vernal pools.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and San Luis Obispo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasthenia californica ssp. macrantha perennial</td>
<td>--/--/1B.2</td>
<td>Mendocino, Marin,</td>
<td>Occurs in coastal</td>
<td>January-</td>
</tr>
<tr>
<td>goldfields Asteraceae</td>
<td></td>
<td>San Luis Obispo, San</td>
<td>bluff scrub, coastal</td>
<td>November-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mateo, and Sonoma.</td>
<td>dunes, and coastal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>scrub.</td>
<td></td>
</tr>
<tr>
<td>Lasthenia ferrisiae Ferris’ goldfields Asteraceae</td>
<td>--/--/4.2</td>
<td>Alameda, Butte,</td>
<td>Occurs in alkaline or</td>
<td>February-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contra Costa, Colusa,</td>
<td>clay vernal pools.</td>
<td>May</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fresno, Kings, Kern,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Merced, Monterey,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sacramento, San</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benito, San Joaquin,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Luis Obispo,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solano, Stanislaus,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tulare, Ventura, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yolo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lasthenia glabrata ssp. coulteri Coulter’s goldfields Asteraceae</td>
<td>--/--/1B.1</td>
<td>Colusa, Kern*, Los Angeles*, Merced, Orange, Riverside, Santa Barbara, San Bernardino*, San Diego, San Luis Obispo, Santa Rosa Island, Tehama, Tulare?, Ventura, and Yolo.</td>
<td>Occurs in coastal salt marshes and swamps, playas, and vernal pools.</td>
<td>February-June</td>
</tr>
<tr>
<td>Lasthenia leptalea Salinas Valley goldfields Asteraceae</td>
<td>--/--/4.3</td>
<td>Kern, Monterey, and San Luis Obispo.</td>
<td>Occurs in cismontane woodland and valley and foothill grassland.</td>
<td>February-April</td>
</tr>
<tr>
<td>Layia heterotricha pale-yellow layia Asteraceae</td>
<td>--/--/1B.1</td>
<td>Fresno, Kings*, Kern*, Los Angeles, Monterey, Santa Barbara, San Benito*, San Luis Obispo*, and Ventura.</td>
<td>Occurs on alkaline or clay substrates within cismontane woodland, coastal scrub, pinyon and juniper woodland, and valley and foothill grassland.</td>
<td>March-June</td>
</tr>
<tr>
<td>Layia jonesii Jones’ layia Asteraceae</td>
<td>--/--/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on clay or serpentinite substrates within chaparral and valley and foothill grassland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Layia munzii Munz’ s tidy-tips Asteraceae</td>
<td>--/--/1B.2</td>
<td>Fresno, Kern, and San Luis Obispo.</td>
<td>Occurs in chenopod scrub and on alkaline or clay soils within valley and foothill grassland.</td>
<td>March-April</td>
</tr>
<tr>
<td>Lepidium jaredii ssp. album Panoche pepper-grass Brassicaceae</td>
<td>--/--/1B.2</td>
<td>Fresno, San Benito, and San Luis Obispo.</td>
<td>Occurs on steep slopes and clay substrates within valley and foothill grassland.</td>
<td>February-June</td>
</tr>
<tr>
<td>Lepidium jaredii Jared’s pepper-grass</td>
<td>--/--/1B.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lepidium jaredii ssp. jaredii Jared’s pepper-grass Brassicaceae</td>
<td>--/--/1B.2</td>
<td>Kern and San Luis Obispo.</td>
<td>Occurs on alkaline or adobe substrates within valley and foothill grassland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Lepidium jaredii Jared’s pepper-grass</td>
<td>--/--/1B.2</td>
<td>Kern and San Luis Obispo.</td>
<td>Occurs in coastal dunes.</td>
<td>March-August</td>
</tr>
<tr>
<td>Leptodactylon californicum ssp. tomentosum fuzzy prickly-phlox Polemoniaceae</td>
<td>--/--/4.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linanthus californicus linanthus</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptosiphon grandiflorus large-flowered leptosiphon Polemoniaceae</td>
