ISCHEMIA IMPAIRS VASODILATION IN SKELETAL MUSCLE RESISTANCE ARTERY

A Thesis
presented to
the Faculty of California Polytechnic State University,
San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Biomedical Engineering

by
Kyle Remington Struthers
June 2011
COMMITTEE MEMBERSHIP

TITLE: Ischemia Impairs Vasodilation in Skeletal Muscle Resistance Artery

AUTHOR: Kyle Remington Struthers

DATE SUBMITTED: June 2011

COMMITTEE CHAIR: Dr. Trevor Cardinal, Assistant Professor

COMMITTEE MEMBER: Dr. Kristen O’Halloran Cardinal, Assistant Professor

COMMITTEE MEMBER: Dr. Scott Hazelwood, Associate Professor
ABSTRACT

Ischemia Impairs Vasodilation in Skeletal Muscle Resistance Artery
Kyle Remington Struthers

Functional vasodilation in arterioles is impaired with chronic ischemia. We sought to examine the impact of chronic ischemia and age on skeletal muscle resistance artery function. To examine the impact of chronic ischemia, the femoral artery was resected from young (2-3mo) and adult (6-7mo) mice and the profunda femoris artery diameter was measured at rest and following gracilis muscle contraction 14 days later using intravital microscopy. Functional vasodilation was significantly impaired in ischemic mice (14.4±4.6% vs. 137.8±14.3%, p<0.0001 n=8) and non-ischemic adult mice (103.0±9.4% vs. 137.8±14.3%, p=0.05 n=10). In order to analyze the cellular mechanisms of the impairment, a protocol was developed to apply pharmacological agents to the experimental preparation while maintaining tissue homeostasis. Endothelial and smooth muscle dependent vasodilation were impaired with ischemia, 39.6 ± 13.6% vs. 80.5 ± 11.4% and 43.0 ± 11.7% vs. 85.1 ± 10.5%, respectively. From this data, it can be supported that smooth muscle dysfunction is the reason for the observed impairment in arterial vasodilation.

Keywords: Vascular Function, Age, Impaired Vasodilation, Endothelial Dysfunction, Ischemia, Arteriogenesis, Mouse, SDF Imaging, Gracilis, Peripheral Artery Disease
ACKNOWLEDGMENTS

This research is dedicated to my Grandmother, Shirley Simon, who passed away due to complications caused by diabetes and PAD. She passed away during my thesis research.

I would also like to acknowledge Trevor Cardinal for his help, guidance, and strength to continue advising me while fighting (and beating) Hodgkin’s Lymphoma.

I would like to thank my parents (Tony and Tara Struthers) for their love and support, Thomas Kessler for his help training me in the lab, also the many mice that gave their lives for my research.

“Not laughing for seven days makes one weak”

Mort Walker
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CIRCULATORY FUNCTION</td>
<td>1</td>
</tr>
<tr>
<td>Circulatory Dysfunction</td>
<td>5</td>
</tr>
<tr>
<td>PERIPHERAL ARTERY DISEASE</td>
<td>6</td>
</tr>
<tr>
<td>Treatment of PAD</td>
<td>8</td>
</tr>
<tr>
<td>MECHANISMS OF VASCULAR GROWTH</td>
<td>10</td>
</tr>
<tr>
<td>Angiogenesis</td>
<td>11</td>
</tr>
<tr>
<td>Arteriogenesis</td>
<td>12</td>
</tr>
<tr>
<td>MODELS OF ISCHEMIA</td>
<td>17</td>
</tr>
<tr>
<td>Mouse and Rat Models</td>
<td>18</td>
</tr>
<tr>
<td>Rabbit and Large Animal Models</td>
<td>19</td>
</tr>
<tr>
<td>MECHANISMS OF VASCULAR FUNCTION</td>
<td>20</td>
</tr>
<tr>
<td>Vasoconstriction</td>
<td>21</td>
</tr>
<tr>
<td>Vasodilation</td>
<td>21</td>
</tr>
<tr>
<td>VASCULAR DYSFUNCTION</td>
<td>22</td>
</tr>
<tr>
<td>Effects of Age</td>
<td>23</td>
</tr>
</tbody>
</table>
THERAPEUTIC METHODS OF INCREASING VASCULAR FUNCTION 24

