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Abstract

The CubeSat pico-satellite is gaining popularity in both the educa-

tional and aerospace industries. Due to a lack of experience and con-

strained hardware capabilities, most of the university missions have

been educational in nature. Cal Poly’s project, PolySat, has gained

significant experience from the launch of five CubeSats and has de-

signed an entirely new hardware platform based on the knowledge

gained from these missions. This hardware is a significant upgrade

from what the previous missions used and has greatly increased the

capabilities of the software, including supporting the use of the open

source operating system Linux.

Leveraging the previous PolySat experience, a new design approach

has been followed for the development of a fault tolerant and flexible

software architecture. As a result, a set of processes and custom li-

braries that run within Linux have been designed and implemented.

Furthermore, an emphasis has been placed on fault tolerance with two

features: a software watchdog and digital command signing capability.

Lastly, a survey of related CubeSat projects and software fault toler-

ance papers has been conducted to determine that this new system is

sufficient to meet the desired goals.
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1

Introduction

1.1 CubeSats

CubeSat class spacecraft have become increasingly popular since their introduc-

tion in 1999 by Cal Poly professor Dr. Jordi Puig-Suari and professor Bob Twiggs,

then at Stanford [1], thanks to their limited volume of 10cm3 [2].The standardized

size requires some creativity but more importantly it makes the cost of develop-

ment and launch relatively affordable for nearly any organization looking to build

a spacecraft because it resulted in a standardized deployment device, the Poly

Pico-satellite Orbital Deployer (P-POD) [2]. This low cost has resulted in the

CubeSat’s prevalence in both the educational and private sectors. This is es-

pecially true at Cal Poly, whose multidisciplinary satellite project, PolySat, has

been at the forefront of the CubeSat community since the specification was first

introduced.

1.2 PolySat

PolySat has launched a total of 5 CubeSats since the start of the program in 1999:

CP1 through CP4 and CP6. All of the satellites after CP1 used the same flight

software, with minor revisions. The overall system was designed with more of an

emphasis on hardware than software modularity, and thus the software was fairly

simple, with no operating system and mission specific components were frequently

intermixed with basic functionality. Although this system was relatively effective

at meeting the requirements of these missions, far more ambitious missions are

1



1. INTRODUCTION

now regularly being proposed to the PolySat team.

Recently, PolySat was approached with a new mission, LightSail-1, for which a

more powerful and robust avionics platform was desired. This presented PolySat

with the [funding] opportunity to leverage the experience gained from the first

generation platform and build something entirely new. The new base hardware

consists of a small number of very capable, yet low power, components all on

a single board. This type of design is suited perfectly for the CubeSat because

it minimized volume and maximized potential payloads, thanks to both the im-

proved computing power and the available space.

1.3 CubeSat Software

At the earliest stages of the design, the previous software team was consulted

to determine what areas could be best improved upon to facilitate development

since the current team had mostly been involved in modifying and extending the

existing platform. The most common suggestion was to find a platform that had

significant community support and pre-existing code that can be utilized. As

a result, the new microprocessor was chosen with support for the open source

operating system, Linux. This selection has far-reaching implications for the

software architecture; some concepts from the past designs can be preserved, but

a wholly new software system should be implemented to maximize the benefit.

A CubeSat software architecture is vital to the development of the spacecraft

and careful attention must be given to each design decision. A proper Cube-

Sat software system will require minimal, if any, revisions between each unique

mission and thus enable quick turn around times to support the demands of the

customer and launch scheduling. During the design of a software architecture, it

is important to consider this concept because once a hardware platform has been

established, updated software may be the only significant component necessary

to support a new mission.

The architecture can easily dictate the success of the entire mission, as well.

This is particularly true in CubeSats because they are highly volume constrained

systems that are encouraged to utilize minimal hardware to increase payload

volume. This differs significantly from the typical, large satellite that would

include a variety of redundant components in order to protect itself against the
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harsh environment of space where ionizing radiation can cause bit flips or even

stuck bits [3]. Thus, it is critical that the software architecture provides features

that insure reliable operation, in spite of potential radiation effects.

These two goals are the driving forces behind the design of the new PolySat

software architecture, which aims to be both extensible and fault tolerant.

1.4 Thesis Organization

This thesis details the new software system and is organized as follows. Chap-

ter 2 revisits the first generation platform and some of the lessons learned from

the software. Chapter 3 describes the new design guidelines, requirements, and

philosophies for the new software system. Chapter 4 details the system architec-

ture, focusing on the two major layers of the new system: processes and libraries.

Chapter 5 discusses the two primary fault tolerant features of the system includ-

ing their goals, requirements, implementation, and results. Chapter 6 looks at

a number of other CubeSat projects by analyzing and comparing their software

systems to the one presented in this thesis. Chapter 7 looks at various technical

and published papers discussing different fault tolerant mechanisms that were

considered for this design. Chapter 8 summarizes the results and discusses the

implementation progress and future work.

1.5 Scope of Thesis

This thesis discusses the inspiration and the design of the new flexible and fault

tolerant software architecture for PolySat’s newly designed avionics hardware

platform, in addition to a review and comparison of a number of other Cube-

Sat projects. The design of the modules is mostly limited to the high level and

conceptual design; the watchdog and cryptography components are the only sig-

nificant aspects completely designed and implemented as part of this thesis. This

is primarily due to the considerable number of PolySat students who have partic-

ipated in the implementation and low level design of some of the other modules

thus far.
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First Generation Software

Architecture

PolySat’s first generation software architecture was based on Cal Poly’s second

satellite’s flight software and was expanded to be more generic for the purpose

of supporting future missions more easily [4]. This software obtained flight ex-

perience on the CP3, CP4, and CP6 spacecraft with varying degrees of success.

The last spacecraft to use it will be the CP5 mission, which is intended to launch

sometime in mid-2012.

2.1 Design

Due to the tightly coupled nature of hardware and software, it is important to

understand the hardware design first. The overall platform design was built

with a fault tolerance architecture mostly by utilizing redundant hardware. The

reason for this choice is that the majority of the components were inexpensive,

in both cost and power consumption, for redundancy to be possible [5]. The

biggest example of this is on the Command and Data Handling (C&DH) board,

which was comprised of 3 separate PIC18F6720 microcontrollers interfaced via

I2C. One controller was responsible for the C&DH related processing, including

interfacing with EEPROMs for non-volatile storage and the payload, while the

other two primarily dealt with the communications of the spacecraft, each running

the exact same software. The C&DH was responsible for toggling between the

two communication chains. A generalized block diagram of the first generation
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hardware is shown in Figure 2.1.

C&DH 
Processor

EEPROM EEPROM

RF Switch

Payload

Comm 
Processor

TxRx

Comm 
Processor

TxRx

I²C

GPIO

GPIO

GPIO

Figure 2.1: First Generation Hardware Block Diagram - This figure shows the

redundant communication systems and the memory/payload interfaces to the C&DH mi-

croprocessor of the first generation system.

A simple, interrupt-based software architecture is used in all of the controller

software: a while(1) loop continually checks status flags, which are set in inter-

rupt service routines. These interrupts can be triggered by one of two things: an

I2C message, or a timer expiration.

Typically, there is a fast timer, for events that are very frequent or require

very accurate deadlines, and a slower timer, for less frequent events with looser

deadline requirements. Inside of the timer interrupt handler, timer generated

interrupts are counted until the number of overflows to meet the desired time

have occurred and then a global flag is set, which will be read in the main loop.

2.1.1 Modes of Operation

The entire spacecraft has three primary modes of operation: pre-ops, normal-ops,

and contingency. Although the modes of operation have the same names for both

the communications and C&DH controllers, they are selected independently.

Pre-ops is the mode in which both controllers operate when the spacecraft

is first ejected from the P-POD. In this state, the spacecraft merely collects
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telemetry data and beacons it at a regular rate, until a command is uplinked

from the ground station. Once a command has been received, the communications

processor will move into the normal ops mode for the remainder of the mission.

A contingency mode was originally part of the design, where the communications

processor could control the entire spacecraft, however, this was never implemented

in a flight unit.

As for the C&DH processor, normal ops mode will only be entered after a

specific command is sent up. It was designed such that normal ops enabled

autonomous transmissions to trigger at a higher rate and it also allowed other,

more complex commands to be executed (i.e. those dealing with the payload

or attitude control). The C&DH will return to the pre-ops state after a certain

amount of time (typically on the order of days), as to reset the beacon rate and

essentially stay in a lower power mode.

2.1.2 Communications Controller

Both the communication software and hardware subsystem were mostly developed

as a senior project by Chris Noe [5]. This software has remained mostly untouched

through all of the CP flights due to its complexity and relative effectiveness.

Traditional ground stations utilize a hardware terminal node controller (TNC),

which is the radio control interface, and this design was used in some of the earlier

CubeSat communication systems, however, this requires significant power and

volume. For CP2 the more appropriate solution was found to be using a software

TNC instead. The primary function of a TNC is to forward data to and from the

transceiver. In this system, the data is typically going to be sent to the C&DH

controller. Each communication controller is interfaced to its own transceiver via

a two wire bus and will toggle a GPIO to indicate to the C&DH that data has

been received. The code for the transceiver driver is very complex because of the

intermixing of a “bit-bang” protocol and the communication encoding scheme,

which was required due to the speed-sensitive nature of this interface.

The communication controller examines the command byte of each received

packet so that a few basic commands can be executed before forwarding the

data to the C&DH. For example, a command can be executed by the C&DH to

reset the communication controller. There is also a command that can be issued

to cause the communication controller to transmit a basic morse-code beacon,
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which can be requested up to 10 times and can be useful for tuning the radios to

find the transmitting frequency of the satellite. Some missions also implemented

a command to enable the payload from this controller; even if the C&DH has

failed, this allows a one-off experiment to be triggered.

2.1.3 Command and Data Handling Controller

The C&DH controller was responsible for a wide variety of aspects on the system

including spacecraft telemetry data collection, attitude determination and control

experiment execution, and high level communication system and payload control.

The precise functionality evolved and changed on a mission-by-mission basis, but

these overall goals generally remained the same.

All three satellites had autonomous sensor data collection with a customizable

rate at the granularity of the lower speed timer interrupt. The sensor data was

collected and stored in I2C EEPROMs, which limited the total amount of stored

data to 256KB. In order to deal with this limitation, the operator could issue a

command to the spacecraft to treat the EEPROMs as circular buffers, or stop

the saving of data after the capacity has been reached.

The sensors were divided up into distinct groups to allow for different rates

for each, based on the needs of the mission. There was also an I2C real time clock

device on the C&DH board, which was used to add timestamps to the sensor

snapshots.

Furthermore, the C&DH was responsible for controlling and monitoring the

other major subsystems it was connected to: communications, attitude determi-

nation and control (ADCS), power, and payload. One of the timed events on the

C&DH was toggling between the two redundant communication chains, so that in

the event of one failing, the other would be used soon afterwards and communica-

tion would only be temporarily interrupted. Though the ADCS functionality was

limited on the most recent versions of the legacy flight software, the C&DH was

responsible for executing an attitude control algorithm, B-dot, for de-tumbling

the CubeSat. As for the power subsystem, the C&DH mostly played a supervi-

sor role by interfacing with battery monitors and recording voltage and current

levels of the batteries. Lastly, the C&DH was usually interfaced with a payload

subsystem controller and would forward ground station commands intended for

it.
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2.1.4 I2C Fault Tolerance Upgrade

The functionality of the I2C bus is imperative to the success of this system because

of the link between the C&DH and communication controllers. In order to make

this connection more robust, a CRC was added to each inter-process message

as part of a senior project [6]. The primary benefit of this was that unintended

messages should no longer be acted on, which could potentially put the spacecraft

into an unintended state. As a result, a local retry was also implemented so that

commands that originated from the ground did not have to be resent. This feature

also enabled the collection of I2C telemetry, allowing for further characterization

of the bus in space.

2.2 Results

The three spacecraft that have flown thus far were using very similar versions of

the software and hardware. CP3 and CP6 shared the same primary mission, but

CP6 had some receive sensitivity improvements in an attempt to improve uplink

from the ground station, plus an additional payload from Naval Research Labs.

CP4 was a re-fly of CP2, which did not reach orbit. The CP5 spacecraft, which

is manifested on the ELaNa VI mission, is slated to be launched in mid-2012 and

uses a modified C&DH board with only a single communication processor and

radio.

2.2.1 CP3

CP3 was launched in April 2007 and successfully demonstrated a majority of the

basic functionality. As of writing this thesis, it still regularly communicates with

the Cal Poly ground station, but the communication is mostly one way because

uplink is very difficult to achieve as a result of very poor receive sensitivity. Un-

fortunately, this limited the uplink to simple commands and payload operations

were never able to be completed.

2.2.2 CP4

The CP4 spacecraft went into orbit with CP3, but unfortunately after a short

time it experienced a critical failure preventing C&DH or payload commands from
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being executed. It was suspected that an I2C bus failure was to blame [6], which

would have disabled communications between the C&DH and communication

controllers and effectively shut down the spacecraft.

2.2.3 CP6

PolySat’s most recently flown spacecraft, CP6, was launched in May 2009. CP6’s

improved receive sensitivity resulted in arguably the most effective PolySat mis-

sion. The majority of the command set was able to be transmitted and executed

on the spacecraft, including the demonstration of the B-dot de-tumbling algo-

rithm.

CP6 was also the first mission to heavily involve amateur radio operators

around the world. This was primarily thanks to a freely distributed program

that decoded packets and also sent the data back to a central database at Cal

Poly. In fact, the data sent to this database through this program was over double

the amount of data of Cal Poly, based on numbers from a couple months after

launch [7].

Unfortunately, a few months after the launch, CP6 stopped responding for a

significant period of time and as of April 2011, only one of the communication

processors responds to simple commands, and there is no response from C&DH

commands.

CP6 was the only mission thus far to fly with the I2C telemetry collection

enabled. The gathered results over the lifetime of the mission are shown in

Figure 2.2. The data shows that there was an approximately 8% error rate in the

bus transactions. Although this number is higher than ideal, it does not seem to

definitively indicate that the I2C bus is the source of the CP4 and CP6 failures.

2.3 Lessons Learned

Multiple generations of students have used this architecture in CubeSat designs

since it was first developed and although minor improvements were made for

each new mission, there have always been some lingering concerns. The most

problematic of these existed as a result of the development processes rather than

the design.
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Figure 2.2: I2C bus event data from CP6 - Inset in upper left shows only the CRC

error and bus fault event counters. Time progresses left-to-right, but not proportionally

due to periods of time when no data was downlinked.

2.3.1 Development Environment

One of the most common source of problems was the software provided by the

microcontroller manufacturer. For example, the host machine seems to sponta-

neously lose communication with the interface to the target microcontroller and

the IDE will provide only cryptic error messages that sometimes can be fixed by

restarting the software, but other times require a full system reboot. These type

of issues are especially prevalent when attempting to use the single-step debugger,

which itself is an appreciated option, but is not always worth the trouble when

these problems arise so regularly.

Unfortunately, the problems with the development environment did not stop

there. When re-imaging the host machines in the lab, a slightly newer compiler

was installed and resulted in completely non-functional software. This implies

that there are strong dependencies to the version of the compiler and thus would

require PolySat to stay with this, now quite old, version of the compiler in order

to maintain backwards compatibility with the old projects.

Based on these issues that we have had with the development software and

compiler, the general consensus in the lab was to move away from the PIC mi-

crocontroller platform.
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2.3.2 Hardware versus Software Modularity

A significant strategy of the first generation system design was to favor hardware

modularity over software modularity, so that fault tolerance through redundant

hardware could be provided. Hardware redundancy is a fairly common design

in full size spacecraft and one of the common concerns about CubeSats is they

do not support such designs very easily. However, PolySat and other universities

(see Chapter 6) operational history have shown there is negligible benefit with

hardware redundancy, at the cost of significant complexity added to the system.

Specifically with the PolySat system there has been no known event where the

C&DH was able to continue operating while one of the communication chains

had failed.

2.3.3 Modular Command System

The command handling module in the first generation software architecture ex-

isted entirely in one source file, based around a massive switch statement. Each

command had its own case and often all of the code to execute the command

was there, rather than making a function call. There was also a large amount of

repeated code for transmitting negative acknowledgements upon incorrect usage

of commands.

As the capabilities increased with each revision, so did the file size: with 40

commands, it was nearly 1500 lines for CP3 and then for CP6, it grew to almost

2000 lines with 60 commands. This file violated numerous software engineering

guidelines, but its growth could not be stopped because it was already deeply

ingrained in the software’s architecture. The lesson from this behemoth of a

source file is that emphasis should be placed on a modular command system

from the initial design because it is guaranteed that commands will be added for

future missions.

2.3.4 Collect More Telemetry

A lesson that was learned in part before CP6’s launch was that more teleme-

try is a good thing, as demonstrated by the additional I2C telemetry collection.

However, there’s no reason to stop there; this policy should be applicable to any
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interface, software or hardware. With a larger variety of telemetry sources, the

characterization and debugging capabilities are vastly increased.
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3

Second Generation Software

Design Approach

To support the second generation software design, an updated set of guidelines,

requirements, and philosophies were created. These were developed as a culmina-

tion of the experience from developing and utilizing the first generation system,

in addition to some completely new concepts as a result of new mission proposals

and improved hardware capabilities.

3.1 Design Guidelines

Two major goals of the CubeSat platform are to be inexpensive and responsive.

In order to support these goals, it is necessary for the CubeSat developer to have

a flexible hardware and software system. PolySat refers to the combination of

the basic electronics packages (power and computing) and a standard software

platform as the avionics system. It is important that all of these components

are flexible so that a minimum amount of time and money is spent for each new

mission re-designing the basic architecture. A component whose importance is

seemingly often over-looked in the CubeSat community is the software architec-

ture, which this work is solely focused on designing.

The primary goal of this software architecture is to provide a design that is

both extensible and robust, in order to support the overall goal of having a flexible

CubeSat avionics platform. In order to meet this goal, there are a few rules that

guide the design of the software system: a flexible and effective command set

15



3. SECOND GENERATION SOFTWARE DESIGN APPROACH

must be provided, all major software components need to be aware of radiation

events, and the more telemetry collected, the better.

The method of interaction with the CubeSat after it has been launched is

through commands, which is a message sent from an external source that is

intended to trigger some type of action and is sent from a ground station. A

ground station is the location at which data can be transmitted over the air to

the spacecraft. Commands can also be intra-satellite, from one software module

to another. Both sources of commands can achieve the same results, such as

starting an experiment or change a parameter. As a rule, the majority of the

parameters of the different aspects of the spacecraft should be easily modified

through a command.

The next design guideline is that all components should be aware of potential

radiation events. This is important because of the effects the space environment

can have on the spacecraft and ultimately the software. Radiation events, such as

Single Event Upsets (SEU) that typically result in bit flips [3], can necessitate the

restart of software modules or even the entire processor, when detected. What this

means for the software modules themselves, is that they need to be able to tolerate

potentially unwarned termination or restarting. Mechanisms like storing state

information in non-volatile memory can help reduce the issues that could arise

from unexpected termination. Software modules need to contain the necessary

storage and recovery mechanisms in order to be able operate in the unpredictable

environment of space.

The last guideline states that the more telemetry collected, the happier the

mission operators and system developers will be. Often, only the minimum

amount of telemetry is collected, and can make failures very difficult to diagnose

because the necessary information was just not available, as was the case with

CP4 (discussed in Section 2.2),. This problem can be avoided by preemptively

collecting all potentially useful telemetry and providing the option to downlink it.

Hopefully, if everything works as intended, the information will not be necessary.

However, in the event of a failure, the telemetry can be used to diagnose the

problem. Thus, all modules are responsible for collecting relevant and important

telemetry.