<td>--/--/4.2</td>
<td>Alameda, Kern, Madera, Merced, Monterey, Marin, Santa Barbara*, Santa Clara, Santa Cruz, San Francisco, San Luis Obispo, San Mateo, and Sonoma.</td>
<td>Usually occurs on sandy substrates within coastal bluff scrub, closed-cone coniferous forest, cismontane woodland, coastal dunes, coastal prairie, coastal scrub, and valley and foothill grassland.</td>
<td>April-August</td>
</tr>
<tr>
<td>Lessingia tenuis spring lessingia Asteraceae</td>
<td>--/--/4.3</td>
<td>Alameda, Kern, Monterey, Santa Barbara, San Benito, Santa Clara, San Luis Obispo, Stanislaus, and Ventura.</td>
<td>Occurs in openings within chaparral, cismontane woodland, and lower montane coniferous forest.</td>
<td>May-July</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lilium humboldtii ssp. ocellatum ocellated Humboldt lily Liliaceae</td>
<td>--/-/4.2</td>
<td>Anacapa Island, Los Angeles, Orange, Riverside, Santa Barbara, San Bernardino, Santa Cruz Island, San Diego, San Luis Obispo, Santa Rosa Island, and Ventura.</td>
<td>Occurs in openings within chaparral, cismontane woodland, coastal scrub, lower montane coniferous forest, and riparian woodland.</td>
<td>March-August</td>
</tr>
<tr>
<td>Lomatium parvifolium small-leaved lomatium Apiaceae</td>
<td>--/-/4.2</td>
<td>Monterey, Santa Cruz, and San Luis Obispo.</td>
<td>Occurs on serpentinite substrates within closed-cone coniferous forest, chaparral, coastal scrub, and riparian woodland.</td>
<td>January-June</td>
</tr>
<tr>
<td>Lotus formosissimus harlequin lotus Fabaceae</td>
<td>--/-/4.2</td>
<td>Del Norte, Humboldt, Mendocino, Monterey, Marin, San Benito, Santa Cruz, San Francisco, San Luis Obispo, San Mateo, and Sonoma.</td>
<td>Occurs in wetlands and on roadsides within broadleafed upland forest, coastal bluff scrub, closed-cone coniferous forest, cismontane woodland, coastal prairie, coastal scrub, meadows and seeps, marshes and swamps, and north coast coniferous forest, and valley and foothill grassland.</td>
<td>March-July</td>
</tr>
<tr>
<td>Hosackia gracilis harlequin lotus</td>
<td>--/-/4.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in broadleafed upland forest and lower montane coniferous forest.</td>
<td>May-June</td>
</tr>
<tr>
<td>Lupinus cervinus Santa Lucia lupine Fabaceae</td>
<td>--/-/4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on sandstone or sandy substrates within chaparral and cismontane woodland.</td>
<td>April-July</td>
</tr>
<tr>
<td>Lupinus ludovicianus San Luis Obispo County lupine Fabaceae</td>
<td>--/-/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on coastal dunes.</td>
<td>December-May</td>
</tr>
<tr>
<td>Lupinus nipomensis Nipomo Mesa lupine Fabaceae</td>
<td>FE/CE/1B.1</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on coastal dunes.</td>
<td>December-May</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Malacothamnus gracilis slender bush-mallow Malvaceae</td>
<td>--/--/4.3</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs in chaparral.</td>
<td>June-October</td>
</tr>
<tr>
<td>Malacothamnus jonesii Jones’ bush-mallow Malvaceae</td>
<td>--/--/4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in chaparral and cismontane woodland.</td>
<td>May-July</td>
</tr>
<tr>
<td>Malacothamnus niveus San Luis Obispo County bush-mallow Malvaceae</td>
<td>--/--/4.3</td>
<td>Monterey, Santa Barbara, and San Luis Obispo.</td>
<td>Occurs in chaparral.</td>
<td>May-July</td>
</tr>
<tr>
<td>Malacothamnus jonesii Jone’s bush-mallow Malvaceae</td>
<td>--/--/4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in chaparral.</td>
<td>May-July</td>
</tr>
<tr>
<td>Malacothamnus palmeri var. involucratus Carmel Valley bush-mallow Malvaceae</td>
<td>--/--/1B.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in chaparral, cismontane woodland, and coastal scrub.</td>
<td>May-October</td>
</tr>
<tr>
<td>Malacothamnus palmeri var. palmeri Santa Lucia bush-mallow Malvaceae</td>
<td>--/--/1B.2</td>