OBJECTIVES AND HYPOTHESES 25

METHODS 27

HUSBANDRY 27

FEMORAL ARTERY RESECTION PROTOCOL 27

INTRAVITAL MICROSCOPY WITH FUNCTIONAL VASODILATION PROTOCOL 31

INTRAVITAL MICROSCOPY WITH SUPERFUSION PROTOCOL 33

DRUG MECHANISMS OF ACTION 35

 Norepinephrine 35
 Acetylcholine 37
 Sodium Nitroprusside 39

SUPERFUSION PLUS FUNCTIONAL VASODILATION PROTOCOL 40

IMAGING AND STATISTICAL ANALYSIS 40

RESULTS 42

EFFECTS OF AGE & ISCHEMIA ON FUNCTIONAL VASODILATION 42

 Impact of Ischemia 44
 Impact of Age 46
 Impact of Age and Ischemia 48

SUPERFUSED FUNCTIONAL VASODILATION PROTOCOL 52
LIST OF TABLES

Table 1: Ischemia Data Table (Young Mice) ... 45
Table 2: Age Data Table (Sham Limb) .. 47
Table 3: Age and Ischemia Data Table (Adult Mice) .. 49
Table 4: Age and Ischemia Data Table (Young and Adult Mice) 50
Table 5: Superfused Functional Vasodilation Data Table .. 53
Table 6: Superfused Functional Vasodilation Data Analysis Table 54
Table 7: NE Dose Response Curve ... 56
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Circulatory System Anatomy</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Vessel Architecture and Function</td>
<td>2</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Blood Vessel Anatomy</td>
<td>3</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Vasoconstriction and Vasodilation</td>
<td>5</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Peripheral Artery Disease (PAD)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Angioplasty</td>
<td>9</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Angiogenesis</td>
<td>12</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Effects of Shear Stress on Arteriogenesis</td>
<td>13</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Relation between Collaterogenesis and Atherogenesis</td>
<td>15</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Surgical Setup</td>
<td>28</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Resected Region</td>
<td>29</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Suture Timeline</td>
<td>30</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Electrode Placement</td>
<td>32</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Superfusion Circuit</td>
<td>34</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Neuroepinephrine Pathway</td>
<td>36</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Acetylcholine Pathway</td>
<td>38</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Sodium Nitroprusside Pathway</td>
<td>39</td>
</tr>
<tr>
<td>Figure 18</td>
<td>Example of Profunda Femoris Measurements</td>
<td>44</td>
</tr>
<tr>
<td>Figure 19</td>
<td>Young Ischemic vs. Young Sham</td>
<td>44</td>
</tr>
<tr>
<td>Figure 20</td>
<td>Young Ischemic vs. Young Sham % Change</td>
<td>45</td>
</tr>
<tr>
<td>Figure 21</td>
<td>Adult Sham vs. Young Sham</td>
<td>46</td>
</tr>
</tbody>
</table>
Figure 45: Image Analysis

xiii
INTRODUCTION

CIRCULATORY FUNCTION

The circulatory system is composed of the heart, which pressurizes the blood, and a complex network of blood vessels which deliver nutrients and remove wastes from tissues through the continuous circulation of blood (Figure 1) [1, 2]. Blood flow begins in the heart and is pumped through the body by muscular constriction of the left ventricle. From the heart, blood enters elastic conduits called arteries (Figure 2). From there, arteries stem smaller conduits called arterioles and further down the line these feed into capillaries. The venous circulation, venuoles and veins, return blood back to the heart [1].

Figure 1: Circulatory System Anatomy. Diagram showing the heart, arteries, and veins of the circulatory system.
Figure 2: Vessel Architecture and Function. Diagram showing the direction of flow from the heart through the various blood vessels, back to the heart. Adapted from [3].