These guidelines have been generated as a result of experience with the pre-

vious generation system and a survey of other CubeSat software architectures
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(Chapter 6). They have been emphasized in the new software design in an at-

tempt to avoid requiring significant revisions to the core components, in order to

add these type of features during the lifespan of the project. In general, the less

the platform has to be revised, the easier it will be to use for different missions.

3.2 Requirements

The requirements for the new software system are driven mostly by previous

experience and the general goals for the new system. However, since the second

generation platform is being developed in parallel with some of the missions that

plan to utilize it, LightSail-1 [8] and CP7 [9], some of their requirements have

served as guides, as well. The requirements are separated into functional and

non-functional, where the functional requirements are those that the software

system must be able to accomplish when it is completed, and the non-functional

are items that must be considered and supported throughout the design and its

life span.

3.2.1 Functional

A few basic functional requirements exist for this software system. The majority

of these address the required operations of the spacecraft itself. These require-

ments are small in number because there are only a small set of functions that

the satellite must be able to complete for all types of missions. It is a relatively

simple task to derive the functional requirements for a single mission. However,

it is a much more complex problem when considering a larger number of missions

and the common components must be found to facilitate optimal reuse, which is

what is required when designing a platform.

First and foremost, it is required that the system must also have the capa-

bility to periodically collect telemetry and store it in non-volatile storage. This

requirement enables the spacecraft operator to have the capability of downloading

a more detailed history that may not be available from just beacon data.

The next requirement is that the system must have a beaconing capability.

A beacon is a periodic broadcast of vital telemetry data, which can be used for

tracking the spacecraft after its been put into orbit and also provides valuable

information without requiring a specific command.
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Along the same lines, the system also must have the capability to transmit

AX.25 packets, at least for the first revision, because the existing ground station

infrastructure at Cal Poly supports this protocol. This requirement exists pri-

marily because PolySat does not have the funding to upgrade the ground station

to support other protocols that may be more efficient. Moreover, it is commonly

supported by amateur radio ground stations around the world that can provide

additional downlink opportunities and have been vital in data collection for past

PolySat missions (see Section 2.2.3).

To support the use of the spacecraft and these functions, there are also a

few vital commands that must be implemented. These include resetting the

spacecraft, changing the rate of telemetry collection, downlinking the telemetry,

and changing the rate of beacon transmission.

Lastly, the system must be able to execute these commands either immediately

or at some time in the future. Commonly, certain events may need to occur at a

time when the satellite is not passing over the ground station, meaning that no

uplink is available. In order to enable this type of event scheduling, the system

needs to be able to store commands and execute them a specified amount of time

later (either as a timestamp or time delta). The optimal support for command

scheduling would include both an offset from time of uplink or a time stamp.

3.2.2 Non-Functional

There are also numerous non-functional requirements for the new software system

design, which are divided into system, process, and personnel related. These

requirements are very important to the platform because they detail all of the non-

behavior factors of the system. A particular emphasis has been placed on those

requirements dealing with development on the platform because if the platform

is simple to develop for, it is more likely the next generation of PolySat students

will need to continue to use it.

Prior to the overall design of the software architecture discussed in this thesis,

both the hardware and software operating environments had been selected. The

software will run on a AT91SAM9G20 microprocessor, which is an ARM9-based

system on a chip that is clocked at 400MHz. Supporting this chip is 64MB of

SDRAM, a 16MB non-volatile phase change memory, and 512MB of non-volatile

NAND flash memory. The size of these memory chips will potentially scale with

18



3.2 Requirements

future mission needs because of the variety of available drop-in replacements since

they are fairly standard packages. For example, 128MB SDRAM chips that are a

drop in replacement for the existing chip have been found, in the event a mission

requires more volatile memory. There is also a microSD slot, which can add up

to 32GB of storage, at the time of this work. This system has been measured to

require approximately 180 mW while the CPU is idle and about 300 mW when

processing a workload that requires frequent access to the SDRAM.

Other important hardware components include two hardware watchdog timers

(WDT): one internal to the processor and another that is external. The internal

one has a shorter maximum timeout of 16 seconds and triggers a soft reset (only

the processor is rebooted); whereas the external watchdog has a longer timeout

of 60 seconds and results in a hard reset of the entire spacecraft by temporarily

removing power from all components. A block diagram of the hardware configu-

ration is shown in Figure 3.1.
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Card
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Figure 3.1: Second Generation Hardware Block Diagram - This figure shows

the new processor, memory, and hardware watchdog configuration. The memories are on

different types of buses: SDRAM and NAND Flash are on a high-speed parallel bus, phase

change memory on a SPI bus, and the micro-SD card is connected via the MMC bus.

The microprocessor was chosen because a port of the Linux operating system

already existed for it, which was sought out due to the the wide variety of open

source software and extensive community support that is available for free. As

a result of choosing Linux for the base software operational environment, the
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software produced from this thesis exists primarily as libraries and processes that

run in user space.

The system requirements cover the non-functional characteristics of the soft-

ware architecture, and they are itemized in Table 3.1. The first set of system

requirements deal with the performance as it relates to time and space. Fortu-

nately, none of the functional requirements of the system necessitate hard real-

time deadline capabilities because the periodic functions of the satellite, such as

the beacon, do not require high temporal accuracy to be useful. The alternative

to this is being able to meet soft deadlines, which do not require strict timing to

be correct and appropriately has been chosen as the minimum time performance

requirement.

In addition to performance, there are also some space requirements for the

code and data storage on the satellite. Phase change memory (PCM) technology

is multiple orders of magnitude more radiation tolerant than NAND Flash [10],

thus the boot code and related software must require less than 16MB of storage

so that it does not exceed the total storage available in PCM. The remainder of

the flight software must fit in the 512MB of NAND flash. The entire amount of

microSD card storage can be used for data storage.

The next group of system requirements describe the general characteristics.

The software should maximize the uptime of the system, so that a link with

the satellite can be established whenever it passes over a ground station that is

attempting contact. Furthermore, the system should be robust to the common

radiation events so that it is capable of providing this reliability guarantee. The

primary issue that can prevent operational uptime is single event upsets (SEUs)

and single event latch-ups (SELs), which are due to ionizing radiation in space;

thus, the system must be able to detect and react to these events. SEUs can be

recovered from by refreshing the affected memory bit, but SELs require power to

be removed from the component to allow enough time for the power plane of the

integrated circuit to return to ground [11].

Another group of requirements deal with the correctness guarantee that the

system can offer. For this system, only the intended commands should be ex-

ecuted in order to avoid putting the spacecraft into an unintended state. Each

software module must also be tested and validated to guarantee that it executes

the correct operations upon receiving a command. The next requirement is also

20



3.2 Requirements

Requirement Group # Name Details

Operational Environment
1.1.1 Hardware 400MHz AT91SAM9G20, 64MB RAM

1.1.2 Software Linux compatible

Performance
1.2.1 Time Soft real-time deadlines

1.2.2 Space 16MB boot s/w, 512MB other file system data

General Characteristics

1.3.1 Reliability Maximize uplink time

1.3.2 Robustness Autonomous recovery from SEUs and SELs

1.3.4 Correctness Only intended commands will be executed

1.3.5 Security Other groundstation commands limited

1.3.6 Extensibility Simple for future developers to add/modify

1.3.7 Power Minimize power consumption when inactive

Table 3.1: Non-Functional System Requirements

related to commands: the system must be secure enough to ensure commands

that have been corrupted by SEUs or have been sent from unauthorized ground

stations will not be executed.

The last two general system requirements are extensibility and power versus

performance. Extensibility is a very important aspect of the software system so

that the system can adapt as the needs of PolySat change based on the missions.

Thus, it must be straightforward to add new modules and features. As for power

versus performance, the system has very few compute bound aspects so perfor-

mance is not typically an issue, but power definitely can be, since the typical

one unit CubeSat has a power budget of about 1.5 watts per orbit. The software

needs to be aware of the power state of the system and do what it can to regulate

power consumption when necessary.

The process requirements specify those related to the development on the

platform and are shown in Table 3.2. For overall development on the system, the

goal is to enable a 6 month turn around time for new missions. If the system

is appropriately constructed, the developer should spend the majority of the

time working on the payload software rather than modifying base system code to

support it. Furthermore, since the developers are students, all development tools

and environments should be free so that there is no base cost to the organization

or the developer. This requirement is met fairly easily thanks to the numerous

21



3. SECOND GENERATION SOFTWARE DESIGN APPROACH

# Name Details

2.1 Development Time Enable 6 month mission turn around

2.2 Development Cost Free development tools/environment

2.3 Standards Conformance PolySat coding standards

2.4 Testing and Validation Black-box demo & reviewed by colleagues

Table 3.2: Non-Functional Process Requirements

free tools available for development on the Linux operating system.

The last process requirements specify the acceptance procedure for flight code.

First and foremost, all code should be written following the pre-exiting PolySat

coding standard (Appendix A), which enables Doxygen generated documentation

and will result in a consistent coding style. The developer is responsible for

validating any internal functionality to him or herself, but upon completion two

different events must occur: a functional demonstration to a senior member of

the PolySat software team and a formal code review. After the functionality of

the code has been verified, the developer should ensure the code is up to the

coding standards of requirement 2.3, and execute a formal code review with a

few members of the software team. There is no required experience level of the

reviewers because it is a mostly an aesthetic review to insure the code meets the

coding standards. This code review format also existed prior to the development

of this software architecture and the entire review process is explained in detail

in Appendix B.

The last set of requirements deal with those related to personnel and are sum-

marized in Table 3.3. These requirements are relatively unique to the PolySat

organization because all of our developers are students who are mostly volunteers

and work on the project in addition to their coursework. Due to this educational

environment that does not have a strict time commitment, the requirements for

developers are fairly limited and basic. Specifically, there should not be any ma-

jor credentials required to be a developer on this system other than being at

least a college student. Additionally, minimal certification should be required to

develop on the platform. It will be a loose requirement (or more of a strong sugges-

tion) that students have taken and passed the introductory systems programming

course, so that they have an existing knowledge of programming for Linux or a
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Requirement Group # Name Details

For Developers
3.1.1 Credentials Any college-level developer

3.1.2 Licensing/Certification Intro. to Systems Programming

Table 3.3: Non-Functional Personnel Requirements

similar operating system. The class CPE357, “Systems Programming”, is taken

by all computer engineering, computer science, and software engineering students

early in their Cal Poly career, and should be sufficient experience to develop for

the new software architecture. Thanks to courses like these, the learning curve

for satellite software development is significantly reduced because most students

will join the organization with some related experience.

3.3 New Design Philosophies

In addition to the requirements that bound the design, a number of design philoso-

phies were utilized that were not emphasized in the previous design. First and

foremost, a strong emphasis is placed on software modularity for this design to

isolate components and support extensibility. It also supports the next design

principle of encouraging parallel development, which can greatly reduce devel-

opment time. Furthermore, now that the Linux operating system is being used,

there is far more pre-existing code that could potentially be useful for the project

and we hope to leverage as much of it as possible.

3.3.1 Software Modularity

As defined by the Linux Dictionary, software modularity is: “A programming

style that breaks down program functions into modules, each of which accom-

plishes one function and contains all the source code and variables needed to

accomplish that function” [12]. This style of programming significantly simplifies

the maintenance and debugging of the system because individual modules can

be isolated for revision or testing without affecting the entire system. In a large,

modular software system finding the source of problems can be easier as well

because the problematic function should be able to be isolated into a minimal

number of modules. A consistent usage of this this philosophy will enable the
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new PolySat system to be easy to revise and thus encourage its continued use in

future projects.

The emphasis on software modularity is also to encourage the reduction of

hardware modularity in CubeSat projects. Hardware modularity is a common

design philosophy in CubeSats, likely because it gives the appearance of a clean

design from the perspective of the systems and electrical engineers. However,

since CubeSats are highly volume constrained platforms, hardware modularity

can be very expensive due to the typical volume requirements. Emphasizing

software modularity can help reduce the volume requirement of the avionics sys-

tem by implementing some of the modules that are traditionally implemented in

hardware, in software.

Favoring software modularity over hardware modularity also reduces the com-

plexity of the system because the number of custom interfaces is reduced. Typ-

ically, in order to interface with different hardware modules, custom software

interfaces must be written. Furthermore, these custom interfaces are code that

is rarely reusable and exist for no other purpose than to support the hardware

modularity. In some cases, these modules may only be used for some missions and

thus a significant amount of effort may be invested in code that neither directly

relates to the mission nor will be used in future missions.

PolySat experienced this first hand with the previous design, where the con-

cept of hardware modularity was used to separate the communications and C&DH

components. The correct operation of this interface was critical to the system

because it was the path to and from the transceiver. A custom driver was re-

quired for this interface and was even upgraded in later revisions of the system

to include additional robustness (see Section 2.1.4). Unfortunately, this interface

was very specific to the microcontrollers that were being used and thus the code

could not be reused if similar interfaces were desired with different processors.

Furthermore, this interface was hypothesized to be the root of the cause for both

the failures of CP4 and CP6, where the C&DH could no longer communicate

with the ground (further explained in Section 2.2). These events are a driving

force to this design philosophy: by favoring software modularity we can limit the

number of custom hardware interfaces, maximize code reusability between unique

missions, and potentially increase reliability.
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3.3.2 Encouragement of Parallel Development

PolySat’s team of software developers has grown significantly since the first gen-

eration system was developed; while it once was comprised of two or three core

members, there may now be more than five people working on a single project.

Most of the software development on the prior system was needed to be completed

at a bench in the lab to be able to load the software onto the microcontroller for

testing. As a result the number of simultaneous developers was limited by access

to the lab benches. However, with the selection of Linux as the new operating

system, these ties to the bench have been severed because a significant amount of

code can be compiled and executed in any Linux environment. Therefore, a very

important design philosophy for this new software architecture is that parallel

development should be both enabled and actively encouraged.

This concept directly supports the development time requirement, 2.1, which

states the system should enable a short turn around for new missions. When more

students that can work on the project at the same time, the software should be

produced at a faster rate.

3.3.3 Pre-Existing Code

The total user base of Unix-like operating systems is considerable and as a result,

a large amount of code has been written for it and is available for free, under an

open source license. Linux supports a significant amount of this code thanks to its

support of various open standards, such as POSIX. Utilizing these packages will

not only reduce development time by reducing the amount of code that needs to

be written, but also potentially improve reliability since the packages are in use in

other projects. OpenSSL is an excellent example of this, which was first released

in 1998, but is still actively being developed for and used in a wide variety of

applications [13].

It also is worth acknowledging that the operating system and standard C li-

braries provide a non-trivial amount of pre-existing code. This is a significant

source of added reliability due to the prevalent use of the Linux operating system

and also greatly reduces development time. Throughout the new design, there are

examples of leveraging Linux-provided interfaces, from the fundamental file ab-

straction system calls up to the inter-process communication mechanisms heavily
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leveraging the provided socket APIs.

Pre-existing code from other sources is also used when possible to aid the

development process. This decision has been paramount to being able to develop

a prototype of the software platform in a reasonable amount of time, in addition

to inspiring confidence in our customers by being able to specify that this code

is used in other, pre-existing platforms. The OpenSSL library, as mentioned

previously, provides all of the core functionality for the cryptography component

of the new architecture (Section 5.1). Source code was also taken directly from

other open source projects, such as the priority queue heap implementation in

the event handler (Section 4.3.1). These particular examples have been vital to

the success of the design because they provide features that would have been very

difficult and time-consuming to develop from scratch.
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New System Architecture

The new software system’s architecture looks far different than that of the previ-

ous generation’s because of the emphasis on software modularity and the options

afforded to us by the utilization of Linux. The system is now comprised of two

primary layers: processes and libraries. The processes are responsible for the

actual functionality of the satellite, and the libraries provide middleware-type

services to the processes. This type of architecture improves upon the previous

because it allows features and functionality to be added and upgraded without

having to recompile or rewrite other modules.

4.1 Software Overview

The software architecture has been fundamentally re-designed as a result of the

choice to utilize a new operating system. Linux provides a simple mechanism for

address space isolation and protection, the process. This is important because it

provides a natural level of granularity for modules. Further, processes simplify

parallel development since each process can be developed as a black box and

without understanding the entire system, as was needed with the first generation

software architecture. Thus, processes have been utilized to implement all of the

basic functions of the system and provide one of the major levels of software

modularity in the system.

The system processes have been defined as shown in Figure 4.1. Each of these

processes are defined in Section 4.2. These processes utilize many common mech-

anisms and functions, which have been designed into a set of shared libraries that
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are discussed in Section 4.3. The last defining characteristic of this architecture

is that there are two different modes of operation, the selection of which is based

on whether or not the NAND Flash is functioning properly.

Kernel

Static Mission Processes

ADCS Payload

Static System Processes

Watchdog Beacon
System 
Manager

Comm.
Data 
Logger

PolySat Library Base

Event 
Handler

Crypto.
Config. 
Mgmt

Basic Cmd 
Handler

"Degraded" "Full" 

Temporary Processes

Export 
Database

Read State
Read 

Sensors
"One-off"
Experiment

Multiple 
Instances 
Can Exist

Key

Single 
Module

PolySat Library Full

Database
Payload/
ADCS 
Drivers

Inter-
Process 
Comm.

Error/
Debug 
Interface

Mode:

Figure 4.1: Software Architecture - This figure shows all of the software modules,

separated by minimum mode of operation where they are available. The satellite is always

at least in degraded mode, which occurs when the satellite first boots. Full functionality

mode is entered after the NAND flash has been verified as functional.

Some of the other new features were not enabled by just Linux itself, but

also the open source packages that are available for it. Specifically, a SQLite

database is used for storing telemetry and the OpenSSL library is utilized for its

various security and fault tolerant features. These packages meet both the design

philosophy of leveraging pre-existing code and numerous requirements regarding

capabilities, correctness, and security.
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4.1.1 Operation Modes

Two basic modes of operation that dictate the capabilities of the system have been

chosen based on the effects that radiation have on the different memories. The

phase change memory (PCM) has been shown to be tolerant up to 30 MRad [10],

which is orders of magnitude greater than that of the NAND Flash. To maximize

the utility of this phase change memory part, the minimum amount of function-

ality required to communicate with the satellite and execute basic commands

will be stored on the PCM part to avoid corruption from radiation and enable a

degraded mode of operation. The satellite will enter this mode by default until

the the integrity of each file on the NAND flash has been confirmed.

Degraded mode provides the basic processes: beacon, system manager, com-

munications, and the software watchdog. These processes are sufficient to allow

the ground station operator to interact with and diagnose the spacecraft. The

drivers available are limited to those related to the vital subsystems, such as the

transceiver and processor related sensors. Lastly, since the state of the NAND

flash is unknown in this mode, access to it is not enabled. Work is being done

to enable the upload of full kernel and filesystem images so that the spacecraft

could potentially recover if the spacecraft is stuck in state.

Full functionality mode is entered after the NAND flash has been verified

and enables all of the features of the spacecraft, which includes the data logger

process and when necessary, mission specific processes. In this mode of operation,

the data logger (Section 4.2.4) is autonomously collecting and storing telemetry.

To support this, additional library functionality is also provided in this mode

(discussed in Section 4.3), as well as the drivers for the rest of the components

on the satellite. The satellite is expected to spend a majority of its time in this

mode.

4.1.2 Inter-Process Communications

It is important that processes can communicate with one another in a straight-

forward manner. This is another opportunity to leverage significant pre-existing

code because the Linux kernel provides a number of different options for inter-

process communication, such as TCP/IP, UDP/IP, and Unix Domain Sockets.

The latter is intended only for inter-process communications, while the two for-
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mer also enable networked communications.

The first instinct was to use the simplest, lowest overhead option, Unix Do-

main Sockets. Unfortunately, upon further investigation of this option, it was

realized that an additional packet format would need to be designed on top of

these messages in order to support this. Some of the notable desired features

included checksums and numeric identification of processes. The first design had

a custom module for receiving packets from the transceiver and converting them

into the alternate packet format and there was also a significant amount of custom

code required for both sending and receiving these types of messages.