<td>Monterey? and San Luis Obispo.</td>
<td>Occurs on rocky substrates within chaparral.</td>
<td>May-July</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-2)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Malacothrix phaeocarpa dusky-fruited malacothrix Asteraceae</td>
<td>--/--/4.3</td>
<td>Monterey, Santa Barbara, Santa Clara, and San Luis Obispo.</td>
<td>Occurs in openings and burned or disturbed areas within closed-cone coniferous forest and chaparral.</td>
<td>April-June</td>
</tr>
<tr>
<td>Malacothrix saxatilis var. arachnoidea Carmel Valley malacothrix Asteraceae</td>
<td>--/--/1B.2</td>
<td>Monterey, Santa Barbara, San Benito, and San Luis Obispo.</td>
<td>Occurs on rocky substrates within chaparral and in coastal scrub.</td>
<td>March-December</td>
</tr>
<tr>
<td>Micropus amphibolus Mt. Diablo cottonweed Asteraceae</td>
<td>--/--/3.2</td>
<td>Alameda, Contra Costa, Colusa, Lake, Monterey, Marin, Napa, Santa Barbara, Santa Clara, Santa Cruz, San Joaquin, San Luis Obispo, Solano, and Sonoma.</td>
<td>Occurs on rocky substrates within broadleafed upland forest, chaparral, cismontane woodland, and valley and foothill grassland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Microseris paludosa marsh microseris Asteraceae</td>
<td>--/--/1B.2</td>
<td>Mendocino, Monterey, Marin, San Benito, Santa Cruz, San Francisco*, San Luis Obispo, San Mateo*, and Sonoma.</td>
<td>Occurs in closed-cone coniferous forest, cismontane woodland, coastal scrub, and valley and foothill grassland.</td>
<td>April-July</td>
</tr>
<tr>
<td>Mimulus subsecundus one-sided monkeyflower Scrophulariaceae</td>
<td>--/--/4.3</td>
<td>Fresno, Monterey, San Benito, and San Luis Obispo.</td>
<td>Occurs in lower montane coniferous forest.</td>
<td>May-July</td>
</tr>
<tr>
<td>Mimulus fremontii var. fremontii monkeyflower</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Monardella antonina ssp. benitensis</td>
<td>--/-/4.3</td>
<td>Monterey, San Benito, and San Luis Obispo.</td>
<td>Usually occurs on serpentine substrates within chaparral, cismontane woodland, lower montane coniferous forest, and valley and foothill grassland.</td>
<td>June-July</td>
</tr>
<tr>
<td>San Benito monardella Lamiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monardella villosa ssp. villosa coyote-mint</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monardella frutescens</td>
<td>--/-/1B.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs on coastal dunes and sandy substrates within coastal scrub.</td>
<td>May-September</td>
</tr>
<tr>
<td>San Luis Obispo monardella Lamiaceae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monardella undulata ssp. undulata</td>
<td>--/-/1B.2</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on serpentine substrates within chaparral and cismontane woodland.</td>
<td>June-August</td>
</tr>
<tr>
<td>San Luis Obispo monardella</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monardella palmeri Palmer’s monardella Lamiaceae</td>
<td>--/-/1B.2</td>
<td>Monterey, Marin, Santa Barbara, Santa Cruz, San Francisco, San Luis Obispo, San Mateo, and Sonoma.</td>
<td>Occurs on sandy substrates within closed-cone coniferous forest, chaparral, coastal dunes, coastal prairie, coastal scrub, and on ponderosa pine sandhills within lower montane coniferous forest.</td>
<td>May-September</td>
</tr>
<tr>
<td>Monardella undulata curly-leaved monardella Lamiaceae</td>
<td>--/-/4.2</td>
<td>Monterey, Marin, Santa Barbara, Santa Cruz, San Francisco, San Luis Obispo, San Mateo, and Sonoma.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monardella sinuata ssp. sinuata monardella</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Monardella crispa crisp monardella Lamiales</td>
<td>--/--/1B.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs in coastal dunes and coastal scrub.</td>
<td>April-August</td>
</tr>
<tr>
<td>Monardella undulata ssp. crispa crisp monardella</td>
<td>--/--/1B.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monolopia congdonii San Joaquin woollythreads Asteraceae</td>