Vessel function is determined by tissue structure (Figure 3). Arteries have a large amount of elastic tissue which allows them to absorb the large pressure differentials that the beating heart creates [1]. The arterioles are responsible for flow control to the distal tissues, which is enabled by the large amount of smooth muscle in its medial layer [1]. Nutrient exchange is facilitated in capillaries due to their single layer of intimal endothelial cells [1].
The volume of blood in the circulatory system is relatively constant, however the distribution of this volume in different regions of the body is highly variable and can be altered by factors such as the output of the left ventricle and the contractile state of the resistance vessels of these regions [2]. With increased sympathetic activity, blood flow to the body increases due to an increased heart rate [1]. It also causes rapid firing of sympathetic fibers which innervate the vascular system, causing blood vessels to constrict and increase peripheral resistance [1].
In the regions with increased metabolic demand, which causes an increase in pCO$_2$, a higher exchange rate is needed due to nutrient consumption and waste formation rate [1]. For example, during exercise, muscles require more blood flow to match the increase in energy expenditure. This flow control is accomplished by the arterioles, located immediately upstream of the capillaries, which increase the lumen diameter by relaxation of the surrounding smooth muscle [1]. In metabolically high areas of the body, the density of these vessels is greater to allow for more nutrient and waste exchange [2].

The spontaneous, rhythmic contraction of blood vessels, specifically arterioles and feed arteries, is involved with regulating blood flow throughout the body (Figure 4) [2]. Vasoactivity serves either of two physiological purposes: regulation of systemic blood pressure or redirecting blood flow to different regions of the body [4]. This happens through vasoconstriction and vasodilation; which decreases and increases blood perfusion to distal tissues respectively [4]. One example of the profound effect vasoactivity can have on blood flow is the observation that aerobic exercise can increase perfusion nearly 100 times when compared to rest [5]. When working properly, different tissues can control the perfusion of their tissue through autoregulation. Autoregulation is the ability of tissues to adjust blood flow with regards to the levels of tissue metabolism, and vessel pressure [2, 4]. One of the main interests in this area of research is the future ability to control vascular function, in regions of dysfunction, through the use of drugs.
Circulatory Dysfunction

Blood flow supply to tissues must match metabolic demand to maintain tissue function, otherwise a medical pathology occurs. For example, if resistance vessel tone is not maintained, increased capillary hydrostatic pressure will cause blood filtration and edema\(^1\) can occur [2]. If the blood flow is reduced below the proper range, it causes a decrease in blood supply to a distal tissue and it becomes ischemic (Figure 5) [1]. Ischemia is insufficient tissue blood flow and results in hypoxia and poor nutrient delivery to cells [7]. In healthy tissue, vasodilation appears immediately after the beginning of hypoxia and can be maintained for several hours [7]. Unfortunately, the vasodilation process is impaired in patients with Peripheral Artery Disease (PAD), and the treatment of this dysfunction is the motivation for this research [8].

\(^1\) Edema is a condition in which tissue becomes swollen and puffy due to increased fluid concentrations [1]
Figure 5: Peripheral Artery Disease (PAD). Peripheral artery disease is a progression of atherosclerosis in the distal limbs. It is characterized by a narrowing of the lumen of an artery. Adapted from [9].

PERIPHERAL ARTERY DISEASE

Ischemic vascular disease is the leading cause of morbidity and mortality in the developed world [10]. In the United States alone, PAD affects 8 million adults, a number that will more than likely get larger as the population ages [11]. Many factors may lead to
this disease, including hypertension, smoking, diabetes mellitus and hypercholesteremia [12]. At the cellular level, inflammation and endothelial dysfunction are contributing factors to this disease [12-14], and there is general agreement that atherosclerosis begins with a damaged or dysfunctioning endothelium [2, 13, 15]. Endothelial dysfunction during atherogenesis is characterized by increased expression of adhesion molecules and an increased synthesis of inflammatory and pro-thrombotic factors [13]. Adhesion molecules enhance the attachment of monocytes, T lymphocytes, and platelets to the endothelium [2]. Once macrophages extravasate into the artery wall, they begin modifying the structure of the surrounding smooth muscle cells [2]. Later in the process, cholesterol begins to build-up in the sub-endothelial space [14].