Quickly, we arrived at the realization that we were redesigning the IP stack

and since the intention was to configure the Unix Domain Sockets as datagram

packets, the existing UDP/IP stack could be utilized and require far less custom

code to support our desired features. Specifically, UDP uses ports for destination

addresses and there are checksums in both the IP and UDP layers that are handled

by the kernel. Furthermore, by using an IP based protocol, it will be simple in

the future to support standard IP-based applications such as Telnet and Secure

Shell (SSH). Using applications like these can be immensely helpful for debugging

the system because it would enable command line access from the ground.

Utilizing UDP enables a number of things that simplify the design of the

system. Standard Linux systems utilize the file /etc/services to match service

names to ports, and vice versa; an API is provided to accomplish this, within the

standard libraries. The PolySat system has a number of pre-defined services, in

the form of the processes, and thus fits well with this system. All of the processes

will be added to the file with a port number, so that in order to communicate

with a particular process, the only requirement is to know the destination process’

name.

4.2 Processes

The processes are responsible for the core actions of the satellite. They have

been selected such that each primary function is implemented in its own process.

Processes have the distinct advantage over threads by providing a separate process

address space for each and thus protecting the modules from each other’s memory

corruption. There are two different types of processes: static and temporary. The

30



4.2 Processes

primary difference, other than the duration, is that static processes are based

around the custom PolySat libraries (Section 4.3) and are written in C; whereas

the temporary processes can be developed in any Linux-supported language (see

Sections 4.2.4 and 4.2.7).

There are a couple of shared high-level commands for each static process, in

order to facilitate different aspects of the satellite and also increase the amount of

reused code. Rather than have each process implement its own system informa-

tion status command, one is implemented in the standard library that provides

all of the memory and CPU usage information, since the acquisition of this in-

formation is the same regardless of the specific process. The second command is

the generic status command, which provides any soft state related to the specific

process. Soft state information includes any values related to the operations of

the process, such as a count of an action specific to that process. This command

is utilized in a variety of ways, but generally it ensures that the useful state values

of a process can be queried from both the ground and other processes to facilitate

debugging and telemetry gathering.

4.2.1 Beacon

The Beacon module is implemented as a static process and is responsible for

one distinct function: periodically initiating the broadcasting of key satellite

telemetry.

This is very important to all spacecraft because it provides a mechanism for

tracking and identifying the CubeSat when it is ejected from the P-POD. When

the satellites are first tracked in orbit, the ones that came out from the same

P-POD or even sometimes the same launch vehicle can be very close together.

When this happens, it’s difficult to identify exactly where each spacecraft is and

thus a lot of time is spent aiming antennas at the different objects in order

to determine the spacecraft’s location. In order to locate a satellite without

a beacon, commands must be sent to the satellite in hopes that a response is

issued. However, CubeSats are not known for their receive sensitivity (see Cal

Poly’s history in Section 2.2), so this method is very difficult since a response

may not be elicited even if the antennas are aimed at the correct spacecraft.

The solution to this is to have the satellite configured to be transmitting

periodically so that the ground stations only have to track each object as long
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as the period of this transmission. This resulting periodic transmission is the

beacon.

The beacon is also useful for information gathering via amateur radio stations

around the world. The CP6 satellite was a very successful demonstration of this

capability: a limited packet decoder was distributed to amateur radio operators

around the world, which enabled them to downlink packets and then submit them

to a database. This information primarily consisted of beacon packets and totaled

to a larger amount of data than was collected at Cal Poly’s own earth station!

Based on the success of this strategy, PolySat hopes to provide similar software

packages for each satellite and also ensure that the beacon has a large amount

of useful information in order to take advantage of this global data collection

method.

The beacon is one of the simplest processes in the system and only has one

unique command, Change Rate, which has one argument: the new desired rate

for the beacon.

The specific format of the beacon is rigid per mission, due to the ground

station requiring a precisely known packet format for every downlinked packet.

This unfortunately typically changes for each mission because there is frequently

payload-specific data in the beacon. However, in degraded mode of operation,

there are no payload processes, so the standard beacon is constructed by querying

the other active processes status and putting the responses into a packet.

4.2.2 Communication

The communication module is essentially a software modularity answer to what

was previously implemented through hardware modularity (see First Generation

Design, Section 2.1.2) with a PIC microcontroller. At a high level, the software

module is responsible for the same thing as the microcontroller was: encoding and

decoding packets that are going to or coming from the transceiver, respectively.

It also manages the control and configuration of the transceiver hardware, so it

is responsible for both the data link (L2) and physical (L1) layers of satellite

communications.

Unfortunately, both layer schemes are dictated (and limited) by the PolySat

ground station support because significant dependencies exist in both the hard-

ware and software infrastructure for communicating with the satellite while it is
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in orbit. All previous missions have utilized the AX.25 packet format [5], and that

is what will be initially implemented for this system, as well, to be compatible

with the existing ground station. The primary issue with this is that the AX.25

protocol has a relatively high overhead (14 bytes per 256 byte packet), so the

implementation needs to be flexible enough to allow for potential upgrades in the

future with a more minimal protocol.

The communication process is responsible for all of the low level network

management, from configuring the transmission parameters in the transceiver up

to medium access control. Before any communication can occur, the transceiver

must be configured to input and output the anticipated type of radio frequency

signal. Once the transceiver is initialized, packets can be received or transmitted

by the radio. Also, since our current hardware design only enables half-duplex

communication, meaning you can only transmit or receive at any given time, the

communication process may need to do medium access control to avoid collisions.

The best example of this would be when the transceiver begins receiving a packet,

the communication process will not send any packets for transmission until the

packet has been completely received, or after a timeout that would indicate a

partial packet has been received.

The next challenge for the communications process is the routing of packets

to and from other processes within the satellite. This is another situation where

reliability is increased and development time was decreased, by leveraging the

pre-existing network stack within the Linux kernel. The tun/tap interface has

been used to inject raw IP packets into the kernel after they have been received,

and to acquire packets that have been sent from other processes that are intended

to be transmitted. This solution has greatly simplified the communication process

design.

4.2.3 System Manager

The system manager process is primarily responsible for maintaining the state of

the avionics system, both hard and soft state. This includes all of the different

kernel statistics that are available through the /proc/stat/ interface, basic hard-

ware state information (temperature and power consumption of the processor),

and side panel sensor data. Additionally, the system manager enables a variety

of administration actions through simple commands, such as Kill Process and
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Reboot System.

These capabilities are grouped together to provide a focal point of access for

all of the state information of the satellite. If the database were the single point

of access for this information, it would be impossible to acquire in the degraded

mode from the ground. This is not acceptable because it is very important that

this state information and the system administration capabilities are available in

all modes of operation because it is vital to diagnosing and potentially solving

problems.

4.2.4 Data Logger

There are a number of events in the spacecraft that occur at a regular frequency

throughout the entirety of the mission, such as telemetry storage. Also, it is

common that payloads would like to run one-off experiments that return some

type of data, upon completion, which needs to be stored in non-volatile memory.

The shared characteristics of these events are utilized in the data logger process,

which spawns temporary processes that collect and output the resulting data.

This data is then captured by the data logger and stored into the database.

Unfortunately, as a result of this dependency to the database, the data logger

cannot run in degraded mode.

The chosen output format from spawned processes is key value pairs, printed

to standard out, because it enables the temporary processes (see Section 4.2.7)

to be developed in whatever language is convenient. The key value pairs will be

parsed by the data logger, the key looked up in the database, and then the value

stored with that key. The database does not have to have any key-specific code

as long as the string is unique, which it should be.

Another capability of the data logger includes being able to schedule experi-

ments for some time (an offset or UTC time) in the future and repeat experiments.

An experiment will exist in the form of a temporary process that is executed at

the scheduled time, which could be a binary, or merely a script. This type of

scheduling request is very common for state-less payloads, such as CP7 [9], and

thus eliminates the requirement of a process devoted to this common type of

payload.

There are also some limitations to the data logger, particularly related to the

rate of spawning processes. The selected temporary events should not exceed a
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rate such that it costs more power and CPU time to fork off the process than it

would to just add a static process. Processes that require high rates of telemetry

collection or running may fall under the category of mission specific, which are

described in Section 4.2.6.

The data logger is being developed as a senior project and a detailed design

document should be published as a result, approximately at the same time as

this thesis.

4.2.5 Watchdog

The software watchdog process is one of the cornerstones of the software fault

tolerance of the system and is described in detail in Section 5.2. It watches all

of the processes in the system and attempts to validate that they are operating

as intended, periodically. In order to accomplish this, a query is regularly issued

to all of the processes for their status and then the response (or lack thereof) is

analyzed to verify that the process is operating correctly. The software watchdog

is also responsible for tapping both the internal and external watchdogs. The last

responsibility of this process is to validate configuration changes of other processes

during run-time, to prevent the inquiring process from using a corrupted value.

4.2.6 Mission Specific Static Processes

The other potential static processes are those specifically related to the mission,

most likely in the form of ADCS or payload control. ADCS is good candidate

for a static process because often relatively high frequency sensor readings are

required. For example, CP6 demonstrated an implementation of the ADCS algo-

rithm, B-dot, which needs sensor updates at approximately 10 Hz. The overhead

of spawning a process 10 times a second with data logger would exceed that of

just using a static process, and thus it is a good candidate. Payloads that require

this type of control would also be eligible for a static process.

4.2.7 Temporary Processes

Most missions will likely fly a number of temporary processes because of the

simple interface to the database through the data logger. Also, thanks to the

wide variety of languages that have Linux support, these temporary processes
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can be written in whatever language the developer is most comfortable in and

supports the timeline. Using scripting languages like Python can significantly

improve development time for new devices and payloads.

Some temporary processes have already been designed into the system, as

shown in the software architecture diagram (Figure 4.1). The data export pro-

cess is currently being written so that a compressed version of the database can

be downlinked and maintained on the ground. The read state process will be

used to collect the state information from the individual processes, for storage

in the database. Other temporary processes are likely to be developed, such as

the sensor readings or “one-off” experiments, which will likely be written on a

hardware and mission-specific basis.

4.3 Abstraction Libraries

A standard set of libraries have been designed and implemented to provide a

standard set of features for the static processes described in Section 4.2. These

libraries facilitate the development of the processes and also encourage code reuse

with features like time and file event handling, configuration files, and inter-

process communication command handling. The library is compiled as a shared-

object to simplify version management; once the library is installed, the same

version will be used by every process running on that system.

One of the considerable non-functional advantages of using these libraries is

that developers can also compile them for their personal machines, if they are

running a Unix-type operating system (including popular choices such as, but

not limited to OS X and Ubuntu). This is very much in line with the parallel

development philosophy because process developers are not limited to using the

custom hardware, but can now develop on personal computers.

Similar to the modes of operation, the libraries are separated into two distinct

categories: base and full functionality. The base library contains all of the com-

ponents necessary for running the degraded mode processes and has a minimal

footprint, whereas the full functionality library adds additional features that are

too large in size to fit on the phase change memory or require access to the NAND

flash, such as the database, which is stored there.
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4.3.1 Event Handler

The satellite is an event-driven system by nature and thus an event handler was

designed to be at the core of every process. In the satellite, there are generally

two types of events that occur: timed and command-initiated. Since this system

utilizes UDP for all inter-process communication, the only way a command can

be received is via the process’s socket. This fact can be exploited to develop

an event handler based around the Linux system call, select, which is easily

configured to watch file descriptors for data available, as well as wait for a certain

amount of time, for timed events.

The general design for the event handler will cause the process to block until

either a timed event is ready to execute, or a file descriptor event is ready (typ-

ically a read or write). The process can add any type of timed or file-descriptor

based event with a corresponding callback function, so the event handler can be

customized to the process’s needs. It is important that within these callback

functions no blocking function calls are used because that would significantly

delay the amount of time until the process returned to the event loop and thus

potentially delay registered timed events. A simple state diagram for this system

is shown in Figure 4.2.

Process Blocks

File descriptor 

callback 

executed

Timed event 

callback 

executed

FILE DESCRIPTOR EVENT

CALLBACK COMPLETES

CALLBACK COMPLETES

TIMED EVENT READY

Figure 4.2: Event Handler State Machine - The figure shows the basic states of the

event handler.
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4.3.2 Command Handler

All of the commands for a process will be received on its well-known UDP port

and a function is typically assigned to each different command (a process de-

signer could choose to have two commands map to the same function). Rather

than requiring each process to (re)implement a command handler to parse each

command, a standard one has been designed utilizing the first byte of the incom-

ing message to determine the function to call.

Since the first byte of the incoming message has been designated the com-

mand byte, it can be used as an index into an array of function pointers. This

array of function pointers is constructed in the process initialization sequence

(see Section 4.3.7) based on a simple command configuration file that matches

the function name to the command value. Each function pointer in the array is

initialized to point to a function that will reply with a negative acknowledgment

(NACK), in order to handle incorrect commands. Issuing a NACK enables the

ground station operator to know that the packet was received by the satellite and

be alerted an invalid command was issued.

The command handler also utilizes the cryptography aspect of the library

(briefly described in Section 4.3.6 and in detail, Section 5.1) in order to validate

protected commands before allowing the process to handle it. If a command is

protected, that means it is required to be signed and the source of the command

must have the appropriate permissions to execute it. If the command fails to

pass these checks, the corresponding function is not called. The basic procedure

of receiving a command is shown in a flow diagram in Figure 4.3.

4.3.3 Inter-Process Communication Abstraction

The inter-process communication (IPC) component of the library provides a sim-

plified abstraction of the existing Linux API for creating and using non-blocking

UDP sockets. These abstractions are directly utilized by the command handler

and other aspects of the library to receive and send commands, but can be used in

any process to communicate on any UDP port. This enables processes to utilize

additional channels of communication, if necessary, without having to implement

the low level socket interactions.

The IPC component also provides process name lookup abstractions, so that
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Figure 4.3: Command Handler Flow Diagram - Software flow diagram for the com-

mand handler.

the port of another process can be looked up in the /etc/services file. A

function for the reverse is also provided: a name can be used to acquire a socket

address structure with the port. The socket address structure can then be used

to send messages to the process with that name.

4.3.4 Configuration Management

Another feature enabled by the library is utilization of configuration files. This

allows the process to have various pre-configured states, as well as simplify testing

on the target platform by enabling the configuration without having to recompile

and transfer the new process binary to the board.

The actual implementation for this system enables a variety of variable types,

such as integers, strings, and internet protocol addresses. These variables can also

be placed in objects, with syntax akin to XML, which produce a single structure

(a struct, in C) in the code. In the source code that is using a configuration file,

the expected variables are pre-defined, so that they can appear in any order and

in arrays within the configuration file itself. An example command configuration
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# Sample Beacon Command Conf i gura t ion F i l e

<CMD>

PROC=BEACON

NAME=STATUS

FUNC=beacon s ta tus

NUM=1

CMDOID=10

GRPOID=30

PROTECTION=0

</CMD>

Figure 4.4: Example Configuration File - An example configuration file; this one

shows a portion of the command configuration file for the Beacon process.

file for the Beacon process is shown in Figure 4.4.

4.3.5 Standard Debug/Error Interface

One of the more important standard practices for software development is a

unified debugging and error logging interface. Linux already provides an error

output stream, stderr, which can be utilized for debugging during development

when the target board is connected to a terminal output. However, output to

the terminal is not very useful while the satellite is in space and thus some type

of logging capability is necessary.

Fortunately, once again Linux already has this capability built-in with the

system logger, syslog. Thus, the debug and error logging interface provided for

processes will print to both stderr and the syslog so that debugging can be

done on the ground and in space. Using both is important so that the code that

will be utilized in space is also ran on the ground for testing purposes. It is easy

to make the mistake of ignoring a space-only feature and it is hoped to increase

the testing of flight functionality throughout testing.

Other Linux features were leveraged for this debug interface, as well. Linux

system calls and a number of standard library functions utilize a standard error

reporting global variable, errno. When an error occurs in one of these functions,
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it gets set to a number that corresponds to a type of error, which also has an

associated error message. As part of this debug interface, these error messages

are printed and logged via the use of a simple macro that wraps the function call.

4.3.6 Cryptography

The cryptography portion of this library provides a simplified interface to partic-

ular aspects of the OpenSSL library. There are a few primary functions provided

from this portion of the API: data hashing, message signing, and message vali-

dation. The hashing provides a secure hashing capability for use wherever data

integrity or security is necessary. This is also used by message validation and

signing, which is used for ensuring critical commands are received by the satel-

lite uncorrupted. The justification and implementation details are provided in

Section 5.1.

4.3.7 PolySat Library Base

All of the above components are wrapped into single basic library component

and their capabilities are available in all modes of operation. A few higher-level

functions, which utilize a number of components, are provided to further simplify

the usage of the library features.

When each process starts it will call an initialization function, which obtains

and initializes all of the important aspects of the process. A flow diagram of this

is shown in Figure 4.5. This includes creating the event handler object, opening

a socket bound to the process’s port number, and registering with the watchdog.

It also creates a file based on the processes name with the .pid extension that

contains its process ID, and another file in a separate location based on the process

id with the .proc extension that contains the process name. These files are used

by the software watchdog (see Section 5.2.4). This initialization will insure that

all absolutely necessary actions that are common among all static processes are

completed. A process cleanup function is also provided, which frees the memory

allocated and removes the files created during the initialization sequence.

In addition to the initialization and cleanup functions, a non-blocking IPC

function is provided. This is not implemented within the IPC component of the

library because it requires utilization of the event handler. The event handler is
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Figure 4.5: Process Initialize Flow Diagram - Software flow diagram for the process

initialization sequence.

used to schedule the write operation when it will not block. This is very important

to insure the correct operations of the process because any blocking operations

could significantly delay the process’ return to the select call within the event

handler and result in missed deadlines.

These high level command interfaces provide the process with a choice to

send a message to another process one of two ways: by name or address. When

a message is sent by name, the IPC lookup function is used to acquire the socket

address. In order to avoid having to do this lookup every time, the option is

also provided to use the standard socket address structure. This structure can

be acquired by completing the lookup at the beginning of the process, to avoid

requiring it each time. This may be used if a process intends to communicate reg-

ularly with another process to reduce message latencies (demonstrated in Results,

Section 4.4).
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4.3.8 Database

One of the initial challenges of the new system design was determining how to

store all of the telemetry and experiment data. In the previous system, there

were very few options due to limited storage and code space. However, with the

relatively large amount of storage available in the new system, the number of

options grew significantly. The first instinct was to utilize a database of some

kind because it is a typical option for data storage in most computing systems

and there is also a course at Cal Poly that teaches database systems. The choice

was made fairly easy when looking at the different Linux compatible solutions and

it was found that the open source package SQLite was very prevalent in similar

embedded situations, such as a variety of modern mobile devices [14]. Selecting

this package is in line with our intentions of leveraging pre-existing code and

minimizing custom code because SQLite provides a simple C API that requires

just a wrapper to be developed to enable the use of a database within our system.

In order to allow a large amount of telemetry in the database, the raw database

is to be stored on the NAND flash non-volatile memory. However, as a result of

this decision, the database API can only be used in full operations mode since

there is no read/write access to the NAND flash part of the file system in degraded

functionality.

4.4 Results

In order to assess the ability of the system to meet some of the non-functional sys-

tem requirements (see Table 3.1), such as time performance (1.2.1) and footprint

(1.2.2), some of the completed components of the system have been characterized.

All tests have been run on the target platform hardware and timing tests have

utilized the internal time keeping functionality of the Linux kernel.

4.4.1 Memory Footprints

The memory footprints of the components are important for two reasons: there

is minimal non-volatile storage available for degraded mode of the spacecraft and

reducing the volatile memory footprint reduces the power consumption. The

storage requirements of the have been summarized in Table 4.1 and the volatile
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memory requirements in Table 4.2.