<td>FE/--/1B.2</td>
<td>Fresno, Kings, Kern, Santa Barbara, San Benito, San Luis Obispo, and Tulare*.</td>
<td>Occurs in chenopod scrub and sandy substrates within valley and foothill grassland.</td>
<td>February-May</td>
</tr>
<tr>
<td>Monolopia gracilens woodland woollythreads Asteraceae</td>
<td>--/--/1B.2</td>
<td>Alameda, Contra Costa, Monterey, Santa Clara, Santa Cruz, San Luis Obispo, and San Mateo.</td>
<td>Occurs on serpentine substrates within openings in broadleaved upland forest, chaparral, and north coast coniferous forest, and in cismontane woodland, and valley and foothill grassland.</td>
<td>February-July</td>
</tr>
<tr>
<td>Mucronea californica California spineflower Polygonaceae</td>
<td>--/--/4.2</td>
<td>Kern, Los Angeles, Monterey, Riverside, Santa Barbara, San Bernardino, San Diego, San Luis Obispo, and Ventura.</td>
<td>Occurs on sandy substrates within chaparral, cismontane woodland, coastal dunes, coastal scrub, and valley and foothill grassland.</td>
<td>March-August</td>
</tr>
<tr>
<td>Nasturtium gambelii Gambel’s water cress Brassicaceae</td>
<td>FE/CT/1B.1</td>
<td>Los Angeles, Orange, Santa Barbara, San Bernardino*, San Diego, and San Luis Obispo.</td>
<td>Occurs in freshwater or brackish marshes and swamps.</td>
<td>April-October</td>
</tr>
<tr>
<td>Navarretia fossalis Moran’s nosegay Polemoniaceae</td>
<td>FT/--/1B.1</td>
<td>Los Angeles, Riverside, San Diego, and San Luis Obispo.</td>
<td>Occurs in chenopod scrub, assorted shallow freshwater marshes and swamps, playas, and vernal pools.</td>
<td>April-June</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Navarretia nigelliformis ssp. radians shining navarretia Polemoniaceae</td>
<td>--/--/1B.2</td>
<td>Alameda, Contra Costa, Fresno, Merced, Monterey, San Benito, San Joaquin, and San Luis Obispo.</td>
<td>Occurs in cismontane woodland, valley and foothill grassland, and vernal pools.</td>
<td>April-July</td>
</tr>
<tr>
<td>Navarretia prostrata prostrate vernal pool navarretia Polemoniaceae</td>
<td>--/--/1B.1</td>
<td>Alameda, Fresno, Los Angeles, Merced, Monterey, Orange, Riverside, San Bernardino?*, San Benito, San Diego, and San Luis Obispo.</td>
<td>Occurs in mesic areas within coastal scrub, meadows and seeps, alkaline valley and foothill grassland, and vernal pools.</td>
<td>April-July</td>
</tr>
<tr>
<td>Nemacladus secundiflorus var. robbinsii nemacladus Campanulaceae</td>
<td>--/--/1B.2</td>
<td>Los Angeles, Santa Barbara, San Benito, San Luis Obispo, and Ventura.</td>
<td>Occurs in openings within chaparral and valley and foothill grassland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Nemacladus secundiflorus var. secundiflorus large-flowered nemacladus Campanulaceae</td>
<td>--/--/4.3</td>
<td>Kern, Monterey, San Luis Obispo, and Tulare.</td>
<td>Occurs on gravelly substrates and openings within chaparral and valley and foothill grassland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Orobanche parishii ssp. brachyloba short-lobed broomrape Orobanchaceae</td>
<td>--/--/4.2</td>
<td>Los Angeles, Santa Barbara, Santa Catalina Island, Santa Cruz Island, San Diego, San Luis Obispo, San Miguel Island, San Nicolas Island, Santa Rosa Island, and Ventura.</td>
<td>Occurs on sandy substrates within coastal bluff scrub, coastal dunes, and coastal scrub.</td>
<td>April-October</td>
</tr>
<tr>
<td>Pedicularis dudleyi Dudley’s lousewort Scrophulariaceae</td>
<td>--/CR/1B.2</td>
<td>Monterey, Santa Cruz*, San Luis Obispo, and San Mateo.</td>
<td>Occurs in maritime chaparral, cismontane woodland, north coast coniferous forest, and valley and foothill grassland.</td>
<td>April-June</td>
</tr>
<tr>
<td>Pentachaeta fragilis fragile pentachaeta Asteraceae</td>
<td>--/--/4.3</td>
<td>Kern, Madera, Merced, Monterey, Santa Barbara, San Luis Obispo, Tuolumne, and Ventura.</td>
<td>Often occurs in openings within chaparral and sandy substrates within lower montane coniferous forest.</td>