As this process progresses, the diameter of the lumen of the vessels becomes smaller and smaller, known as stenosis. One of the symptoms of this disease is intermittent claudication, or ischemic leg pain when the patient walks or climbs stairs [2]. With minimal walking, in patients with PAD, the resistance vessels lose the ability to become maximally dilated. When the oxygen demand increases with more rapid walking or climbing, blood flow cannot increase sufficiently to meet the muscle needs for oxygen, and pain caused by muscle ischemia results [2]. It is also thought that the ischemia–reperfusion injury associated with intermittent claudication could be among the causes for increased inflammatory activity and endothelial dysfunction in PAD patients [16]. One percent to two percent of PAD patients over the age of 50 develop critical limb ischemia (CLI) which begins with pain of the limb at rest and leads to tissue ulcers, necrosis and eventually amputation [17]. The one year mortality rate of patients with CLI is 20%, and at five years this rate increases to 50% [15]. Clearly, there is a need for
treatment of this disease and the goal of this research is to address the problem of impaired vasodilation in these patients.

Treatment of PAD

The goal of contemporary treatments of PAD is to reverse conduit artery stenosis and restore tissue blood flow through percutaneous angioplasty or by-pass surgery (Figure 6) [18]. Endovascular angioplasty, the process of using a balloon to open up occluded arteries in the peripheral vascular system, has been shown to increase flow-mediated dilation [16]. Another avenue besides surgical treatments is drug therapy. In addition to these surgical approaches, endogenous compensation of arterial stenosis during PAD can occur through the development of collateral flow paths [18]. Therapeutic stimulation of this process has received substantial attention in patients for which surgical approaches are ineffective or contraindicated [18]. In order to properly stimulate this process, the cellular mechanisms must be fully understood.
Figure 6: Angioplasty. Vascular angioplasty involves the insertion of a balloon catheter into the stenosed area. The balloon is then inflated to increase the luminal diameter, increasing perfusion of downstream tissue. Adapted From [20].
There have been many advances in the understanding of the molecular and cellular mechanisms responsible for collateral development [19]. Some of these molecules include VEGF, FGF-2, FGF-1 and MCP-1, which have been shown to enhance collaterogenesis [19]. Despite our improved understanding of arteriogenesis and significant success of preclinical trials, therapeutic vascular growth has not been successful in a clinical setting [18, 19]. It is unknown why arteriogenesis therapies have not worked, but it could be due to the competing mechanisms of atherosclerosis and arteriogenesis [19]. Regardless, it is necessary to study the process more. However, collateral growth is a complex remodeling process, and it may be more straight-forward to improve vasodilation in these patients.

MECHANISMS OF VASCULAR GROWTH

Following an occlusive event, the peripheral circulation remodels in response to the altered flow and pressure through vasculogenesis, angiogenesis, and arteriogenesis [21]. Vasculogenesis occurs primarily during embryonic development when angioblasts differentiate to form primitive capillary plexuses [21], but has been observed in response to hindlimb ischemia [22]. The peripheral circulation remodels in response to altered flow and pressure through arteriogenesis in response to cellular hypoxia through angiogenesis, these processes form collaterals and an expanded exchange network, respectively [1, 2].
Angiogenesis

Angiogenesis is the growth of new capillaries from existing capillaries. Although angiogenesis can be induced by increased shear stress [23], in the context of ischemia, angiogenesis is primarily induced by hypoxia (Figure 7) [18]. Hypoxia increases the activity of hypoxia inducible factor-1 (HIF-1), a transcription factor that increases the expression of hypoxia-sensitive genes, such as VEGF, which is the most well-studied angiogenic factor in the context of both tumor growth and ischemic revascularization [18]. Various growth factors, such as VEGF, promote the division of endothelial cells, which organize into a hollow tube that sprouts out of the existing capillary. The resulting sprouting capillary reconnects to its original capillary branch or a different one, completing the angiogenic process [2]. Increasing capillary number will improve diffusive transport in the ischemic tissue. However, arteriogenesis affects larger vessels, which are more relevant to this work.
Arteriogenesis

Arteriogenesis refers to the transformation of pre-existing collateral artery pathways into conduit arteries (Figure 8) [24]. The process begins when a sudden arterial occlusion or a slowly progressing stenosis causes an increase in fluid shear forces on the endothelium of the collateral flow path [21]. Normal shear values in arterial circulation ranges between 10 and 70 dyn cm$^{-2}$ [18]. When the range is breached, the elevated shear activates the endothelial cell signaling pathways and results in increased transcription of nitric oxide synthase (NOS), platelet-derived growth factor (PDGF) and monocyte chemoattractant protein-1 (MCP-1) [21]. The activity of NOS is also increased and its activity accounts for the vasodilation observed in response to increased endothelial shear [7]. The elevated shear also causes adhesion molecule presentation on the luminal surface.
of the endothelium. Adhesion molecules, such as ICAM are necessary to “grab” circulating monocytes, which adhere in response to MCP-1 [21]. Monocyte adherence potentiates endothelial activation, which causes tumor necrosis factor-α (TNF-α) release, further enhancing monocyte adhesion to the endothelium [21]. At the same time, platelets adhere to the endothelium and produce interleukin-4 (IL-4), which amplifies the expression of adhesion molecules [21].