Aspect Component Stored Size

Libraries

PolySat Base 69 KB

OpenSSL 1.56 MB

SQLite 451.1 KB

Processes
Beacon 11.5 KB

Watchdog 18.2 KB

Table 4.1: Various Component’s Non-Volatile Storage Requirements - These are

the size of some of the static processes and library binaries when compiled for the processor.

The base custom library (Section 4.3) itself has been shown to have a very

small footprint of only 69KB, while the processes themselves are even smaller,

with the beacon (Section 4.2.1) at 11.5KB and a more complex process, the soft-

ware watchdog (Section 4.2.5) requires 18.2KB. These file sizes are when compiled

without debugging symbols, since they are unnecessary in flight software. The

largest components of the system are by far the other open source libraries that

are utilized, with OpenSSL weighing in at 1.56MB and SQLite at 451.1KB.

Both processes measure required just over two megabytes of RAM while run-

ning, however, it is important to note that most of the memory is used the

libraries, which accounts for 1840 KB or nearly 80% of the memory needed for

each process. This information was collected by using the /proc/<pid>/status

interface while the process was running.

Process Run-Time Memory

Beacon 2312 KB

Watchdog 2416 KB

Table 4.2: Static Process Runtime Memory Requirements - This table shows the

total virtual memory allocated for these processes. This includes the memory required for

utilizing both the custom and standard libraries, which accounts for 1840 KB.

44



4.4 Results

Event Average Time

Static Process Initialization (Default) 15.2 ms

Static Process Initialization (Improved) 9.1 ms

UDP Message (Process Name – Default) 16.2 ms

UDP Message (Process Name – Improved) 10.0 ms

UDP Message (Socket Address) 7.2 ms

Table 4.3: Latency of Common Library Events - The default latencies were achieved

by adding the process port numbers to the end of /etc/service file, whereas the improved

time is a result of relocating them to the beginning of the file.

4.4.2 Common Library Event Latencies

Some of the different key actions in the system have been timed and are shown

in Table 4.3. The presented results are an average of numerous attempts, with

a single process running in the system. Although the actual system will have

multiple processes executing in the system, at any given time, it is more likely

for them to be blocking than actively running due to the periodic nature of their

actions and the relatively long time between events (e.g. a typical beacon rate is

no faster than 30 seconds), meaning events are unlikely to be compute bound.

The process initialization step gives an idea of how long it takes the custom

library to generate all of the standard objects that each static process uses (see

Section 4.3 for more information on this sequence). Since the last step of initial-

ization is to tap the watchdog, it is important this time is minimized. Based on

the measurements taken, this sequence takes approximately 15.2 ms on average.

At worst, this means it would take a five static processes approximately 76 ms

to all boot up. This is an acceptable latency because it is far less than 16 second

internal watchdog timeout, meaning the software watchdog can safely wait for all

processes to boot up and register with it before sending a heartbeat signal.

The next measurements are the end-to-end latency of sending a message from

one process to another, a number of components are used from the library for this

to occur: the IPC abstraction sends the message, the event handler recognizes

there is data available on the socket, and then the command handler reads the

data and finally calls the corresponding function. The simplest interface is the one

where the destination process name is provided, however, a significant amount of
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Event Period Average Absolute Error % Absolute Error

Beacon 5s 4.98ms .10%

Watchdog Status Query 10s 1.87ms .02%

Table 4.4: Scheduler Accuracy Measurements - These results show the measured

error of the event handler’s scheduler with two processes actively running in the system.

time can be attributed to the lookup of the port name in the /etc/services file.

This is demonstrated by the results with the socket address, which only take 7.2

ms on average.

The IPC named port lookup function (Section 4.3.3) is used in the initializa-

tion sequence to lookup the port for the process, so a slight tweak has been applied

to the /etc/services file to improve performance. The lookup performed in the

file is evidently approximately linear because when placing the process name at

the beginning of the list, both the messaging and initialization times improve

significantly. The average latencies have been reduced by at least 5 ms; improved

messaging is now 10 ms and the improved initialization time has been reduced to

almost 9 ms.

4.4.3 Scheduler Accuracy

The accuracy of the event scheduler (Section 4.3.1) has also been analyzed to

provide an idea of how accurate the deadlines it can provide are, these results

are summarized in the Table 4.4. The configuration was chosen to simulate a

potential satellite operations environment. A the beacon and watchdog process

was running, with a 5 second periodic “beacon” event and the watchdog collecting

statuses every 10 seconds. The accuracy of all of these three timed events has

been collected by analyzing data over a runtime of approximately 450 seconds,

with minimal other activity in the system.

These events are the primary scheduled events in degraded mode of the space-

craft, but are running at a rate far higher than would be typical in flight. In spite

of this, the beacon is still being executed at less than a tenth of a percentage of

deviation from the desired rate; whereas the watchdog query event is even more

accurate, with closer to one hundredth of a percentage of deviation. Even with

both processes running simultaneously and actively completing their tasks, there
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is minimal strain on computing resources, which allows the events to run very

closely to the desired rate. This is similar to the system’s operation in degraded

mode where few other periodic events are occurring.

It is worth noting that as more activities occur within the system, the average

error is likely going to increase due to the additional strain on the computing

resources. If fairly high frequencies are necessary, it is likely worth considering

a kernel module with direct interrupt service routine access rather than using

a static process, to provide better timing guarantees. Regardless, these results

show that if required, the event handler can manage the majority of the scheduling

needs for static processes in the system with good accuracy.

4.5 Design Success

The success of the design can be assessed by looking at how well the software

architecture has met the design guidelines, functional requirements and philoso-

phies.

An extremely flexible command system has been enabled by providing each

individual process with its own command space via the command handler. The

command handler also helps with radiation awareness by validating signed com-

mands transparently, along with the software watchdog which monitors the pro-

cesses for correct operation to insure no radiation events have affected function-

ality. The last of the guidelines, telemetry, has also been addressed in a number

of modules: every process has both system and operational state information,

the system manager enables access to vital telemetry in degraded mode, and the

data logger provides a simple interface for storing telemetry of any kind.

The functional requirements for the system have also been sufficiently satis-

fied. The data logger process has been designed to specifically support the first

requirement of telemetry collection and storage, by spawning processes to collect

telemetry and then storing the resulting data into the database that is saved on

the NAND flash non-volatile memory. The next requirement, a beacon, also has

a dedicated process and in order to transmit this data, in addition to meeting

the following requirement, the communication process has been designed to sup-

port transmitting and receiving AX.25 packets. As for the requirement dictating

the specific commands, those have also been implemented; downlinking teleme-
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try is available in a variety of methods, such as through the querying individual

processes for function specific information or the system manager for satellite

state. The final functional requirement has been built into the core functional-

ity of the custom libraries with the event handler that can schedule a variety of

events, which in turn enabled the data logger to easily schedule the execution of

commands after their reception.

The design philosophies are also prevalent throughout the system. Software

modularity is fundamental to the concept of the architecture, as all major com-

ponents are isolated into processes that can be developed as a black box with

clearly defined interfaces (commands for static processes and data logger inter-

face for temporary ones). This also lends to the next philosophy of simultane-

ous development, which has been further supported by the custom libraries that

enable development on operating systems other than embedded Linux, which

PolySat team members are more likely to run on their own computers. The last

philosophy of utilizing pre-existing code is evident throughout this design by the

usage of a variety of open source and other sources of existing code. It especially

common in the custom library that provides abstractions of the standard library,

OpenSSL, and SQLite APIs.

By successfully following the outlined design approach, the PolySat team

should be able to rely on this software architecture for any mission in the fore-

seeable future.
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Fault Tolerance

Many mechanisms for providing fault tolerance to the spacecraft were researched

and considered (see Chapter 7), but the result is that the majority of these add sig-

nificant complexity and require far more man-hours than an educational project

like PolySat can provide. A number of fault tolerance techniques have been

implemented in the core of the system architecture, such as error logging (Sec-

tion 4.3.5) and error detection checks with checksums on IPCs (Section 4.1.2).

However, this chapter focuses on two components implemented specifically for

their fault tolerance: digitally signed commands and the software watchdog pro-

cess. Through these two aspects of the software system, it is believed that the

majority of radiation events (SEUs and SELs) can be detected, logged, and re-

acted upon appropriately.

5.1 Cryptography: Digitally Signed Commands

5.1.1 Goals

The goal of the cryptography component of the PolySat library (Section 4.3) is

to guarantee only valid commands are executed on the spacecraft. The definition

of valid in this case has two different aspects: correct and allowed. A command

is correct if no portion of the command was changed in transit from the ground

station to the main processor and it is allowed if the ground station operator has

been permitted to execute that command on the satellite.

Both of these goals are very important to the overall security of the satellite.

If a command that had a single bit flipped was forwarded to a process on the
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spacecraft, there is the risk of an unintended command being executed by that

process. In some cases, this may not be a cause for concern; for example, if

the beacon rate is adjusted by 15 seconds instead of 14 seconds (if the least

significant bit were flipped). However, there are some incidences where this could

be catastrophic if it were a mission-critical command, such as an attitude control

maneuver.

Executing only permitted commands is vital to the security of the spacecraft

for similar reasons, but a failure to provide this guarantee could enable rogue

ground station operators to execute critical mission commands. As the public

awareness of these CubeSat missions increases, there is greater potential for in-

terference from unaffiliated ground stations. Thus, it is important to be able to

provide a guarantee of security to ease the minds of those who have invested in

the mission and also to insure this mission is not unintentionally compromised

by executing an out-of-sequence command sent from a curious amateur radio

operator.

It is important to specify that there is no intention to obscure the commands

being sent to the spacecraft, but rather protect a certain set of commands that

are vital to the success of the mission.

5.1.2 Requirements

The requirements of the interface are fairly straightforward: a simple API must

be provided to digitally sign and validate messages sent from the ground station.

There are also requirements that bound the implementation of the digital sig-

natures to maximize the security. An asymmetric (public/private key) algorithm

should be used for generating the signatures and the private key utilized should

only be installed on trusted ground stations. This system relies on this concept

because if the key is distributed outside of its intended ground station, it would

enable other ground stations to send commands under the guise of the trusted

one and provide access to secured commands. This requirement provides the

guarantee that signed commands originated from a trusted off-satellite source.
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5.1 Cryptography: Digitally Signed Commands

5.1.3 Implementation

The implementation of the cryptography relies heavily on the OpenSSL v1.0.0

library. It is worth noting this is another aspect of the satellite where reliability

is significantly increased through the reliance on pre-existing code. Furthermore,

this feature in particular would have been very difficult to implement an equiva-

lently robust solution without this library. The general process that this cryptog-

raphy component of the PolySat library supports is generating and subsequently

sending a command with a signature, which is then transmitted from a ground

station to the satellite, and then verified on the satellite for both correctness and

security. This flow is shown in Figure 5.1.
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Figure 5.1: Signed Command Flow - High level flow diagram of a signed command.

Throughout the message signing and validating process, the data digest is a

key component; the digest is created by generating a hash of the data. The SHA-

256 hash algorithm has been chosen for generating the digest because the more

common SHA-1 has been shown to be a more likely source of collisions [15]. It is

important to note that while SHA-1 may be extremely secure, security is not the

only feature we are looking for in this cryptography module, we also want to be

able to guarantee any bit flips are detected. If two separate bit strings hashed to

the same value, a collision, then it is possible an unintended command could be

allowed to be executed in the system. Fortunately, the OpenSSL library provides

a SHA-256 hashing capability, which is used throughout the implementation.

An important aspect of the message signing are the certificates that hold the

public keys. For these keys, the X509v3 certificate type has been chosen because

it has an extensions capability that can be used for customized security beyond

just the keys and it is fully supported by the OpenSSL library APIs. This design

utilizes the extensions to allow for different levels of security, such that a single

ground station can be given permission to only be able to execute commands on

a specific satellite, or even as narrow as a particular command. These certificates

will be stored on the satellite so that when a command signature is verified, it

can be insured that the source of the message not only has a valid key, but also
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explicit permission to execute that command. The OpenSSL library is relied on

once again for this, which provides a simple API for reading the certificates and

iterating through the extensions.

The simplest function of the cryptography component of the library is the

digital signing, for which the steps to accomplish it are shown in Figure 5.2. It

heavily leverages the EVP component of the OpenSSL library, which is provided

as the high-level interface to cryptographic functions [16]. The general process

for signing a message is to create a digest of the data being sent, and then the

signature is generated using a particular encoding scheme from that digest. The

original data is then transmitted with the signature and the digest is discarded.
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Figure 5.2: Command Signature Generation Flow - Flow diagram for signing a

command.

The other primary function is the command validation, which also utilizes the

EVP interface and other components from the OpenSSL library. The steps to

validate a command are summarized in Figure 5.3. First, a digest is created of the

command. Next, a public key must be used to attempt to match the signature to

the digest. Since the command could have been sent from any ground station who

has been authorized to send commands to the satellite, multiple public keys may

need to be attempted until it validates. Once a public key is found that validates

the the command, the permissions need to be checked. If no matching public key
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is found that validates the signature, no response is given, in order to prevent

Denial of Service (DoS) [17] attacks on the spacecraft. This type of attack could

occur if an unauthorized ground station user continuously transmitted invalid

commands that resulted in a response, thus tying up the radio resource and

preventing trusted stations from uplinking to the satellite.
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Figure 5.3: Command Validation Generation Flow - Flow diagram for validat-

ing a command. A command is forwarded only after both the command’s validity and

permissions are verified; otherwise the command handler exits, dropping the command.

There are three primary levels of permissions: satellite, command and group.

Satellite permissions are checked first, to insure that the sender of the command

has permission to execute commands on the satellite that has been sent the

command. If that passes, it is checked to see if the ground station operator has

been given explicit permission to execute that command. If that fails, then the

last check is for group permissions. These type of permissions are customizable
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based on the mission, for example, “payload” group permissions could be given

to a customer’s ground station to enable the use of payload commands, but

not other system functionality. Other groups could be used following a similar

concept, limiting the scope of access to the spacecraft based on the needs and

involvement of the operators.

5.1.4 Results

The resulting digital signature is 128 bytes that needs to be appended to each

command that requires security. This may seem like a large amount, but given

a 9600 baud transmission rate with an encoding scheme that only requires one

symbol per bit to the spacecraft (as proposed for LightSail-1 and CP7), only an

extra tenth of a second is required to transmit the signature over the air.

The other primary downside of adding this feature is the potential additional

latency added to command response and execution. Timing tests have been com-

pleted to show approximately how much this overhead actually is, and results are

summarized in Table 5.1. These tests were set up and run on the AT91SAM9G20

microprocessor that is used in the target hardware platform. The tests were run

to look at the cost of requiring a different number of certificates to be checked

against the signature until one is found, or there are no more certificates to be

tested. If only a single certificate has been installed on the spacecraft, then it will

be the only one checked against signed commands. Therefore, the time will be

about the same for both a valid and invalid signature because the most expensive

operation is the signature verification. As a result, the number of certificates at-

tempted can be interpreted as either the signature was verified after that number

of certificates, or that was the total number on the spacecraft and no match was

found.

The results show that overall there is very minimal cost in both time and

transmit bandwidth, especially when there are a low number of certificates. With

a single certificate on the satellite, only an additional 6.5 ms of time is required

before a signed command can be executed. As more certificates are added, this

time increases, but not linearly because the overhead of the other processing is

being amortized, as indicated by the average time per certificate reducing. Also

shown are the maximum number of bits that could have been transmitted (in

response to the command) while this process is occurring. The goal is to show
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Certs Attempted Exec. Time Time Per Cert. Max Transmit Lost

1 6.5 ms 6.5 ms 62 bits

2 11.2 ms 5.6 ms 107 bits

3 15.7 ms 5.2 ms 150 bits

10 48.1 ms 4.8 ms 461 bits

Table 5.1: Digital Command Signature Verification Timing - Results from timing

the signature verification operation with a varying number of certificates attempted.

that if the amount of information that could have been sent over the air is fairly

minimal, even with a large number of certificates.

In spite of the delays necessary to support this capability, it is important to

note that this feature will not be used for a majority of commands, or even a large

number. It is specifically intended for those commands that are critical to the

success of the mission, such as attitude maneuvers or one-time only mechanisms,

like a mechanical deployment. Also, if coupled clever organization to reduce the

number of certificates attempted for the most common ground station operator

certificates, these costs can be minimized while still being required infrequently.

Furthermore, until other ground stations are outfitted to be able to communicate

with PolySat spacecraft, only a single certificate would be necessary for PolySat

operators. This means that for a missions where only the Cal Poly ground station

would be communicating with the spacecraft, this overhead is arguably negligible

since only a maximum of 62 bits would be lost.

5.2 Software Watchdog

5.2.1 Goals

The software watchdog is the first line of defense in the series of the watchdogs

contained within the new PolySat avionics system. The software watchdog’s

overall goal is to verify that all custom software components of the system are

operating correctly.

Its first goal is to detect and respond to single event effects (SEE) in the

digital components, which have affected the running software. These events are

a direct result of the satellite’s exposure to radiation while in orbit and can have
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catastrophic results to the system if not handled.

There are two types of radiation events that the watchdog should be par-

ticularly concerned with: single event upsets (SEU) and single event latch-ups

(SEL). SEUs are the more easily dealt with because they usually only result in

a bit flip [3], which is not a permanent fault because it can be solved with a

refresh of the affected memory. Stuck bits caused by SELs, on the other hand,

are far more dangerous because a latch-up can only be cleared by removing the

power [11]; there is also a risk of permanent damage to the IC, if not handled in

a timely manner.

The other goal for the watchdog is to validate operational parameter changes

after a reboot, so that any configuration change away from the default is verified

to be correct. Providing this additional validation method through the watchdog

provides a correctness guarantee for state changes and will prevent the satellite

from entering an unknown or incorrect state after a reboot.

The final goal is that the software watchdog is the single point of interaction

with both the internal and external watchdogs to limit the potential for unin-

tentional tapping. These hardware watchdogs are the final line of defense; when

the watchdog cannot do anything to recover the system, they should be able to

initiate a reset of the processor or the entire system.

A related question posed is, “Who watches the watchdog?”. Fortunately, the

answer is simple: the internal watchdog! If the software watchdog stops function-

ing properly, the internal watchdog should initiate a reboot of the processor and

result in a restart of the watchdog process. If the watchdog continues to fail to

start properly, then the hardware watchdog should cause a full system reset.

5.2.2 Requirements

The requirements for the software watchdog can be separated into the three

distinct responsibilities of the module: watching processes, tapping the hardware

watchdogs, and validating configuration changes.

The primary requirement of the process watching capability is that it must

be able to cover both static and temporary processes.

The temporary watching of a process will be utilized frequently by the data

logger to watch the one-off processes, which should have a fairly deterministic

completion rate. However, it can also be used by other processes who are going

56



5.2 Software Watchdog

to execute an important task that has an approximately known time to complete,

but it is not periodic. Thus, a temporary watch should be able to be requested

any number of times, for any process.

When watching static processes, the watchdog should be capable of detecting

erroneous behavior by looking at the actual behavior of the process, where possi-

ble. If an error is detected, the offending process should be killed. The watchdog

does not need to concern itself with re-spawning the process because other Linux

system mechanisms can be utilized for this, such as init. If a process has been

killed a significant number of times, this may suggest a latch-up exists in the sys-

tem memory and a graceful shutdown should be initiated. A graceful shut down

is one where the processes are alerted to clean up and prepare for termination.

In all cases other than when a shutdown has been initiated, the software

watchdog is required to tap the external watchdog. The hardware watchdog

should not be tapped if a potential SEE has been detected, so that a hard reboot

of the system will be initiated and hopefully clear all SEEs. A hard reboot will

cause power to be removed from the entire system for a duration of time sufficient

to cause the power plane to drop down to ground and clear any latch-ups.