<td>March-June</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Perideridia pringlei adobe yampah Apiaceae</td>
<td>--/--/4.3</td>
<td>Kern, Los Angeles, Monterey, Santa Barbara, San Luis Obispo, Tulare, and Ventura.</td>
<td>Occurs on serpentine and often clay substrates within chaparral, cismontane woodland, coastal scrub, and pinyon and juniper woodland.</td>
<td>April-July</td>
</tr>
<tr>
<td>Phacelia ramosissima var. australitoralis south coast branching phacelia Boraginaceae Phacelia ramosissima phacelia</td>
<td>--/--/3.2</td>
<td>Los Angeles, Monterey?*, Orange, Santa Barbara, San Diego, San Luis Obispo?, and Ventura.</td>
<td>Occurs on sandy, sometimes rocky substrates within chaparral, coastal dunes, coastal scrub, and coastal salt marshes and swamps.</td>
<td>March-August</td>
</tr>
<tr>
<td>Pinus radiata Monterey pine Pinaceae</td>
<td>--/--/1B.1</td>
<td>Monterey, Santa Cruz, San Luis Obispo, and San Mateo.</td>
<td>Occurs in closed-cone coniferous forest and cismontane woodland.</td>
<td>Evergreen Tree</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **Piperia michaelii**
Michael’s rein orchid
Orchidaceae | --/--/4.2 | Alameda, Amador, Butte, Contra Costa, Fresno, Humboldt, Los Angeles*, Monterey, Marin, Santa Barbara, San Benito, Santa Clara, Santa Cruz, Santa Cruz Island, San Francisco, San Luis Obispo, San Mateo, Stanislaus, Tulare, Tuolumne, Ventura*, and Yuba. | Occurs in coastal bluff scrub, closed-cone coniferous forest, chaparral, cismontane woodland, coastal scrub, and lower montane coniferous forest. | April-August |
| **Plagiobothrys chorisianus**
var. hickmanii
Hickman’s popcorn-flower
Boraginaceae | --/--/4.2 | Monterey, San Benito, Santa Clara, Santa Cruz, San Luis Obispo, and San Mateo?. | Occurs in closed-cone coniferous forest, chaparral, coastal scrub, marshes and swamps, and vernal pools. | April-June |
| **Plagiobothrys uncinatus**
hooked popcorn flower
Boraginaceae | --/--/1B.2 | Monterey, San Benito, Santa Clara, San Luis Obispo, and Stanislaus. | Occurs on sandy substrates within chaparral, cismontane woodland, and valley and foothill grassland. | April-May |
| **Poa diaboli**
Diablo Canyon bluegrass
Poaceae | --/--/1B.2 | Endemic to San Luis Obispo. | Occurs on shale substrates and sometimes burned areas within closed-cone coniferous forest, mesic areas within chaparral, cismontane woodland, and coastal scrub. | March-April |
| **Prunus fasciculata**
var. punctata
sand almond
Rosaceae | --/--/4.3 | Santa Barbara and San Luis Obispo. | Occurs on sandy substrates within maritime chaparral, cismontane woodland, coastal dunes, and coastal scrub. | March-April |
<table>
<thead>
<tr>
<th>Scientific Name/ Common Name/ Family (Jepson Manual-1)</th>
<th>Federal/State/ CRPR Status (Jepson Manual-1)</th>
<th>County Distribution</th>
<th>Habitat Requirements</th>
<th>Phenology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudognaphalium leucocephalum white rabbit-tobacco Asteraceae</td>
<td>--/--/2.2</td>
<td>Los Angeles (LAX), Orange (ORA), Riverside (RIV), Santa Barbara (SBA), San Diego (SDG), San Luis Obispo (SLO), Ventura Los Angeles, Orange, Riverside, Santa Barbara, San Diego, San Luis Obispo, and Ventura.</td>
<td>Occurs on sandy or gravely substrates within chaparral, cismontane woodland, coastal scrub, and riparian woodland.</td>
<td>July-December</td>
</tr>
<tr>
<td>Ribes sericeum Santa Lucia gooseberry Grossulariaceae</td>
<td>--/--/4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in broadleafed upland forest, coastal bluff scrub, and north coast coniferous forest.</td>
<td>February-April</td>
</tr>
<tr>
<td>Sanicula hoffmanii Hoffmann's sanicle Apiaceae</td>
<td>--/--/4.3</td>
<td>Monterey, Santa Barbara, Santa Cruz, Santa Cruz Island, San Luis Obispo, San Mateo, and Santa Rosa Island.</td>
<td>Often occurs on serpentinite or clay substrates within broadleafed upland forest, chaparral, and coastal scrub.</td>
<td>March-May</td>
</tr>
<tr>
<td>Sanicula maritima adobe sanicle Apiaceae</td>