Figure 8: Effects of Shear Stress on Arteriogenesis. The effects of a reperfusion study on a rabbit hindlimb. (A) Reperfusion treatment (B) ligation treatment. Image was a post mortem angiography. Adapted from [26].

Once they extravasate, monocytes produce many growth factors, such as fibroblast growth factor-2 (FGF-2), which cause mitosis of the endothelial and smooth muscle cells [21]. Mast cells, which are converted from basophils, secrete basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) and may remain in the tissue for up to 6 weeks [25]. Finally, matrix-metalloproteinases begin to digest the extracellular matrix and provide the space for new cells and enable smooth muscle cells
to migrate towards the intima [25]. This generates an inflammatory response that attracts T cells which causes smooth muscle cells to undergo apoptosis, creating space for the increasing collateral vessel [21, 25]. Those smooth muscle cells that proliferate change their phenotype and lose most of their contractile function [25] when they become “synthetic”, or proliferative [21]. Once the vessel diameter has increased enough to return shear stress back to the baseline levels, arteriogenesis will stop. This process increases flow to the downstream tissue until the endothelial cells sense normal shear stress ranges.

There are several methods of increasing growth of collateral arteries. One of the first substances found to increase arteriogenesis was MCP-1 [27]. Unfortunately this compound also was shown to be pro-atherogenic, precluding its testing beyond preclinical trials (Figure 9) [18, 19].
Monocytes recruitment can also be improved by granulocyte-monocyte colony stimulating factors (GM-CSF) and granulocyte colony stimulator factor (G-CSF) [18],
which along with transforming growth factor beta (TGF-β), enhance arteriogenesis [24]. Unfortunately, both of these compounds promote tumor angiogenesis and atherosclerosis [18].

VEGF expression is critical for the presence of collaterals and collateral growth, likely through stimulation of endothelial proliferation. Unfortunately, the positive effect of VEGF on vascularization in animal models [10, 28] has not been observed in large clinical trials [29]. In addition to a lack of efficacy, VEGF therapies are associated with edema, due to the ability of VEGF to increase endothelial permeability [19, 24].

To diminish these risks of side effects, many efforts have been made to deliver the arteriogenic drugs locally [24], rather than intravascularly [18, 30]. Current research predicts future methods to deliver these drugs through therapeutic devices such as stents. These stents would elute a pro-arteriogenic compound into the affected artery over a period of time, mitigating current delivery complications [18, 24]. Additionally, the risk factors that cause PAD such as age, hypercholesterolemia, genetic susceptibility, diabetes and smoking may also impair the efficacy of these therapeutic interventions [31]. Due to the complexity of the arteriogenesis pathway, multiple therapeutic agents or cell-based therapies may be needed to achieve efficacy [18, 31].

Cell based therapies refer to the process of isolating autologous cells and delivering them to the patient [32]. Their usefulness, however, has been debated because the process of growing collateral arteries is a local and self-sufficient process that is not dependent on the circulating stem cells [25]. However, with dysfunction the arteriogenesis pathway is broken, so delivering cells that can secrete many cytokines
could be an effective modality to stimulate the process. Bone marrow derived progenitor cells improve arteriogenesis, but their clinical efficacy remains inconclusive [18, 19].

MODELS OF ISCHEMIA

The main challenge of therapeutic arteriogenesis is there has been a history of therapeutic efficacy in animal models followed by disappointing results in blinded and randomized clinical trials [18, 31]. While there is no perfect model of PAD, many efforts have been made to mimic the symptoms and pathologies of PAD to provide a better idea of efficacy of treatments further down the line. [25]. Often these procedures involve surgery, which takes a matter of minutes to hours; the time it takes for a human to develop an atherosclerotic lesion is years to decades [33]. These inherent differences require a better understanding of the animal models that are currently used. Fully understanding these differences will help lead to more reasonable interpretations of the results.