In addition to the external watchdog, the software watchdog is also respon-

sible for tapping the internal watchdog, which will initiate a soft reboot when

not tapped before the timeout. The software watchdog must only start tapping

the internal watchdog after the system has been confirmed to have booted into

minimum functionality, so that the system is not stuck in a half-booted state.

The last requirement for the watchdog is that it must have a command to

verify configuration changes. The watchdog should be able to receive both the

command and the signature from the ground, so that it can validate that the re-

configuration is both a permitted and correct change. If the configuration change

is valid, the watchdog is responsible for informing the inquiring process that it

can use the desired change.

5.2.3 General Implementation

The watchdog has been developed as individual static process, so that it can

leverage all of the standard PolySat library capabilities. This section details the

general approach for the implementation of the major watchdog features, such as

the process watching and configuration validation.
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The event handler in particular is heavily utilized: the static process watching

is based around one regularly scheduled event, each registered temporary process

has its own scheduled event, and there is a task for tapping the internal watchdog.

Also, in order to register a process for watching or request command verification,

commands are sent to the watchdog on its well-known UDP port. Lastly, in order

to accomplish the verification, the API provided by the cryptography component

of the library is used.

5.2.4 Static Process Watching Implementation

The most complex aspect of the software watchdog is the static process watching

with four distinct stages, shown in Figure 5.4.

Static 

Register 

Commands 

Received (1)

Status 

Request to All 

Registered 

Processes (2)

Status 

Responses 

Validated (3)

Process List 

Checked for 

Responses 

(4)

50 seconds later

5 seconds later

Synchronous

Asynchronous

Figure 5.4: Static Process Watching - Flow Diagram of Watching Static Processes.

The first stage is asynchronous, triggered by incoming requests from other

processes to be watched. The request includes the process name, which is stored

in a hash table where the port number is the key. A fairly small table is able to

be used because the static processes in the system will likely never exceed ten.

This data structure also includes the state of the process, which is utilized in each

of the different stages. When the request is received, the “watched” state bit is

asserted, so that the next stage will know to send it a status request.

In the status request stage, the hash table is iterated through and all pro-

cesses that have the “watched” state bit asserted get a status command sent to

them. After the command is sent, the “status requested” state bit is set. This is

important so that in the final stage only processes that have been sent a status

command are expected to issue a response. After all status queries have been
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issued, stage (4) is scheduled for five seconds in the future.

The next stage, status validation, is asynchronous because it depends on the

other processes to respond to the status query. When the status packet is received,

it is analyzed to verify that the sending process has been operating correctly

since the last query. The analysis implementation is detailed in the following

subsection. If the process is found to be operating correctly, a status bit is set to

indicate this. Otherwise, if the status has been found to be invalid, it is indicated

in a separate field that counts the number of invalid responses.

The final stage occurs precisely five seconds after the status queries have been

issued to give the processes a reasonable amount of time to respond and also so

that the external watchdog can be tapped at a regular rate. In this stage, the list

is iterated through for the final time and the status bits are examined to ensure

that all processes who were queried for a status have provided a valid response.

This state bit is checked to guarantee that a process who has requested to be

watched in between states (2) and (4) is not expected to issue a status response,

even though it will be marked as watched.

If a process has not been indicated to have provided a valid status response,

the watchdog will confirm that it is still running based on continuity between

the .pid and .proc files (generated for all processes in the initialize process, see

Section 4.3.7). If the process has already exited cleanly, these files will be have

been removed. It also protects against one of the files being corrupted or another

.pid file created with the same id because the two files need to match before a

kill operation will be initiated.

Proceeding an attempted shutdown of a process, a variable in the process

table entry is incremented that indicates how many times it has not provided a

correct response. If this number exceeds five, a system wide signal will be issued

to gracefully shutdown and then the entire system will get a hard reboot after

a significant amount of time initiated by the external watchdog. If the system

has not been requested to shut down, the external watchdog will be tapped to

prevent a reboot.

5.2.5 Status Verification Implementation

The status verification process is key to the software watchdog’s ability to deter-

mine the state of the watched processes.
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Generally, the status for a process will contain a variable that is incremented

after some kind of useful, regular event has been completed. However, some

processes do not have periodic events, so receiving a status packet is deemed

sufficient to indicate that the process is operating correctly because in order to

issue a response, the primary components of the process must be working (e.g.

event handler, command handler, and inter-process communications).

The contents of the status packet varies based on the actual function of the

process who sent it, but the beacon is a simple example to examine. The beacon

status contains two important fields: beacon rate and beacon count. The watch-

dog will keep track of the beacon count between each status query so that it can

find the total beacons issued since the last request, and then use the beacon rate

to derive what the actual number of beacons issued should have been. If the

beacon count delta is found to be within the allowable window, it is marked as

validated.

5.2.6 Temporary Process Watching Implementation

In order to register a temporary process, the following information is sent to the

watchdog: the process ID of the watched process, a task ID, the maximum du-

ration for the task, and an indicator of whether or not the requester should be

informed if the process is killed by the watchdog. The process ID is provided

so that requesters can start a watch on a process other than itself. The task ID

is used to enable multiple watches per process and can be used by the request-

ing process to provide a meaningful task identification with a particular watch.

Additionally, these two values are combined to generate a key into a hash table

where this information is stored.

After an entry in the table is created with the parameters, an event is scheduled

for the expected duration time in the future with a callback function that will

kill the process. This event can be cancelled by sending a command to the

watchdog with the process and task ID. The last parameter of the temporary

process registration is relevant to this callback function, as well. A message

will be sent to the requester of the watch after the process is killed, if its been

requested. This cancellation command also has another parameter, which can be

used primarily for debugging, indicating whether the watch is being cancelled as

a result of successful completion or another reason.
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5.2.7 Command Validation Implementation

The last aspect of the watchdog is the command validation, which is implemented

as a single command. The implementation of the command is fairly simple, thanks

to the cryptography API (Section 5.1) because the watchdog just receives the data

and signature from another process, then runs the validation algorithms on it and

returns the command to the process if it is validated. Additionally, this provides

the watchdog with an opportunity to record the command data if it is relevant

to the static process watching.

If the command validates, it will send the command back to the process with

the signature intact, and the process will essentially replay the command. On

the other hand, if the command does not validate, only an error will be logged

and the process does not need to be notified since it would have already been

configured to its default operating parameters.

Upon receiving the command back at the inquiring process, it will get vali-

dated once again because it will go through the command handler and it must

be a protected command if a signature was used (see Section 4.3.2). This second

check is necessary because it ensures that no bits had been corrupted after the

message was sent back from the watchdog and will guarantee that the process is

utilizing a configuration change that is both correct and valid.

5.2.8 Detection and Recovery Limitations

The software watchdog is unfortunately not an ideal solution for dealing with

radiation events due to a variety of factors.

First and foremost, the granularity of the watch period is limited by the

external hardware watchdog period, which is currently sixty seconds. This makes

it difficult to watch processes with regular events that occur at a period that is

far greater than this time with high accuracy because a decision needs to be made

at a relatively high frequency about tapping the external watchdog.

The watchdog also currently does not have any capabilities to detect if a pro-

cess is regularly causing reboots of the system, which may indicate a permanent

corruption in the process binary. This type of behavior would have to be deter-

mined from the ground, as a result of the telemetry collected from the watchdog.

A fix for this type of problem would also rely on the currently pending image
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upload capability.

Furthermore, the reaction to an isolated watchdog process failure will likely

have a far higher cost (in time and power) due to reliance on the internal watch-

dog to reset the processor in this event. If a second, independently developed,

watchdog were utilized, so that each software watchdog could watch each other,

the cost of an isolated failure in either would be far lower because the failed

module could just be reset like a normal process failure. This is proposed as rec-

ommended future work (Section 8.3), to increase the robustness of the software

watchdog.

5.2.9 Results

A number of tests have been run on the watchdog to validate the expected be-

haviors of the module. The current implementation of the watchdog has been

confirmed to behave correctly in the situations shown in the Table 5.2, which

includes all of the major requirements. Other tests still need to be completed

with the hardware watchdogs and the entire set of degraded processes to fully

validate these watchdog features. Additionally, timing tests have been completed

to determine the time it takes, from start to finish, of validating a configura-

tion change for another process; these results are shown in Table 5.3. General

process related statistics for the watchdog, such as stored and run-time memory

requirements, are shown in the general system results, Section 4.4.

The timing results were gathered over a series of 144 validations, with varying

rates and a few process restarts in between to approximate potential actual behav-

ior. Considering that two UDP messages are sent and the signature is verified at

both the destination and the source (by the command handler), the time required

is fairly minimal. On average, only 19.6 ms are required starting from when the

requesting process sends the message until the command returns. The maximum

time was shown to occur only on the first attempt and then there appear to be

significant benefits from system caching, as indicated by the average.

The watchdog component provides a few critical features to the software sys-

tem: it alleviates the burden of validating data from each process through com-

mand verification, in addition to observing and validating the operations of the

static processes. The implementation results have shown that this is accomplished

relatively efficiently and at little cost to the overall system.
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Aspect Event

Static Processes

Single process operating normally

Multiple processes operating normally

Single process operating incorrectly

Multiple process with some operating incorrectly

After 5 failures, shutdown signal issued

Temp. Processes

Single temp process watch, successful completion

Multiple temp process watch, successful completion

Single temp process watch, terminated

Multiple temp process watched, some terminated

Command Validation Only correct commands sent for validation are returned to process

Table 5.2: Validated Requirements for Watchdog - Requirements for the watchdog

that have been successfully implemented and demonstrated.

Event Min. Average Max

End-To-End Command Validation 17.5ms 19.6 ms 27 ms

Table 5.3: Watchdog Command Validation Timing Results - Timing results from

the command validation watchdog feature, indicating how much time elapsed starting from

when the request was issued ..XXX
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Related Satellite Projects

6.1 Summary of Projects

Satellite [§] Organization Main Mhz Volatile Non-Volatile Operating

Processor Memory Memory System

1st Gen PolySat [2] Cal Poly PIC18F6720 4 3.75KB 256KB custom

2nd Gen PolySat [4] Cal Poly AT91SAM9G20 400 64MB 528MB Linux

BeeSat-1 [6.2] Technical Unv. of Berlin LPC2292 60 2MB 16MB TinyBOSS

Cute-1.7 [6.3] Tokyo Institute ARMV4I 400 32MB 128MB Windows

of Technology CE.NET

ITU-pSAT [6.4] Istanbul Technical Unv. MSP430 8 10KB 55KB Salvo

KySat-1 [6.5] Kentucky Space MSP430 N/A N/A N/A Salvo

MEROPE [6.6] Montana State MC68HC812A4 8 1KB 154KB custom

QuakeSat [6.8] Stanford University ZFx86 486 100 16MB 1MB Linux

STUDSAT [6.9] India - 7 Academic AT91SAM9260 180 64KB 512KB VxWorks

Institutions

PW-Sat [6.7] Warsaw Unv. of Tech. AT91SAM7X 55MIPS 256KB 2MB FreeRTOS

UWE-1 [6.10] University of Wuerzburg H8S-2674R N/A 8MB 4.5MB µCLinux

Table 6.1: Comparison of processing specifications and operating systems of

CubeSats - These projects were chosen based on availability of published design and

specification documents. The section is given where they are discussed in this paper.

A number of related satellite projects were surveyed in order to facilitate and

support this design. A list of these satellites and their computing specifications

are shown in Table 6.1, including the first and second generation Cal Poly designs.

A link to the section is also given where a summary is given of works published

about the project’s software system, followed by an analysis of the system and a

comparison to the new PolySat system, when possible.
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6.2 Dependable Software (BOSS) For the BEESat Pico

Satellite

BEESat is a CubeSat developed primarily by the Institute of Aeronautics and

Astronautics of the Technical University of Berlin in Germany. BEESat makes

the claim of being the ”first pico-satellite with a fault tolerant design” [18], which

is implemented at a variety of levels.

6.2.1 BEESat Spacecraft

The satellite contains the typical subsystems, including the on board data han-

dling (OBDH), power, communication, ADCS, and payload.

The OBDH consists of two redundant microprocessors, ARM7 microcon-

trollers each with 16MB flash memory and a redundant CAN interface for inter-

subsystem communications. This subsystem controls the typical communication

components (transceiver and modem), which transmits to the groundstation in

the UHF band. The OBDH also controls the ADCS subsystem that has the ca-

pability of 3-axis stabilization through the use of 3 microwheels. The satellite

also has a camera as the payload, which communicates with its own microcon-

troller that is implemented with cold redundancy via a watchdog timer, current

protection circuitry, and backup software images.

6.2.2 Software Architecture

The BEESat satellite utilizes the BOSS real-time embedded operating system

and its provided middleware. This was chosen because the operating system

was designed specifically for safety critical applications with an emphasis on sim-

plicity. Additionally, the BOSS middleware enables communication between any

combination of software or hardware elements, which simplifies the development

process.

The middleware was specifically designed with fault tolerance in mind. The

architecture relies heavily upon asynchronous message passing with a subscriber

protocol. Any hardware or software module can subscribe to the messages of

another module; all subscribers will receive a copy of the messages from that

module. This feature makes it very simple to add logging systems or online
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system diagnosis. An extension of this system adds further fault tolerance by

providing the capability of inserting a voter between the middleware and the

module.

Different tasks in BOSS are implemented as threads, which are scheduled by

the kernel. The kernel also provides a time manager service, which provides a

64-bit counter for each node to keep track of the local time. The kernel also

provides an interrupt manager to pass interrupts to user level modules. In or-

der for this to function with the specific microcontrollers on BEESat, a small

hardware dependent layer is required for interaction with the hardware specific

components.

6.2.3 Results

BEESat was launched in September 2009 and entered a 720 km sun-synchronous

orbit. After a year on orbit, BEESat was still operating nominally and none of

the redundant subsystems were required to be activated [19].

6.2.4 Analysis

Although the BEESat system runs an RTOS and thus the low level architecture

is relatively simple, their design philosophies contain some similarities to the

PolySat system. Specifically, we also are attempting to utilize generally fault

tolerant software mechanisms.

Furthermore, the success of our project is encouraged by projects like BEESat

that have had significant on orbit operability without having to fall back on

redundant subsystems because we have decided to eliminate major redundancy

from this generation of avionics hardware.

6.3 A PDA-Controlled Pico-Satellite, Cute-1.7, and its

Radiation Protection

The Cute-1.7 pico-satellite is a PDA-controlled spacecraft developed to the Cube-

Sat specification by the Tokyo Institute of Technology [20]. The primary mission

for this satellite is to validate the usage of COTS components for future missions.

Magnatorquers were also flown to test an attitude control algorithm.
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6.3.1 The Cute-1.7 System

The satellite is developed around a term coined by the developers of the Cute-1.7

spacecraft as the “SatelliteCore.” This contains all of the primary components of

the satellites and can be joined with what is referred to as a “mission container”,

which holds the payload, to form a whole spacecraft. The SatelliteCore only

requires a standard USB interface to communicate with the payload and provides

3.3V, 5V, and unregulated power rails, to suit a variety of needs. The goal of this

method is to require only a new mission container to be developed for each new

satellite to reduce development time.

The SatelliteCore requires 1U of volume and thus it is expected that when

combined with a mission container, the entire spacecraft will be at least 2U.

Advanced features such as attitude control were left out of the SatelliteCore

design to optimize for cost and production time, rather than functionality. Satel-

liteCore aims to enable frequent access to space and adding the complexity that

these features require would make that more difficult.

In line with the goal of rapid development, the majority of the components

used are COTS devices. Specifically, parts are actually removed from end user

products rather than commercially available electronics. For example, the transceiver

used is an FM transmitter and receiver from a commercially available handheld.

Furthermore, a personal digital assistant’s circuit board is used as the main com-

puter. This computer runs the operating system Windows CE 4.1 and the pri-

mary peripheral interface is USB, both of which are (or were at the time of the

design) common enough to support the rapid development goal of the overall

SatelliteCore design.

6.3.2 Radiation Protection

A number of fault tolerance mechanisms were added to the Cute-1.7 system to

attempt to provide radiation hardening of the COTS parts. The two primary

components are a double watchdog timer system and over current protection cir-

cuitry. The watchdog system has two separate timers so that both the computer

and the real-time clock, which is isolated from the rest of the system, can be

protected.

The goal of these systems are to prevent the computer from failing as a result
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of SELs or SEUs. Sometimes an SEL can be indicated by increased current

consumption, however, given that current consumption can vary greatly based on

the CPU load, this may not be sufficient for reliable detection. The watchdogs

can aid in the event current consumption does not spike high enough to trip the

protection circuitry and ensure that power is cycled to clear the issue. When an

SEU occurs, the effect is similar: the watchdog timer will restart the system in

the event of a software halt.

The radiation protection system was validated by using a proton beam, which

was wide enough to cover nearly a quarter of the main computer’s circuit board.

This was used to force SEU and SELs to happen to the computer system and

hopefully allow observation of the recovery mechanisms. The results of this ex-

perimentation showed that the Cute-1.7 system should be able to function as

intended for approximately a year, which is a reasonable amount of time to com-

plete a CubeSat-type mission.

6.3.3 Analysis

The Cute-1.7 is one of the earliest published papers about designing a generic

CubeSat platform and thus many of their design principles and goals were similar

to those of PolySat’s current design. The PolySat design seeks to improve turn-

around times by establishing an extremely generic platform and improves upon

the Cute-1.7 concept by requiring far less volume, but also providing a larger

variety of interfaces.

Similarities are also found in the specific implementation: such as the use

of two watchdog timers in the PolySat system, to protect both the CPU and

the other components in the system from radiation events. The PolySat system

hopes to provide further protection at the software level, as well. Additionally,

PolySat also chose a commercially available operating system to enable the usage

of common tools and languages, which were the likely motivations for Cute-1.7’s

usage of the Windows CE operating system.
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6.4 iTU-pSat: Istanbul Technical University’s Student Pico-

Satellite Program

iTU-pSAT I is a 1U CubeSat and the first student-designed pico-satellite of

Turkey [21]. It contains two payloads, both developed in-house: a low-resolution

camera and a two-axis passive stabilization experiment. Its system is mostly com-

prised of COTS parts, with the structure and C&DH board acquired as part of

the CubeSat Kit from Pumpkin Inc. The satellite was launched was in 2009 and

was beaconing regularly as of spring of 2011 [22]. The on-board modem failed

shortly after the launch and thus uplink to the satellite has not been possible.

6.4.1 Software

iTU-pSat also utilizes the real-time operating system provided by Pumpkin Inc.,

Salvo. The guiding design principle for their software architecture was to encap-

sulate one function or feature per task. The function of the main controller is

primarily to control and collect data from other subsystems via I2C, and then

dividing that information into packages for transmitting to the ground. The sys-

tem has been designed such that it can boot from only the flash memory of the

microcontroller in the event of external memories failing.

6.4.2 Analysis

The iTU-pSat satellite is another example of a university project that was made

possible by COTS parts, but it is unclear if future missions are planned with this

system. Further details are necessary regarding the implementation of their soft-

ware architecture and fault tolerance to determine the extensibility or flexibility

of the system.

6.5 KySat-1: A Kentucky Space 1U CubeSat

The KySat-1 CubeSat was developed as a collaborative effort, by the Kentucky

Space consortium. It has a 1U form factor and uses almost entirely all COTS

parts, including both the electronics and structure from Pumpkin Inc. and Clyde

Space Ltd [23]. The primary mission of KySat-1 was to attract the interest of
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K-12 students in the STEM field through various interaction with the satellite

while in orbit. KySat-1 was launched with the ELaNa-1 [24] mission in March

2011, but unfortunately did not reach orbit due to launch vehicle failure [25].

6.5.1 System, Requirements, and Software Infrastructure

KySat-1 utilizes an MSP430 microcontroller with the Salvo OS, both provided

by the Pumpkin Inc., for their C&DH subsystem. Salvo is an RTOS specifically

designed for small applications [26]. The software that ran within this operating

system was designed by the Kentucky Space team and developed as part of their

goal to create a “reliable and reusable CubeSat [system] architecture” [27].