<td>--/CR/1B.1</td>
<td>Alameda*, Monterey, San Francisco*, and San Luis Obispo.</td>
<td>Occurs on clay and serpentinite substrates within chaparral, coastal prairie, meadows and seeps, and valley and foothill grassland.</td>
<td>February-May</td>
</tr>
</tbody>
</table>
| *Scrophularia atrata* black-flowered figwort Scrophulariaceae | --/--/1B.2 | Santa Barbara and San Luis Obispo. | Closed-cone coniferous forest
• Chaparral
• Coastal dunes
• Coastal scrub
• Riparian scrub
Occurs in closed-cone coniferous forest, chaparral, coastal dunes, coastal scrub, and riparian scrub. | March-July |
<table>
<thead>
<tr>
<th>Scientific Name/ Common Name/ Family (Jepson Manual-1)</th>
<th>Federal/State/ CRPR Status (Jepson Manual-1)</th>
<th>County Distribution</th>
<th>Habitat Requirements</th>
<th>Phenology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senecio aphanactis chaparral ragwort Asteraceae</td>
<td>--/--/2.2</td>
<td>Alameda, Contra Costa, Fresno, Los Angeles, Merced, Monterey, Orange, Riverside, Santa Barbara, Santa Clara, Santa Catalina Island, Santa Cruz Island, San Diego, San Luis Obispo, Solano, Santa Rosa Island, and Ventura.</td>
<td>Sometimes occurs on alkaline substrates within chaparral, cismontane woodland, and coastal scrub.</td>
<td>January-April</td>
</tr>
<tr>
<td>Senecio astephanus San Gabriel ragwort Asteraceae</td>
<td>--/--/4.3</td>
<td>Kern, Los Angeles, Monterey, Santa Barbara, San Bernardino, San Diego, and San Luis Obispo.</td>
<td>Occurs on rocky slopes within coastal bluff scrub and chaparral.</td>
<td>May-July</td>
</tr>
<tr>
<td>Senecio blochmaniae Blochman’s ragwort Asteraceae</td>
<td>--/--/4.2</td>
<td>Santa Barbara and San Luis Obispo.</td>
<td>Occurs in coastal dunes.</td>
<td>May-October</td>
</tr>
<tr>
<td>Sidalcea hickmanii ssp. anomala Cuesta Pass checkerbloom Malvaceae</td>
<td>--/CR/1B.2</td>
<td>Endemic to San Luis Obispo.</td>
<td>Occurs on rocky or serpentinite substrates within closed-cone coniferous forest and chaparral.</td>
<td>May-June</td>
</tr>
<tr>
<td>Sidalcea hickmanii ssp. parishii Parish’s checkerbloom Malvaceae</td>
<td>--/CR/1B.2</td>
<td>Santa Barbara, San Bernardino, and San Luis Obispo.</td>
<td>Occurs in chaparral, cismontane woodland, and lower montane coniferous forest.</td>
<td>June-August</td>
</tr>
<tr>
<td>Stebbinsoseris decipiens Santa Cruz microseris Asteraceae</td>
<td>--/--/1B.2</td>
<td>Monterey, Marin, Santa Cruz, San Francisco, San Luis Obispo, and San Mateo.</td>
<td>Occurs in open areas and sometimes serpentinite substrates within broadleafed upland forest, closed-cone coniferous forest, chaparral, coastal prairie, coastal scrub, and valley and foothill grassland.</td>
<td>April-May</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family (Jepson Manual-1)</td>
<td>Federal/State/ CRPR Status (Jepson Manual-1)</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Streptanthus albidus ssp. peramoenus</td>
<td>--/-/-/1B.2</td>
<td>Alameda, Contra Costa, Monterey, Santa Clara, and San Luis Obispo.</td>
<td>Occurs on serpentine substrates within chaparral, cismontane woodland, and valley and foothill grassland.</td>
<td>March-October</td>
</tr>
<tr>
<td>Streptanthus glandulosus ssp. glandulosus jewelflower</td>
<td></td>
<td>none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylocline masonii Mason’s neststraw Asteraceae</td>
<td>--/-/-/1B.1</td>
<td>Kern, Los Angeles, Monterey, and San Luis Obispo.</td>
<td>Occurs on sandy substrates within chenopod scrub and pinyon and juniper woodland.</td>
<td>March-May</td>
</tr>
<tr>
<td>Suaeda taxifolia woolly seablite Chenopodiaceae</td>
<td>--/-/-/4.2</td>
<td>Anacapa Island, Los Angeles, Orange, Santa Barbara, Santa Barbara Island, San Clemente Island, Santa Catalina Island, Santa Cruz Island, San Diego, San Luis Obispo, San Nicolas Island, Santa Rosa Island, and Ventura.</td>
<td>Occurs on coastal bluff scrub, coastal dunes, and along the margins of coastal salt marshes and swamps.</td>
<td>January-December</td>
</tr>
<tr>