The team developed a set of functional requirements, which included both the

general and payload specific functionality. They dictated various high-level func-

tions such as being able to configure the satellite before launch, providing com-

mand scheduling and execution, telemetry reporting, and capturing photographs.

In order to support meeting these requirements, Kentucky Space needed to

create a software development infrastructure, since one did not exist prior to this

project. Some of the decisions to develop this infrastructure included deciding

to utilize a common version control system, SVN, standardize the development

environment, and run a static analysis tool, Cleanscape C++ Lint, on all flight

code.

Several strategies were also employed to aid development. The software was

built in revisions, such that each revision was a potential flight candidate, if

the schedule necessitated it. Four flight-ready revisions were released of the flight

software, including the final fully-functional one. The software was also developed

with a highly modular architecture, in order to facilitate dividing work amongst

developers and simplifying future code modifications. Extensive work was put

into designing the module interfaces to insure they were simple and intuitive to

use. Lastly, each module was required to be reviewed by another programmer

before being accepted as flight code.

6.5.2 Flight Software Overview

The KySat software architecture is divided up into a large number of modules,

where each exists as a task or a set of tasks within the operating system. To

71



6. RELATED SATELLITE PROJECTS

multiplex access to the hardware within tasks that used shared peripherals, global

semaphores are used; in order to share data between tasks, queues are utilized.

The system is driven primarily by groundstation commands: data is received

by one of the tasks that interfaces with a radio, it is decoded by the corresponding

driver, then sent to a packet receive task where it is sent to queue that feeds to

a command executor or to the transmitters, if the packet is to be “repeated”

(sent back over the air). Once the command executor receives the command, it

is parsed and it can either be scheduled to be executed immediately, or at a later

time. When an action is taken, the command executor is also responsible for

issuing an acknowledgement to the ground.

There are also several modules implemented for specific commands. This

includes both a digital and continuous wave beacon, a few file system related

commands, and a telemetry window command, which initiates a high rate of data

recording for a set of sensors. The output of the telemetry window command is

written to an ASCII-formatted file, which can be downlinked during or after the

window is completed. Other commands utilize files, as well, such as those related

to images and audio playback; all files are stored on an SD card.

The approach for general telemetry storage is somewhat unique in that they

simulate a database through the use of macros that point to different indices in

one large array. Each telemetry point has a specific macro that is used, which

contains the specific index for that point. These telemetry points are updated

at a rate of once per second, enabling other software modules to read from the

database in RAM to get a reasonable recent value rather than reading from the

sensor itself. Most modules in the system write to at least one telemetry point.

6.5.3 Fault Tolerance

Most of the components in the KySat-1 system have little or no flight heritage

and thus several fault tolerant mechanisms have been utilized to help mitigate

the risks.

The system relies on two watchdogs to protect against hang-ups that can

occur as a result of radiation events. The first watchdog is internal to the mi-

crocontroller and is configured to timeout in just a second, but it is tapped at a

rate double that, unconditionally, within a system task. When this system task

is running, it indicates that the scheduler is functioning properly, which is a key
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to the correct operation of the entire system. The second watchdog is external to

the microcontroller, has a longer timeout of sixty seconds, and is able to perform

a hard reset of the system. This watchdog is also tapped at a rate double the

timeout, but only when all of the global semaphores in the system have been

freed, indicating that there is no dead-lock. It is noted that this does add com-

plexity, but that it is worthwhile to insure the system can recover from improper

semaphore usage.

In order to protect against radiation events that can alter data in the EEP-

ROMs, where satellite parameters and settings are stored, the hardware library

stores all values in three locations within the memory. A voting system is used

whenever a read of the EEPROM is executed, and in the event that one of the

three values is incorrect, the correct value can still be returned, and it is also

written back out to fix the corrupted location. If more than one location has

become corrupted that is associated with a single value, the values will get set to

their default/launch value. A system reset command is also implemented to allow

for all of these values to get reset, in case the satellite appears to be operating

incorrectly in spite of these mechanisms.

There is also a module that is dedicated to monitoring the activity of the

system. Generally, the satellite will be interacted with at least once every ten

days, thus, if no packets have been received within ten days, it is probable that

some kind of critical error has occurred. When this is detected, this error scanning

module will utilize the system reset command to return the satellite to its default

configuration, in an attempt to clear the error. The error scanning module is also

responsible for sniffing parameter changing packets that come to the satellite, and

if a parameter is found to be requested that is outside of the acceptable range,

the parameter is restored to its default value.

An additional mode has also been designed in the event of no communications

for ten days. When the satellite reboots into the default configuration mode, as

a result of the error scanning module, the worst case is assumed and antenna

deployment is re-attempted. After this, if no packets are received for another

three days, the satellite is booted into a system recovery mode. In this mode, a

minimum set of hardware and software is used in hope that none of the critical

components have been permanently damaged. Additionally, in this mode, the

system toggles between the two primary radios and issues continuous wave bea-
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cons every 4.5 minutes. Only two commands are available to the ground station

operator at this point: normal reboot, or normal reboot with a new default radio.

The beacon contains information to determine which of these are the appropriate

choice for recovery.

6.5.4 Analysis

KySat-1 is another project whose software system was developed with similar

overall goals to the new PolySat system: an extensible, modular, generally fault

tolerant software architecture. The approach differs a bit due to the usage of

a lower power microcontroller, with the Salvo RTOS. This design choice has

required the KySat-1 team to seemingly integrate a lot of non-generic code inside

their command path, in order to handle forwarding commands to payload specific

modules. It is unclear whether or not a generic method of implementing this was

utilized. This was a pitfall of the first generation PolySat design, and intentionally

avoided in the new design by enabling each process to simply handle their own

commands with the provided command handler.

Furthermore, the use of an RTOS required extensive use of low-level operating

system objects and services, such as semaphores and queues, which they admit-

ted adds fairly significant complexity. The PolySat system was able to avoid this

by leveraging abstractions of similar concepts that already existed in the Linux

kernel and standard libraries. The same can be said for the custom “database”

implementation for KySat-1; rather than a custom implementation, the PolySat

system was able to leverage a commonly used implementation, SQLite. Further-

more, using an RTOS at Cal Poly would likely fundamentally result in a steeper

learning curve, because there are no lower level courses that teach programming

in such an environment, and until recently there was not even a higher level one.

As for the fault tolerance methods, KySat-1’s usage of watchdogs is extremely

similar to PolySat’s. Specifically the use of two hardware watchdogs, where one

is unconditionally tapped at a high rate, and another with a condition tapped at

a lower rate. The implementation differs a bit though, in that the functionality

of PolySat’s software watchdog exists partially throughout the KySat-1 system,

such as the parameter validation. However, there is no mention of validating

the correct operation of the modules, which is a feature provided by PolySat’s

software watchdog and can be used for detection of radiation events.
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KySat-1 does provide some fault tolerance mechanisms that are not included

in the PolySat system, such as the redundant parameter storage. It is believed

that the checksums used to validate the file system in the bootup process are

sufficient to detect permanent faults and that voting systems such as this add

significant overhead and complexity in a place that has not fundamentally been

identified to be a consistent source of errors.

The failure modes are also an interesting concept that the PolySat system

has implemented a minimal form of (degraded versus full functionality modes),

but has avoided due to the lack of operational history suggesting such modes

are necessary. The KySat-1 implementation mostly focuses on communication

system failure, which the Cal Poly missions seemingly identified as a consistently

reliable system, whereas it was the C&DH component that was mostly likely to

fail. Thus, the majority of efforts seem to be best spent making the primary

computer robust to failures rather than the components around it.

6.6 MEROPE: Montana EaRth Orbiting Pico-Explorer

(MEROPE) Cubesat-class Satellite

The MEROPE spacecraft was a 1U CubeSat that was launched on the failed

DNEPR-1 rocket in 2006 [28]. It was the first satellite developed by Montana

State University and its primary goal was to be a modern day version of the

Explorer-1 science payload [29].

6.6.1 C&DH Hardware

The project was entirely student run and low budget, which necessitated the use

of mostly COTS components. Since no radiation hardened components could be

afforded, goals and requirements for the mission were decided appropriately. The

mission was only required to last four months and only a 40 KHz data rate from

the payload was needed. The microcontroller chosen to support this mission was

the 16 bit MC68HC812A4 (commonly referred to as the HC12), running at 16

MHz with 1KB of RAM, a 4KB EEPROM for program storage, and a 150KB

FIFO RAM device for external memory.
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6.6.2 Software

The software was programmed in assembly, which was chosen for its minimized

code space requirements in comparison to C. As a result, the software is a fairly

simple interrupt driven architecture. The main loop is responsible only for teleme-

try monitoring and storage, tapping the watchdog, and checking the receive buffer

for data. All other activities on the satellite are initiated by interrupts. Interrupts

insure that the desired data rate can be achieved.

Two different modes of operation were programmed for the MEROPE system:

probe and on-orbit. The probe mode is used primarily during development and is

entered when a serial cable is attached and the batteries are being charged. In this

mode, systems diagnostics run, and the chip can be reprogrammed. In on-orbit

mode, all activities of the satellite are autonomous. There are three phases in this

mode, the first is when the satellite is first deployed from the P-POD and it must

wait a certain period of time to deploy the antennae, to prevent collisions with

other spacecraft. The second phase is normal operations, which is entered after

the antennae have been deployed, and the standard main loop is run. The third

and final is the transmitting phase, which occurs when the satellite is overhead

Montana State University’s ground station and data is being sent over the air

from the satellite to the ground station.

6.6.3 Analysis

This is one of the earlier CubeSat missions and thus, it has more parallels to the

first generation PolySat design than the newer one. The concept of a main loop

that manages the telemetry, and all other activities are triggered by interrupts

is very similar. However, given that it was programmed in assembly, it is even

simpler in implementation.

This project is included to show the significant technology leaps that CubeSat

C&DH electronics and software have made in just the past decade.
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6.7 PW-Sat on-board flight computer, hardware and soft-

ware design

The PW-Sat is a CubeSat developed by various faculty of the Warsaw University

of Technology in Poland [30]. It’s primary goal is to demonstrate a satellite

deorbiting mechanism based on a shape memory alloy sail, which could be used a

cheap method for removing spacecraft from low earth orbits. In addition to this

experiment, they are also flying an RTOS-based software system, which runs on

an ARM7 microcontroller.

6.7.1 Hardware Design

The on board computer for PW-Sat consists of an Atmel AT91SAM7X ARM7

microcontroller, which operates at a speed of 55 MIPS. For telemetry and sched-

uled command storage, a 16 megabit DataFlash component is used. A one-wire

bus is utilized to interface the microcontroller with a temperature sensor and the

radio communication module.

Based on the analysis of their intended orbit, they expect to receive 1 krad of

total ionizing dose every 30-days and it is believed that the commercial CMOS

components that have been selected should continue to operate nominally.

6.7.2 Software Design

The software design is mostly based around the FreeRTOS real time operating

system. One of the stated reasons for choosing this system is that it can be used

on a variety of hardware platforms.

The software architecture is highly modularized, with each module existing

as a FreeRTOS task. Communication is accomplished by using different built-in

services and objects like queues and semaphores. There are ten unique software

modules, which each accomplish very specific tasks for the spacecraft.

The first module is the “USART Communication Module”, which is respon-

sible for the RS232 interface and low-level control of the satellite’s radio. After

commands are received by this task, they are sent to the “Telecommand Parser

and Validator”, which first authenticates the commands using a keyed-Hash Mes-

sage Authentication Code utilizing the SHA256 algorithm. Each command has a
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32 character signature, which relies on the secrecy of the key that is used to gen-

erate and validate the signature. After verification of the signature, the module

converts the command into binary and sends it to the “Telecommand Scheduler”.

The scheduler is responsible for queuing received commands for execution,

either in a relative time or absolute. The capabilities for repeating the commands

with a specified period, removing commands, and viewing the currently scheduled

commands are also provided. One of the challenges faced in the implementation

of this module was providing persistence between system resets. The approach

they ended up using was periodically writing out the contents of the queue to

their flash memory. The downside of this option was that commands between the

last save and a reset would be lost, but the frequency was high enough to reduce

the likelihood of losing a significant number of commands. With the command

state, a persistent time stamp was written out as well, in lieu of an onboard real

time clock, to enable consistent time keeping. Once a scheduled command is to

be executed, it gets sent to the “Telecommand Router”, which is a very simple

module that merely places the command in the appropriate queue.

The other modules provide higher-level functionality, such as the sensors mod-

ule, which gathers voltage and temperature information from the on-board sen-

sors. The “House-Keeping Module” also uses this sensor data, in order to monitor

the state of the spacecraft and send out alerts to the system if sensor values exceed

certain upper or lower bounds.

The next module is responsible for overall system health and observation, the

“System Module”. It contains a software watchdog component, which collects

heart beats from every module in the system, in order to detect deadlock. When

every heart beat is collected, a hardware watchdog is tapped.This module also

keeps track of the reason for reboots, logging the past 50 reset causes, and also

the past 50 failing modules as detected by the watchdog.

The last two modules are for collecting and archiving telemetry from other

modules. The general telemetry module is solely responsible for sending telemetry

to the communication module. Priorities are given to each telemetry packet: low,

normal, or high. High is used exclusively for data only packets, but the typical

telemetry packet will be assigned a normal priority. The data is removed from

the queue based on the priority as soon as the on board computer has been

informed the radio is ready to transmit. Since the opportunity for transmitting
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data to the groundstation is very limited, these queued telemetry packets need to

be archived, which the second module is responsible for. Each archive entry has

a time stamp and is saved inside the 2MB memory, which is treated as a circular

buffer (a maximum of about 15000 packets can be stored at a time).

The final aspect of the software discussed is software redundancy. In general,

the system relies on the hardware watchdog to recover from single event upsets

and latch-ups. However, if there have been 15 consecutive restarts, the system

will enter a safe mode. This safe mode utilizes redundant code and redundant

SRAM memory, in order to maximize reliability, and implements the minimum

functionality required to generate and broadcast telemetry packets. After 15 min-

utes of operation in this safe mode, the system will forcibly restart and attempt

to reenter the normal mode.

6.7.3 Analysis

The PW-Sat software architecture bears many resemblances to PolySat’s new

design. Other than the underlying operating system difference (FreeRTOS versus

Linux), the approaches are nearly identical: reliance on a higher power processor

to enable significant software modularity. Parallels can be found in nearly all

of the modules, such as the communication, telemetry, and system/watchdog

modules.

However, there were a number of modules that the PolySat design did not

require a custom implementation thanks to an existing one in Linux. For example,

the majority of our command routing is provided by the Linux kernel with the

well-known port numbers rather than implementing a custom module as PW-Sat

was required to do. Additionally, they required a custom format for storing their

telemetry packages, whereas our design was able to leverage the SQLite package,

which enables numerous other features besides efficient storage.

The software redundancy strategy is also fairly similar to that of PolySat’s sys-

tem, with a reliance primarily on the watchdog to initiate restarts upon detection

of a radiation event. The similarities do not stop there either, both systems have

a degraded operation mode which can be used to attempt to recover from signif-

icant failures. However, the implementation differs slightly due to the intended

recovery option. The PW-Sat does not have any mentioned code upload capabil-

ities and thus the only way to recover from a serious failure is to wait it out. As
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for the PolySat system, work is being done to be able to upload an entirely new

image, which would enable recovery from both transient and permanent faults in

the software image.

The PW-Sat software design is an interesting precursor design to the new

PolySat design. The new system hopes to relieve the burden of requiring the

developer to learn a new operating system by utilizing Linux instead of FreeRTOS.

FreeRTOS should provide the better performance overall, but the limited selection

of open-source/free code available and the likely increased learning curve are

significant detractors in an educational environment.

6.8 QuakeSat Lessons Learned: Notes from the Development

of a Triple CubeSat

QuakeSat [31] was a three unit CubeSat that succesfully flew powered by a Linux-

running CPU. The duration of the entire project was 18 months and in that time

it was succesfully built, launched, and operated for a number of months. This

paper details their lessons learned from this mission, specifically regarding the

differences of developing a CubeSat versus a larger satellite.

6.8.1 Operating System Selection

The relevant portion of the paper to this thesis is the discussion of their software

system. The QuakeSat mission selected a COTS single board computer, which

came with a fully functional Linux OS. The availability of this OS was a driving

factor in their decision because they did not have to write any I/O drivers and thus

could focus on higher-level software and payload integration. The choice of Linux

as an operating system was based on the availability of third-party software, such

as AX.25 support, ease of development, and compatibility with existing ground

systems. Furthermore, they found numerous utilities for software telemetry and

also utilized the existing IP network stack within Linux. Thanks to all of the

existing Linux code-base and support, the QuakeSat team only had to write

10,000 lines of code, only 30% of which was device driver code.

The QuakeSat team did recognize some disadvantages to using Linux though,

for example they found more testing was required due to the greater flexibility
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provided by the existing code. Additionally, they acknowledged the time was not

taken to validate the large number of files that are required to support the Linux

kernel and thus they were not able to guarantee the validity of the operating

system.

6.8.2 Satellite Software

The satellite software architecture primarily consisted of independent programs.

The programs had few or no interdependencies and thus enabled concurrent de-

velopment with minimal interfacing between the developers. As a result, this

reduced “development cost, development time, and software complexity”. One

of the other stated benefits of this type of architecture is that the overall risk is

reduced for the programs because no interaction means little chance of locking

up from a race condition that went untested.

The software architecture can be described as having four distinct layers: op-

erating system (Linux), device drivers and watchdog, command handling, and

applications. The command handling is done by the “QuakeSat Executive”,

which receives a command and sends a respond, to ensure for every packet up

there is one packet down. Three primary application types are used: beacon,

which sends telemetry information, file upload/download programs, and worker

programs, for executing “time-tagged” sets of commands (i.e. a multi-day exper-

iment). Additionally, scripts were used to perform a large number of operations

on the spacecraft, such as maintenance, control other programs, and sometimes

execute payload commands.

After the launch of QuakeSat, testing revealed that the existing flight software

needed to be modified. Due to the modular structure of the software, the team was

able to upload new code without bringing the system down entirely. Typically,

the replacement file was uploaded with a new name and then the appropriate

scripts were modified to use the new name, allowing the previous copy to exist

as a backup.

As the mission progressed, scripts were also modified to move towards auto-

mated operations as the mission became a “highly-refined set of predetermined

tasks.”
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6.8.3 Analysis

Given that both QuakeSat and the new PolySat avionics software system run on

the Linux kernel, there are a number of direct comparisons that can be made

between the two. The majority of the reasons given by the QuakeSat team

for using Linux, such as the existing IP network stack, were factors in PolySat’s

decision, as well. However, PolySat opted out of some of the third-party software,

like the AX.25 support, in favor of a lightweight, custom solution, that will be

optimized and potentially replaced in the near future for higher network efficiency.

QuakeSat’s software architecture running atop Linux also contains a number

of similarities to the PolySat design. At the highest level, both systems utilize

processes that are mostly independently functioning. The primary difference lies

in the fact that QuakeSat opts for a command handler layer, whereas PolySat

chose to have each process individually manage their commands, to allow for

maximum amount of flexibility and code isolation. The PolySat process library

provides all of the necessary command handling infrastructure in a generic fash-

ion, such that an individual process for handling this is not needed.

Both spacecraft utilize a beacon process for periodic telemetry broadcasts;

but, in the PolySat system, for scheduled events the data logger is used as a

generic interface for spawning one-off events or experiments rather than a number

of “worker programs”, as QuakeSat uses. This enables greater flexibility for

adding different experiments and does not restrict them to be written in the

same language as the core system functionality.

As the architecture is designed, there is no specific infrastructure for code

uploading and replacing. However, this is being developed as a future thesis and

should be available in the near future after the completion of this work.

6.9 STUDSAT: India’s First Student Pico-Satellite Project

STUDSAT is a pico-satellite developed by a group of about 40 students from the

Indian Engineering Colleges of Hyderabad and Bangalore [32]. The form factor

for the satellite is approximately a 1U CubeSat, as a result of a camera lens that

extends out an additional 3.5 CM in the +Z direction (to result in overall dimen-

sions of 10cm x 10cm x13.5cm). In addition to the camera, also included is an

ADCS subsystem with pointing accuracy to 1 degree. For the system electronics,
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the satellite uses an off-the-shelf power system from Clyde Space, but has a cus-

tom C&DH board centered around an AVR32-based UC3A0512 microcontroller,

which is supported by a 512 kB Ferroelectric Random Access Memory (FRAM)

non-volatile memory.

STUDSAT was launched in July 2010 and was successfully transmitting, how-

ever, due to high amounts of noise, no packets were able to be decoded.

6.9.1 Software Architecture

STUDSAT utilizes a widely used RTOS, VxWorks, for its operating system. The

architecture they have chosen is known as a shared load ring architecture [33]: on

the innermost ring is the operating system, the next level are the applications,

and on the outermost ring are the drivers. Their device drivers are independent

blocks of code, which are used as the building blocks to construct an application.

The satellite was programmed to have three different modes of execution:

mission, launch, and check out. In mission mode, the satellite is performing

operations related to the desired mission sequence, such as taking pictures, or

establishing a link with the ground station. Immediately after launch, the satellite

enters launch mode, which is responsible for executing a series of tasks that

need to occur after entering orbit, like antenna deployment and de-tumbling the

spacecraft. The other mode is called “check out mode” and is used on the ground

for testing purposes. Its operations includes a test procedure to validate the

functionality of each of the individual subsystems, and it also enables passing

commands to the satellite through a UART or USB connection.

There are also three power modes that affect the operations of the spacecraft

and are controlled by the software monitoring the power levels. In emergency

mode, all systems are disabled except for the C&DH and power systems; the

C&DH is only responsible for periodically checking the power level and logging

the telemetry. If the power level recovers, the satellite will enter low power mode,

where the beacon module will also be enabled, which will transmit the basic

telemetry data every two minutes. The last is “optimum” power mode, where all

modules can be used, on an as needed basis. This includes continuing to keep

track of the power levels and beaconing, as well as establishing a communication

link with the ground station, attitude determination and control, taking images,

and performing general housekeeping.
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6.9.2 Analysis

This is the only satellite looked at using the VxWorks operating system, but

its architecture is fairly similar to the others using an RTOS. Few details are

given about the separation of the tasks so it is difficult to say whether or not

the STUDSAT team intentionally designed for modularity in their software, but

the tasks that have been presented seem to indicate they have mostly done that.

Unfortunately, little is presented about which, if any, fault tolerance mechanisms

have been used either. Thus, STUDSAT serves as an interesting subject due

to its relatively unique hardware and operating system, but it is hard to make

a comparison to the new PolySat software system due to the lack of details

available.

6.10 The UWE-1 and UWE-2 Satellites

Students from the University of Wuerzburg, Germany developed a 1U CubeSat,

UWE-1, which was launched in October 2005. The UWE-1 satellite’s primary

mission was to test a number of different IP-based protocols such as TCP, UDP,

and SCTP in orbit[34]. Following the UWE-1 mission, a significant revision was

made to the software system to make it more extensible and portable for the

UWE-2 mission[35], which was launched in September 2009 [36].

6.10.1 UWE Platform

The system was built on an H8S microprocessor with 8MB of SRAM, 4MB of

Flash, and 512KB of EEPROM memory. Micro-Linux (µCLinux) is the operating

system of choice; a full version of Linux cannot be used because the CPU does

not have a memory management unit (MMU).

The communication system consists of a modified COTS transceiver, which

communicates using the amateur radio band to the ground station. The computer

system uses a specific protocol, entitled 6Pack, to interface with the transceiver.

For over-the-air communications, the AX.25 protocol is used.

The UWE-1 spacecraft also has some few fault tolerance features such as

redundant modules and a watchdog timer.
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6.10.2 UWE-1 Software

The UWE-1 software system mostly consisted of a simple program that executed

a few critical, yet simple tasks. There were four main tasks of this application:

sending beacons, collecting and transmitting sensor data, receiving commands,

and charging the batteries. The software constantly iterated through these tasks

for the entirety of the mission. The only deviation would be if a command were

received, in which case it would execute the command, and then return to the

start of the task loop again.

The UWE-1 software system was demonstrated successfully on orbit and the

mission was completed after the first few weeks.

6.10.3 UWE-2 Software

When the development of UWE-2 began, the Wuerzburg team faced the challenge

of the next generation of developers not being familiar with the previous design.

Additionally, the UWE-1 software design was not written with extensibility in

mind, and regardless of the familiarity of the new developers, it was very difficult

to add features to. In order to solve this problem, the UWE-2 team decided to

develop a new system with a focus on stability, modularity, and efficiency.

As a basis for the new software architecture, the ULF system was designed,

which is the name for the layer that exists in user space and interfaces with the

device specific software components. In order to make it simple to integrate new

components to the system, it was decided to implement each aspect of the system

in a different module.

At the focus of this design is the “main module”, which is responsible for

inter-module communication, system initialization, error handling, and direct

interfacing with the hardware through the OS. During initialization, each module

registers with this module, which will allow it to obtain access to various resources

controlled by the main module and allows the main module to keep track of the

actions of all of the modules. In addition to this tracking, the main module will

check all of the running modules periodically and if a problem is detected, the

system can restart that particular module.

A small set of modules were developed to cover the basic functionality of the

satellite: the radio control, battery control, housekeeping, logging, and sensor
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modules. The idea of including these modules in the new design is that new

developers will only have to worry about creating mission specific modules for

future missions.

The last aspect of the system that the team wanted to emphasize was the

portability. Since the majority of the software runs in user space, there are

very few hardware dependencies in the base design. The team hopes that other

satellites will be able to use the ULF system because they would only have to

exchange the satellite specific hardware drivers, if their platform was able to run

Linux, as well.

The UWE-2 software system has also been demonstrated successfully on orbit.

6.10.4 Analysis

The approach that the Wuerzburg team took to upgrade from their first software

to their second is remarkably similar to PolySat’s. Both organizations had a

mostly new team of developers who were looking to improve upon the old system

and had a strong desire to make it more extensible. The similarities do not stop

with the approach though, as both designs utilized a version of Linux that was

leveraged for numerous built-in features. Due to the selection of this operating

system choice, the resulting architectures were also analogous: a highly modular

design that segments each primary task from one another.

The primary distinction between the two systems is choice by the UWE-2

team to develop a centralized control module for messaging and resource access

control. This enables much finer grained control and logging, however, adds

significant complexity and likely reimplementation of existing code. The PolySat

system relies on the Linux kernel for message delivery via UDP sockets since that

network stack is very reliable and robust, plus the necessary features already

exist. However, some of the functionality of the UWE-2 ULF module are re-

implemented in other components of the PolySat system, such as the process

registration, which occurs in PolySat’s software watchdog module instead.

The successes of the UWE-1 and UWE-2 software systems are great indicators

for the PolySat system because it bears resemblances to both, particularly the

former.
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Related Works

A number of papers were used to aid in the design of the software architecture.

These papers are summarized and their contributions to this work are detailed.

7.1 Software Implemented Fault Tolerance: Technolo-

gies and Experience

This oft-cited paper is one of the earliest ones to discuss a variety of software-only

fault tolerance techniques such as a software watchdog, checkpointing, message

logging, and recovery to said checkpoints [37]. A focus is placed on methods that

are mostly transparent to the application programmers to encourage reusability

and efficiency.

7.1.1 Model

The model for their system is a client-server based application that runs in a

local or wide-area network of computers in a distributed system. However, it is

noted these techniques apply to other types of applications, as well. The server

process is the focus of most of the methods and is commonly referred to as the

application. Furthermore, it is assumed the distributed system is in a circular

configuration, such that one neighbor .

There are a few tasks in particular that this design focuses on for fault toler-

ance. A watchdog that runs on the primary node, watching for the application

to crash or hang; in addition to a watchdog on the backup node that watches
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the primary node for crashes. If the primary node crashes or hangs, a restart

must be initiated on the primary node; when this is not possible, it must run

on the backup one. There are also tasks responsible for periodic checkpoints of

critical volatile application data, logging of client messages to the application,

and replication of the application’s persistent data. Moreover, there is a task

dedicated to recovery of the application to the most recent checkpoint, followed

by a re-execution of the message log and connecting the persistent data to the

backup node, if necessary.

All of these tasks designed have been specifically chosen so that they are

compatible with other fault tolerance programming methods that are typically

completed within the application itself, such as N-version programming.

Four different fault tolerance levels have been designed to enable the system

to select the necessary level of active protection mechanisms. The first level,

zero, has none of the tasks running and thus a crash or hang may result in an

unknown amount of time for a restart, depending on when it occurs. Level one

adds the capability for crash detection and automatic restart, to speed up fault

detection and thus recovery. In the next level, periodic checkpointing is added

so that volatile data consistency can be achieved between restarts. Level three

goes a step further to add nonvolatile data consistency, as well. The last state,

number four, guarantees continuous operation, essentially requiring replication of

the application process to insure no delays on a failure.

7.1.2 Watchdog

The watchdog, watchd, is implemented as a daemon process that watches the life

of the application process by sending an empty signal to the it and verifying that a

connection was established. If this fails, a second attempt is made after a timeout

specified by the application on initialization of the watchdog. If this also fails,

the process is determined to be hung and action is taken. There is also another

mechanism for watching the application, which requires a heartbeat message to

be sent regularly to the watchdog. Failure with this method is indicated when

the heartbeat has not been received in the anticipated period. The downside of

this method is that watchd cannot differentiate between a hung process and a

very slow one.

Upon failure detection, the watchdog is responsible for recovering the applica-
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tion either to its initial state, or to the last checkpoint, depending on the level of

fault tolerance enabled. Watchd is also responsible for configuring the application

to re-execute all of its messages when that feature is in use. Lastly, the watchdog

watches itself and is able to recover itself from a software failure.

7.1.3 Fault Tolerance Library

The library libft is a set of C functions accessible to user-level applications that

provide capabilities such as data checkpointing and recovery, message logging,

and exception handling.

Functions are used to allow the application programmer to specify which

volatile data is critical so that the library can place them in a reserved region

of virtual memory and also regularly checkpoint the value. This implementation

minimizes the overhead by only checkpointing the critical values, rather than all

of the volatile data. In order to enable message re-execution, the fault toler-

ance implementation of these functions also saves the messages into a file as they

are read and written by the application. The other components, like the excep-

tion handling, are implemented in macros and standard C library functions to

maximize portability. The entire library has been successfully ported to various

UNIX-based operating systems.

7.1.4 Multi-Dimensional File System

The multi-dimensional file system enables the replication of critical non-volatile

data by allowing users to specify files that get replicated and placed on backup

systems, in real time. The implementation is transparent to the application

developer because it functions by intercepting file system calls and modifies their

behavior to propagate the data to backup file systems. It also utilizes the watchd

and libft, primarily so that failures can be detected by the watchdog and remain

transparent to the user.

7.1.5 Results

By using the fault tolerance features that were designed, up to the third level of

software fault tolerance was able to be provided, where detection, checkpointing,

replication, and restart and recovery were all utilized. While the application was
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live, an overhead of less than 14% was expected. Both the local and remote (neigh-

boring node) detection and recovery features were successfully demonstrated.

7.1.6 Analysis

This papers goals of providing a transparent fault tolerance solution very much

align with the new architecture. Some of techniques proposed have been designed

into the PolySat system, particularly the software watchdog and error logging in-

terface. The implementation of these are similar, as well: the watchdog also exists

as a static process within the system and the error logging interface is provided

by a common library. However, their system architecture has the capability to

provide a backup watchdog on an entirely other system, but that is not feasible

with a single CubeSat, at least at this time. Their library also provides a number

of other features, such as checkpointing, which may be implemented in a limited

sense for the PolySat system in the future, but currently does not exist in a strict

sense.

A number of other worthwhile mechanisms are discussed this paper and al-

though some rely on backup hardware, the multi-dimensional file system and

checkpointing features could be considered for future revisions of this software

architecture.

7.2 Software Fault Tolerance: a Tutorial

This tutorial for software fault tolerance was published by NASA in 2000 and

covers a wide variety of fault tolerance techniques [38]. These techniques are

divided into two distinct groups: single and multi-version. The single version

methods are focused on because they are most relevant to this thesis, due to the

significant man hours and training required to implement most multi version fault

tolerance mechanisms.

7.2.1 Single-Version Software Fault Tolerance Techniques

The first primary technique for fault tolerance discussed is partitioning, which

provides isolation between ”functionally independent modules.” The two types of

partitioning are horizontal and vertical, specifying the dimension of the hierarchy
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of the architecture. With horizontal partitioning, each software function is sepa-

rated into independently executing modules who communicate through interfaces

to ”control modules” that are solely responsible for coordinating the execution of

these functions. The top-down hierarchy of a vertically partitioned architecture

places most of the control functions at the highest level and most of the actual

processing occurs at the low level. The stated advantages of using a partitioned

architecture are ”simplified testing, easier maintenance, and lower propagation of

side effects.”

System closure is the next principle suggested, which states that all actions

require explicit authorization. In order to achieve this, each component of the

system must not have any more permissions than are necessary for completing its

function. The reason for this policy is that errors are much more easily handled

if their chance of propagating and thus creating more damage is limited. In

a closed system all of the interactions are known and this makes positioning

and determining the required error detection checks much simpler. On the other

hand, in a more open system with respect to capabilities, a ”damaged capability”

can result in an unintended execution and therefore unexpected complications

between modules.

The next aspect of single-version software fault tolerance approached is error

detection. it’s proposed that all structural modules should have two basic prop-

erties: self-protection and self-checking. A component with self-protection can

detect errors in the information passed to it from other components; whereas one

with self-checking can detect internal errors and prevent them from propagat-

ing to other components. In order to determine the appropriate amount of both

of these properties, consideration of functionality, performance, complexity, and

safety need to be made in the design process.

A number of different error detection checks are proposed for use. The checks

are replication, timing, reversal, coding, reasonableness, and structural checks.

Replication utilizes redundant components and compares the outputs of each to

determine errors. Timing checks are relevant to modules and systems with specific

timing requirements, such as deadlines. It is possible to use these known require-

ments for error checking; an example would be a watchdog timer. A reversal

check is where the output of a component is used to compute the corresponding

input, and then verify that this calculated input match the actual input. Coding
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checks use redundant information included with data in order to aid with error

detection. A commonly used type of coding check are checksums. The reason-

ableness check uses established properties of the data to detect errors, such as

ranges or rates. Lastly, structural checks uses properties of the data structures for

error checking. This type of check is most effective when data structures provide

redundant information to enable various types of structural checks.

The final, briefly discussed, fault detection device mentioned is run-time checks.

Typically, these are provided standard within hardware systems for issues such

as divide by zero, overflow, and underflow.

7.2.2 Multi-version Software Fault Tolerance Techniques

Multi-version software fault tolerance is used by implementing more than one

version of a certain piece of software, which can then be executed in serial or

parallel, to reduce the chance of errors. There are multiple ways that this method

can be used, such as an alternative configuration, and in pairs or groups. The

driving force behind this fault tolerance method is that if each version of the

software is implemented independently and differently, they will have different

failure modes. Thus, if one implementation is prone to fail with a certain input,

hopefully one of the other versions will not.

7.2.3 Applied Techniques

The entirety of the relevant techniques mentioned in this technical paper were

from the single-version software fault tolerance section due to multi-version being

far too cumbersome and complex to implement for the PolySat system. However,

a large number of these single-version properties were designed into the system.

The basic software architecture utilizes both horizontal and vertical partition-

ing. It is horizontal in that each software function is distributed into its own

process and communication is done via the kernel through sockets. It is also ver-

tically partitioned in that the high level processes are fairly simple and heavily

rely on underlying code, the abstraction libraries, to do a significant amount of

the work.

The principle of system closure has also been used in the ground-to-spacecraft

command system of the PolySat design with the addition of the signatures on
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important commands to ensure that only authorized users or systems can modify

the state of the spacecraft.

In regards to the error detection checks, a number of these are also being

utilized. For example, the software watchdog relies on timing checks and rea-

sonableness checks in process to ensure that the other processes execute at their

known, intended rate. Furthermore, coding checks are used in various places in

the system: every packet from the ground station and all UDP inter-process mes-

sages have a checksum included, also a SHA-256 hash is used for the command

signature to validate data integrity, in addition to security properties.

The multi-version philosophy would ideally be applied for the software watch-

dog in the future because it is one of the most critical components in the system.

However, the additional effort required to implement this was out of the scope

and timeline of this current design.

7.3 Flexible Fault Tolerance in Configurable Middleware

for Embedded Systems

This paper proposes the MicroQoSCORBA (MQC) middleware for embedded

distributed systems with a variety of configurable fault tolerance mechanisms [39].

By providing the capabilities through a middleware, the ties to specific hardware

are removed and increase the options for code reuse. Furthermore, by enabling

customization of the different mechanisms, this solution can be tailored precisely

to fit the needs of both the application and hardware platform.

7.3.1 Configurable Fault-Tolerant Mechanisms

The designers of MQC decided the following mechanisms would be of most use in

their embedded distributed system targets: temporal redundancy, spatial redun-

dancy, value redundancy, and reliability provided through group communication

and failure detection.

The first mechanism, temporal redundancy, consists of executing an operation

as many times as necessary to produce the desired result. MQC implements this

for communication channels, in particular, allowing the user to specify a number

of automatic retransmissions. This option is selected in the pre-configuration of
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the middleware. The implementation of this mechanism also insures that only

unique messages are serviced by keeping track of unique message identifiers.

The next mechanism is spatial redundancy, which is where there are several

copies of the same component. This mechanism is also implemented in relation

to communications, though specifically the path through which messages are

transmitted. This feature enables the user to specify a variety of communication

paths that are handled through the same high level abstraction and also uses the

same unique message identifiers as in the temporal redundancy so that duplicate

messages are ignored in a client. Unfortunately, the same is not true for the server

end, where custom code would be necessary to detect duplicate messages.

The final redundancy mechanism, value, adds extra information about the

data being stored or sent, typically for improvement in error detection capabilities.

This mechanism has been added to the communication chain so that a checksum is

calculated and included with each sent message, and validated upon each received

message. This feature is also selectable at the pre-configuration stage.

The first of the reliability mechanisms is group communication, which is de-

fined as “a means for provided multi-point to multi-point communication, by

organizing processes in groups.” Messages are sent to groups via the associated

names and all group members receive the messages sent to it. Five different

types of messaging are provided: non-uniform failure-atomic, dynamically uni-

form failure-atomic, FIFO ordered, causal ordered, and totally ordered multicast.

The specific type of messaging can be chosen once again in the configuration of

the system and are provided so that the user can customize the needs of the

middleware to their specific needs.

The final mechanism, reliability via failure detection, covers a wide variety of

features including any mechanism that can be used for the detection and diag-

nosing of failed system components. This feature is specifically provided through

the capability of communication timeouts, which will allow the system to moni-

tor the health of a communication group and remove members who are failing to

communicate properly.

7.3.2 Results

A server and client was implemented with each of the mechanisms, and the mem-

ory footprint and execution times were compared to a base implementation within
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a few different systems, including Linux.