<td>Symphyotrichum defoliatum San Bernardino aster Asteraceae</td>
<td>--/-/-/1B.2</td>
<td>Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and San Luis Obispo?.</td>
<td>Occurs near ditches, streams, and springs within cismontane woodland, coastal scrub, lower montane coniferous forest, meadows and seeps, marshes and swamps, and vernally mesic areas within valley and foothill grassland.</td>
<td>July-November</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/ Family</td>
<td>Federal/State/ CRPR Status</td>
<td>County Distribution</td>
<td>Habitat Requirements</td>
<td>Phenology</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Systenotheca vortriedei Vortriede’s spineflower Polygonaceae</td>
<td>--/--/4.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs on sandy or serpentinite substrates within chaparral and cismontane woodland.</td>
<td>May-September</td>
</tr>
<tr>
<td>Toxicoscordion fontanum marsh zigadenus Melanthiaceae</td>
<td>--/--/4.2</td>
<td>Lake, Mendocino, Monterey, Marin, Napa, San Benito, Santa Cruz, San Luis Obispo, San Mateo, and Sonoma.</td>
<td>Occurs on vernally mesic areas and often serpentinite substrates within chaparral, cismontane woodland, lower montane coniferous forest, meadows and seeps, and marshes and swamps.</td>
<td>April-July</td>
</tr>
<tr>
<td>Trifolium hydrophilum saline clover Fabaceae</td>
<td>--/--/1B.2</td>
<td>Alameda, Contra Costa, Colusa?, Lake, Monterey, Napa, Sacramento, San Benito, Santa Clara, Santa Cruz, San Luis Obispo, San Mateo, Solano, Sonoma, and Yolo.</td>
<td>Occurs in marshes and swamps, mesic or alkaline areas within valley and foothill grassland, and vernal pools.</td>
<td>April-June</td>
</tr>
<tr>
<td>Triteleia ixiodes ssp. cookii Cook’s triteleia Liliaceae</td>
<td>--/--/1B.3</td>
<td>Monterey and San Luis Obispo.</td>
<td>Occurs in serpentine seeps within closed-cone coniferous forest and cismontane woodland.</td>
<td>May-June</td>
</tr>
</tbody>
</table>
STATUS CODES

FEDERAL: United States Fish and Wildlife Service
FE Federally Listed Endangered
FT Federally Listed Threatened

STATE: California Department of Fish and Game
CE California Listed Endangered
CT California Listed Threatened
CR California Listed Rare

CRPR: California Rare Plant Rank (California Native Plant Society)
1B Plants Rare, Threatened, or Endangered in California and Elsewhere
2 Plants Rare, Threatened, or Endangered in California, But More Common Elsewhere
3 Plants About Which We Need More Information - A Review List
4 Plants of Limited Distribution - A Watch List

Threat Ranks
- 0.1-Seriously threatened in California (over 80% of occurrences threatened / high degree and immediacy of threat)
- 0.2-Fairly threatened in California (20-80% occurrences threatened / moderate degree and immediacy of threat)
- 0.3-Not very threatened in California (<20% of occurrences threatened / low degree and immediacy of threat or no current threats known)

? Uncertain About Distribution or Identity
* May be Extirpated

APPENDIX C

SPECIAL STATUS PLANT SPECIES NOT INCLUDED IN THE ANALYSIS
<table>
<thead>
<tr>
<th>Scientific Name/ Common Name/Family (Jepson Manual-1)</th>
<th>CRPR Status (Jepson Manual-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium howellii var. clokeyi
 Mt. Pinos onion
 Liliaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Arctostaphylos montereyensis
 Toro manzanita
 Ericaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Aspidotis carlotta-halliae
 Carlotta Hall’s lace fern
 Pteridaceae</td>
<td>--/--/4.2</td>
</tr>
<tr>
<td>Atriplex cordulata
 heartscape
 Chenopodiaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Atriplex cordulata var. cordulata
 heartscale</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Atriplex cordulata var. erecticaulis
 earlimart orach</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Atriplex coronata var. coronata
 crownscale
 Chenopodiaceae</td>
<td>--/--/4.2</td>
</tr>
<tr>
<td>Atriplex coulteri
 Coulter’s saltbush
 Chenopodiaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Atriplex joaquiniana
 San Joaquin spearscale
 Chenopodiaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Atriplex serenana var. davidsonii
 Davidson’s saltscale
 Chenopodiaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Atriplex vallicola
 Lost Hills crownscale
 Chenopodiaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Atriplex coronata var. vallicola
 Lost Hills crownscale</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Calytridium parryi var. hesseae
 Santa Cruz Mountains pussypaws
 Portulacaceae</td>
<td>--/--/1B.1</td>
</tr>
<tr>
<td>Castilleja ambigua ssp. ambigu
 Johnny-nip
 Scrophulariaceae</td>
<td>--/--/4.2</td>
</tr>
<tr>
<td>Centromadia parryi ssp. parryi
 pappose tarplant
 Asteraceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/Family (Jepson Manual-1)</td>
<td>CRPR Status (Jepson Manual-2)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Chorizanthe pungens var. pungens Monterey spineflower Polygonaceae</td>
<td>FT/-/-1B.2</td>
</tr>
<tr>
<td>Cladium californicum California sawgrass Cyperaceae</td>
<td>--/-/-2.2</td>
</tr>
<tr>
<td>Eriastrum hooveri Hoover’s eriastrum Polemoniaceae</td>
<td>--/-/-4.2</td>
</tr>
<tr>
<td>Eriogonum nudum var. indictum protruding buckwheat Polygonaceae</td>
<td>--/-/-4.2</td>
</tr>
<tr>
<td>Fritillaria viridea San Benito fritillary Liliaceae</td>
<td>--/-/-1B.2</td>
</tr>
<tr>
<td>Gilia leptantha ssp. pinetorum pine gilia Polemoniaceae</td>
<td>--/-/-4.3</td>
</tr>
<tr>
<td>Lepidium jaredii ssp. album Panoche pepper-grass Brassicaceae</td>
<td>--/-/-1B.2</td>
</tr>
<tr>
<td>Lepidium jaredii Jared’s pepper-grass</td>
<td>--/-/-1B.2</td>
</tr>
<tr>
<td>Leptosiphon grandiflorus large-flowered leptosiphon Polemoniaceae</td>
<td>--/-/-4.2</td>
</tr>
<tr>
<td>Lilium humboldtii ssp. ocellatum ocellated Humboldt lily Liliaceae</td>
<td>--/-/-4.2</td>
</tr>
<tr>
<td>Malacothamnus davidsonii Davidson’s bush-mallow Malvaceae</td>
<td>--/-/-1B.2</td>
</tr>
<tr>
<td>Malacothamnus palmeri var. involucratus Carmel Valley bush-mallow Malvaceae</td>
<td>--/-/-1B.2</td>
</tr>
<tr>
<td>Malacothrix saxatilis var. arachnoidea Carmel Valley malacothrix Asteraceae</td>
<td>--/-/-1B.2</td>
</tr>
<tr>
<td>Micropus amphibolus Mt. Diablo cottonweed Asteraceae</td>
<td>--/-/-3.2</td>
</tr>
<tr>
<td>Monardella antonina ssp. benitensis San Benito monardella Lamiaceae</td>
<td>--/-/-4.3</td>
</tr>
<tr>
<td>Scientific Name/ Common Name/Family (Jepson Manual-1)</td>
<td>CRPR Status (Jepson Manual-1)</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Monardella villosa ssp. villosa coyote-mint</td>
<td>none</td>
</tr>
<tr>
<td>Monardella crispa crisp monardella Lamiaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Monardella undulata ssp. crispa crisp monardella</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Monardella frutescens San Luis Obispo monardella Lamiaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Monardella undulata ssp. undulata San Luis Obispo monardella</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Navarretia prostrata prostrate vernal pool navarretia Polemoniaceae</td>
<td>--/--/1B.1</td>
</tr>
<tr>
<td>Nemacladus secundiflorus var. robbinsii nemacladus Campanulaceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Orobanche parishii ssp. brachyloba short-lobed broomrape Orobanchaceae</td>
<td>--/--/4.2</td>
</tr>
<tr>
<td>Piperia leptopetala narrow-petaled rein orchid Orchidaceae</td>
<td>--/--/4.3</td>
</tr>
<tr>
<td>Plagiobothrys chorisanus var. hickmanii Hickman’s popcorn-flower Boraginaceae</td>
<td>--/--/4.2</td>
</tr>
<tr>
<td>Pseudognaphalium leucocephalum white rabbit-tobacco Asteraceae</td>
<td>--/--/2.2</td>
</tr>
<tr>
<td>Stebbinsoseris decipiens Santa Cruz microseris Asteraceae</td>
<td>--/--/1B.2</td>
</tr>
<tr>
<td>Toxicoscordion fontanum marsh zigadenus Melanthiaceae</td>
<td>--/--/4.2</td>
</tr>
<tr>
<td>Trifolium hydrophilum saline clover Fabaceae</td>
<td>--/--/1B.2</td>
</tr>
</tbody>
</table>