Most of the overhead occurred on the server, within Linux, side: spatial redun-

dancy approximately an additional 20 KB and the group communication nearly

doubled the size, due to a custom transport implementation, while temporal and

value redundancy added negligible amounts. With the client, all features required

negligible additional memory except for spatial redundancy, which added almost

10 KB.

Execution times also were affected by the fault tolerance mechanisms. As

one can imagine, with temporal redundancy, the execution time scaled fairly lin-

early with the number of additional re-transmissions. More interesting is that the

spatial redundancy increased the execution time by almost 85% when using two

communication channels and the value redundancy mechanism added more than

25% extra run time due to the checksum calculation. With the group communi-

cation, the execution times varied wildly based on the size of the group and the

particular algorithm used, but the minimum execution overhead was shown to

be more than 100%. This was explained by the sending of multiple messages to

all group members and shown in the results since the times scaled approximately

linearly based on the number of group members.

7.3.3 Analysis

Although the target of this middleware is distributed embedded systems in partic-

ular, many of the concepts are still applicable to independently operating Cube-

Sats. The idea of implementing a flexible middleware is very evident in the

new PolySat software architecture, although the shared libraries provide common

functionality in addition to fault tolerant features, since it is intended specifically

for CubeSat development. Although there are no specific capabilities like the

reliable group communication mechanism mostly because Linux provides a very

robust implementation of inter-process communications, the new software archi-

tecture is very amenable to such additions in the future if necessary because they

can be added to the library, transparent to the user processes.
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7.4 Great Watchdogs, Version 1.2

7.4.1 Technical Report Summary

“Great Watchdogs” is a technical report about different watchdog techniques,

written by a long-time embedded engineer. He argues that watchdogs are integral

parts of our system after citing aerospace projects who succeeded and failed

thanks to watchdogs (or the lack thereof, respectively) [40]. He continues by

plainly stating: “A Watchdog Timer (WDT) is an important line of defense in

making reliable products”. The bulk of the report is a discussion and survey of a

number of different watchdog timer approaches: internal (to the CPU), external,

and software. He also details the characteristics of “Great WDTs” and safe

watchdog usage practices.

The survey of internal watchdog timers includes a number of variants from

Motorola to Toshiba parts, all packaged with common microprocessors. It is

argued that at bare minimum internal WDTs should be able to reset the proces-

sor. Other indicated favorable features include an external signal when watchdog

resets occur, requiring multiple writes to “tap” the watchdog, and write-once

watchdog control registers. The author also suggests other requirements that

may be difficult to find in an internal watchdog, and thus continues to discuss

external watchdogs that do provide these options.

A smaller number of external watchdogs are surveyed, but two primary vari-

ants of the external watchdog are discussed: simple and windowed. Ganssle

dismisses the simpler watchdogs, which are isolated from the primary clock, yet

have no strict timing requirements for being tapped. The more preferred option is

the windowed external watchdog, where a reset will be triggered when the WDT

input is toggled “too slowly, too fast, or not at all”, which accounts for more

failure modes.

Following the survey of good and bad hardware watchdogs, there is a discus-

sion of characteristics of good watchdog timers. The author poses the CPU as a

threat to the system whenever it is in a glitch state and suggests that especially

watchdogs who utilize a non-maskable interrupt instead of resetting the CPU are

not sufficient, due to trusting that the CPU can still execute the interrupt service

routine. Furthermore, the “effective watchdog” should not be connected to the

clock of the CPU either, given that this may fail and then cause both devices to
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not function properly. This excludes internal watchdogs because they typically

internally hard-wired to share the same clock as the CPU. The characteristics

are sufficient for finding the ideal watchdog, but there likely situations where the

engineer desires to utilize internal WDT on their CPU.

Also provided are a series of guidelines for use of an internal WDT, so that

it provides maximum utility, despite some of the aforementioned downfalls. Two

primary design rules are suggested: tap the watchdog after the code has numer-

ous, separate verifiably correct executions, and insure that it is not possible to

incidentally tap the watchdog (i.e. as a result of erroneous instruction memory).

The developer is urged to be incredibly paranoid when programming with the

watchdog timer by considering all possible modes of failure. Furthermore, it’s

recommended that any tapping of the watchdog is done inside a program’s main

loop rather than an ISR, which can still run while all other code has crashed. The

last suggestion for using internal watchdogs is that it’s important to make sure

an external signal is generated upon reset, for resetting all external peripherals.

Although an internal watchdog can be useful, it’s stated that the optimal

watchdog does not have to rely on a processor or its software. This means that

an external watchdog should be used, if it can be afforded in board space. Rather

than selecting a watchdog specific component, a very cheap microcontroller can

be used, which contains many built-in peripherals for constructing a very ro-

bust watchdog timer. The software on these type of watchdogs should be very

simplistic and they can be interfaced with in the same manner as an internal

watchdog.

Selecting watchdog hardware is very important and in an ideal situation the

guidance above for tapping the watchdog would be sufficient. However, most

complex embedded environments involve multitasking where the simple tapping

methods are not sufficient. Thus, mechanisms specifically for multitasked envi-

ronments are proposed.

First, the interactions with the watchdog must be isolated to a single task to

reduce chances of unintended tapping. Inside of this task will be a data structure

with an integer entry for each task. This integer needs to be incremented each

time the task starts, or it can be incremented every time a task’s main loop

is completed, if the task is persistent. It is important that these values are

incremented atomically, which can be done simply with semaphores.
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Periodically, the watchdog task should scan the data structure to ensure that

the values inside are reasonable (on a task-by-task basis). The rate at which the

scanning occurs must be chosen based on the frequency of the tasks, to ensure

that a majority of the tasks will have run in that time. To account for tasks

that are not periodic, a min and max value can be used to check the value in the

data structure rather than a hard-calculated value. In order to discern what min

and max are appropriate, the watchdog can be configured to run in an alternate

“debug” mode during testing, to observe and record the actual values in the

watchdog task’s data structure.

7.4.2 Watchdogs in the PolySat System

Watchdogs are a vital part of the PolySat system’s fault tolerance. Both internal

and external hardware watchdogs are in use, for ease of use and ensured protec-

tion, respectively. In regards to the software watchdog, the concept has drawn

heavily from this technical report. The PolySat software watchdog exists in it’s

own process, as to be isolated from the majority of the system, and it is the only

code that touches the external watchdog interface, as suggested by this technical

report. Furthermore, it utilizes a very similar data structure to track the count

of major events executed on each process and uses min/max values to validate

these counts.
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Conclusion

8.1 Overall Design Success

This new CubeSat software architecture has been specifically designed to provide

PolySat with a system that can help the entire organization support a wide

variety of missions and do it in a minimal amount of time. The use of Linux

and the emphasis on modularity have been exploited since the early stages of its

implementation; over ten different students have participated in developing for

this software system, some of whom were only second year students. Furthermore,

the use of Linux has also helped increase new mission potential, thanks to a

variety of open source drivers for cameras and other payload related software

that is available for Unix-type systems. This support has also been shown in

this design to enable a number of features that were previously very difficult or

impossible to implement, such as the digital command signing. Hopefully this is

a continued trend for future revisions because there are a large number of features

that can be added to the software architecture that take advantage of open source

and other existing Linux resources.

The experience that has been gained during my three year tenure as a PolySat

member has also been exceedingly valuable for developing this new software ar-

chitecture. It has resulted in numerous contributions, such as the telemetry

gathering and command capabilities, that would have been very difficult to de-

rive as guidelines without extensive exposure to and usage of the first generation

PolySat software system. It is hoped that by leveraging this experience, future

members of PolySat will be encouraged to use this system and continue utilizing
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it for a significant amount of time.

Lastly, it is hoped that the lifespan of the CubeSat in orbit should also be dra-

matically increased thanks to the new fault tolerance mechanisms. The hierarchy

of watchdogs will insure that the system can recover from radiation events, pre-

venting the system from staying in an ineffective state, and the digital command

signing will prevent unauthorized access to vital commands, insuring the mission

is not compromised. Although the absolute overhead of these components may

seem like a lot, it has been made relatively insignificant thanks to the comput-

ing power and increased link speed capabilities of the new hardware platform.

Regardless, it is a small price to pay to provide further guarantees of mission

success.

8.2 Implementation Progress

The implementation of the new software architecture is currently one of the high-

est priorities of PolySat’s software team. As of May 2011, the entire custom

library has been completed and is available to developers for use on their per-

sonal computers for testing, in addition to the custom platform, when hardware

interfacing is required. Additionally, all of the primary functionality of the bea-

con, watchdog, system manager, and communication processes have been demon-

strated. The data logger process is still in progress, but minimum functionality

is due to be completed by June 2011. The current goal is to have an engineering

model of the system by June, which appears to be feasible at the current rate of

progress.

8.3 Future Work

There is a nearly endless amount of future work thanks to the capabilities of this

new platform, both in hardware and software. These concepts discussed are ones

that are beneficial to the road map of PolySat and the CubeSat community as a

whole.
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8.3.1 Open Source Libraries

After the custom libraries are finalized, there is significant interest in open sourc-

ing, to encourage and enable other universities to employ similar systems in their

CubeSats. Both PolySat and the CubeSat community could benefit from this:

PolySat could obtain more feedback from the additional users of the software,

to further improve and test the libraries, and the community can leverage these

libraries to form the basis of a similar platform, without necessitating the signif-

icant experience that was leveraged to design it.

8.3.2 Radio Communication Optimization

Although this design has increased the overhead of communications by utilizing

UDP/IP and digital signatures, the system has also enabled various optimiza-

tions to communications that could reduce this cost. The communication process

(Section 4.2.2) is readily accepting of header compression, which could poten-

tially reduce the overhead of the UDP/IP header to a single byte, as proposed in

several RFCs, such as RFC 3095 [41].

Additionally, as discussed in the design of the communication process, the

AX.25 protocol has a fairly unreasonable overhead, due to a number of necessary

fields that are unused or sub-optimal in satellite communications. Thus, the ideal

solution would be to completely re-design the satellite communication protocol,

to optimize for efficiency. The infrastructure for this type of solution already

exists on both the satellite and some ground station efforts, but would need to

extend to the radio transmission components, as well.

8.3.3 Scheduler Power Management

The event handler, as discussed in Section 4.3.1, is the core of all processes and

forces them to block, when inactive. This feature can be readily exploited to

increase the power efficiency of the processor, by entering a lower power state.

Using a mechanism like Google’s WakeLocks [42], the scheduler could be modified

to only keep the system awake when a process is doing useful work (e.g. inside

of a callback function). Preliminary investigations of the savings potential have

shown the processor can save 20 mW (about 10% of idle consumption) or more
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by entering a lower power state. The less power the avionics system requires, the

more it can be used for running payload operations.

8.3.4 Multi-Version Software Watchdog

In order for the system to be robust to failures of the watchdog in addition to

the standard processes, two software watchdogs should be running in parallel so

that they can watch each other. This avoids relying on the internal watchdog

to watch the software watchdog, as is done with the current system. In order to

effectively implement this, an additional independent software watchdog needs

to be implemented to the same specifications as the existing one. That way,

both software watchdogs could watch all of the processes, including each other,

and the reaction to a failure inside of the watchdog would be both more efficient

and faster, as discussed in the watchdog limitations (Section 5.2.8). This is a

difficult task because in order to be truly independent, the second watchdog must

be developed without the utilization of the custom libraries, which is the reason

it was not included for this current design.
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PolySat Coding Standard

This is the C coding standard that has been used for the previous software system

development and will be continued to be used by the new one.

Originally compiled and updated by: Kyle Leveque, Keith McCabe, Dave

Cuddeback, and Jason Anderson.

A.1 Indentation

A.1.1 Number of Spaces Per Tab

There should be 4 spaces set per tab. To set this configuration in MPLab go to

“Edit”, “Properties...”, “Tabs” and set “tab size” to 4; also set to “insert spaces”.

A.1.2 Curly-Brace Location

Curly-braces should be placed at the end of the same line on which an if-statement,

while, struct, etc that the brace applies to. Functions should still have the opening

brace on a new line.

A.1.3 Maximum Line Length

No line should be longer than 80 columns.

A.1.4 If-Statements

One line if-statements should still be indented and also have curly-braces.
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A.1.5 Break Up Code

Uses blank lines where appropriate to break up the code and group statements

together.

A.2 Identifiers

A.2.1 Single Letter Variable Names

Single letter variable names are only allowed in for-loops and the only acceptable

single letter variable names are i, j, and k. Additionally, i, j, and k must be used

as the increment variables in for-loops.

A.2.2 Multiple Word Variable Names

In multiple word variable names, the first letter of the first word must be lowercase

and all following words should begin with an uppercase letter. Underscores should

not be used at any time.

A.2.3 Abbreviations

If you use an abbreviation for a term, be sure to use that same abbreviation in

the rest of the code.

A.2.4 Hungarian Notation

Do not use Hungarian Notation, which prefixes all variable names with a letter

representing their type.

A.2.5 Variable Name Length

Variable names should be neither excessively long nor too short; use reasonable

judgment.
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A.3 Constants

A.3.1 Magic Numbers

Do not use “magic numbers” in your code. A magic number is any number other

than 0, 1, -1, and occasionally 2.

A.3.2 Use

Constants should be declared as “#define”s. Do not use “const” to declare con-

stants.

A.3.3 Constant Naming

Constants should be named in all uppercase with underscores separating the

words.

A.4 Source Files

A.4.1 Contents

C files should contain only functions. The only “#include” allowed is for the file’s

corresponding header file.

A.4.2 Description

Each source file should include a brief description of what the source file does,

any specific external documents that will be referenced in function headers and/or

comments (and where to locate those documents), the author’s name, and the

date the file has last been updated.

A.4.3 Function Headers

This section explains how to document C code. Always use 4 spaces instead

of tabs. Line up all params and retval in a table like fashion using tabs. The

whitespace distance between the name and the description should be greater than

one space. Follow the following examples.

105



A. POLYSAT CODING STANDARD

Last Updated: 7/19/07

David Cuddeback

Jason Anderson

This is a file comment which should be listed at the top of every file.

/**

* @file cdh-comm.c C&DH comm code.

*

* This is the comm code.

*

* @author Chris Noe <cnoe@calpoly.edu>

*/

This is a global variable and a #define comment.

/**

* This is the number of tries to deploy the antennas.

*/

This is a method comment.

/**

* This a brief. Sentence 2.

* Enable the selected comm system by setting SEL_RF

*

* @bug This function does not work.

*

* @deprecated This function is not Y2K.

*

* @todo Fix me.

*

* @param comm Select which comm system to enable (COMM_A_ENABLE

* or COMM_B_ENABLE)

* @param comm2 This is about

*

* @return An error code.
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*

* @retval OK Okay.

* @retval ERR_I2C Error during I2C transmission.

*

* @author Bill Gates <bgates@microsoft.com>

*/

A.5 Header Files

A.5.1 Structure

Header files should have their sections organized in the following order:

• #include’s

• General #define’s

• Debugging #define’s

• “struct”, “union”, and “enum” definitions

• Global variables

• Function Prototypes

A.5.2 Header File Exclusion

Every header file should begin with:

#ifndef _HEADERFILENAME_H

#define _HEADERFILENAME_H

#endif

A.6 Comments

A.6.1 Style

All single line comments should use the “//”-style comments rather than the

single lined “/* */”-style comments. Comments that are large blocks may use

the “/* */”-style comments.
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A.6.2 Flow Control

Every “for”, “while”, “if”, “else”, and “switch” should have a comment explaining

the purpose of the control structure.

A.6.3 Microcontroller Specific Instructions

Every instruction involving a microcontroller specific instruction should have a

comment explaining what is being done and possibly where the action can be ref-

erenced in an external document (such as the microcontroller’s datasheet). Some

examples of microcontroller specific instructions include setting special registers,

accessing pins, etc.

A.6.4 General Instructions

Every instruction or group of instructions that form a significant operation should

be commented. Another programmer should be able to read through your com-

ments without reading a single line of code and know exactly what your code

does and how it does it.

A.7 Horizontal Whitespace

A.7.1 Keywords and Commas

Always put a space after each comma; never before a comma or semi-colon. Also

put a space around each keyword such as “while”, “for”, and “if”.

A.7.2 Operators

Put spaces around operators when appropriate. Make large expressions as read-

able as possible (and parenthesis do not hurt either).

A.7.3 Between Functions

Make sure to break up functions with a couple blank lines after each function and

also a space after local variable declarations.
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A.8 Functions

A.7.4 Function Names

There should be no spaces between the function name and opening parenthesis,

after the opening parenthesis, or before the closing parenthesis.

A.8 Functions

A.8.1 Local Variables

Always put the local variable declarations at the top of the function. The MPLab

compiler makes you do this anyways, so if you manage to break this rule you get

bonus points and non-compiling code. However, the VisualDSP++ compiler does

let you break this rule, so watch out.

A.8.2 Error Handling

All functions should return a char. Functions return “no error” value on success

and an “error code” value on failure. This is only required for functions that

either access hardware or call a function that accesses hardware (recursive).

A.8.3 Parameters

The first parameters are the input variables and the last parameters are the

pointers to the output variables for all functions. (Unless error handling is not

required, then no output pointer variable would be needed.)
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Appendix B

PolySat Formal Code Review

Process

A formal code review process had been established for the previous generation

flight software and will also be used for the new software. It may be revised in

the future to be better suited to the new development process.

CPX Software Inspection Process

[adapted from Dr. John Dalbeys process]

Updated 3/28/06 Kyle & Keith

Created 5/26/04 - Kyle

B.1 Work Product

• Must compile without error

• Resides in Polysat/Software/Projects in repository

• Contains line numbers

• No longer than 250 lines total

B.2 Participants

• Author (Code Monkey)

• Moderator (also an inspector)
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• An inspector

• Optional Additional inspectors (can also be outside of the software team)

B.3 Preparing for Inspection

• The author must alert the inspectors via email 48hrs before the code review

takes place

• The inspectors will download the source code off of SVN

• Each inspector must print out all the source code in a monospaced font

• Each inspector must fill out an Inspection Preparation Log form

• Each inspector must obtain the Coding Standards

• Each inspector must also obtain any other relevant documents (datasheets,

design diagrams, etc)

• Each inspector must record their starting time after completing the above

items but before reviewing the actual code.

• In one continuous sitting, inspect each line of code, record any defects, and

make notes of any questions or unclear code.

• Each inspector should inspect at a pace of 70 to 120 Lines of Code per hour.

• Each inspector should fill out and bring an Inspection Preparation Log to

the meeting.

B.4 Meeting

• Only the author, the moderator, and the inspectors attend the meeting; no

upper management.

• All inspectors bring their marked source code and their Inspection Prepa-

ration Log

• Time limit is 2 hours.
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B.5 Rework

• Purpose is to identify defects and consolidate issues; not to discuss solutions

or design.

• The moderator leads the meeting; he directs attention to each section of

code and solicits issues.

• Inspectors contribute issues from their Inspection Preparation Logs and

those issues are evaluated to determine if they are defects or not.

• The author is only present to obtain feedback; not to present, explain, or

defend code.

• The moderator and author both create an Inspection Defect Log.

• The moderators will be posted on the website; the authors will be used to

make any corrections to his code.

• These defects are not entered into the defect tracking system as they have

never been submitted as final in SVN.

• All marked source code from each inspector is submitted to the author (so

trivial defects do not need to be logged).

• The code will be assigned by the moderator an accepted, accepted with

minor rework, not accepted, or review incomplete status at the end of the

meeting in the Software Inspection Report.

B.5 Rework

• There must be no severe defects, less than 3 minor defects, and less than 10

trivial defects for acceptance.

• If the product was not accepted, all defects causing a non-acceptance must

be re-worked by the author and another inspection scheduled.

• If the product was accepted but a couple minor and some trivial defects

remain, the author must fix those defects before committing the code to as

final in SVN. However, no further reviews are required.
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B.6 Follow-Up

• The moderator decides if any follow-up is necessary.

• The author lets the moderator know via email when the necessary changes

have been completed. The moderator gets the latest code off of SVN and

checks against the Inspection Defect Log to verify if the changes were made.

• The moderator amends the Software Inspection Report to show which de-

fects have been corrected and to update the status of the report.
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