Experimental models of PAD can be divided into human and animal models. Human models are limited from the perspective that invasive studies cannot be performed and long-term studies are difficult. This is due to increased regulation enforced by the Food and Drug Administration (FDA), specifically through the Office of Good Clinical Practice (OGCP). Even with these difficulties human models are utilized. In one human study, arterioles were isolated form amputated limbs for highly controlled studies of vascular reactivity [34]. Conversely, non-invasive assessments, such as laser Doppler perfusion imaging, can be performed routinely in patients with PAD [15].
Comparatively, animal models can be used for long-term invasive studies. Unfortunately, variability can be introduced through the numerous species and strains of animals that can be used. Different types of surgical methods used to induce ischemia also increase this variability. There are several experimental assessment endpoints that must be addressed to properly analyze the efficacy of a therapy, such as vascular cell proliferation, vascular number and size, and blood flow perfusion [35]. Many studies aim to look at all of these factors; however there is no standard method to address these experimental endpoints. This creates a need to understand the model being used in order to develop experiments that properly evaluate the problem or efficacy of the solution.

Mouse and Rat Models

One of the most variable and simple of the animal models are rodents. Advantages of these animals are their low cost, high reproductive rate, and general similarity to human physiology. Historically, rats were the most common, but with the emergence of mouse embryonic cell culture and genetic modification, mice have become a more popular choice for experiments designed to establish causal relationships [36]. Through genetic manipulation, different co-morbidities can be induced, such as hypercholesterolemia following the disruption of the genes involved in cholesterol trafficking [37].

For ischemic research, two different surgical techniques are frequently used: ligation and resection. During a ligation, the femoral artery is occluded with a suture, preventing downstream flow [38]. The result of this occlusion is the enlargement of superficial collateral arteries, which can be viewed in vivo one to three weeks after
femoral occlusion [38]. A resection surgery involves the removal of the femoral artery and all of its branches from the hindlimb [39, 40]. Excision of the femoral artery results in occlusion of the external iliac artery; blood flow to the ischemic limb is consequently dependent on deep collateral vessels originating from the internal iliac artery [39, 40].

Often, a larger rodent model is used, such as a rat, which allows a greater range of experimental options with regards to surgical methods [41]. There are still inherent differences between the physiology of a human and a rodent. One example is the difference between blood type proteins of a mouse and a human [42]. This can be seen on the cellular level in embryonic stem cells [42]. This may explain why mice and rats have not been predictive of a therapeutic effect on humans. To better match the diseased human pathology and anatomy, a large animal model is considered.

Rabbit and Large Animal Models

Rabbit models are used for a variety of FDA and international biocompatibility testing standards [43], chiefly in vascular research because their iliac artery diameter is comparable to that of the human coronary artery and has similar thrombogenic properties [43]. Other than the previously stated advantages, rabbits do not provide many more advantages when compared to rats and larger animal models. However, they are used frequently in ischemia research.

The most common ischemia models involve ligations and arteriovenous shunts, which can be used to assess revascularizations in the rabbit hindlimb [28]. Arteriovenous shunts involve the ligation of both femoral arteries and for the side-to-side anastomosis operation of the distal stump of the left femoral artery with the accompanying vein [26].
This surgery re-routes vasculature and causes arterial vessels to drain into veins, which have a lower hydrostatic pressure than downstream arterioles and hence causes an increased pressure gradient and increased flow, resulting in an increased shear stress [26]. Similar to rodent studies, rabbits have predicted safety and positive responses to biologic therapeutics [44].

When even larger models are needed, the most commonly used in ischemia research are the porcine and canine model. Canines are often used because they are easy to train and their circulation contains many collaterals for arteriogenesis research [35, 45]. The porcine model is advantageous because they can be given a high calorie diet and gain similar pathologies to humans with PAD [43]. Animal species, surgical technique, treatment and size must all be analyzed in order to improve their predictive capacity in humans. Additionally, the differences in animal models can lead to differences in responses when comparing across animal models. Thus inferring animal response to humans needs to be done with caution and with careful consideration of the potential differences. With a history of efficacy of therapies in animal models and inadequate results seen in randomized patient trials, a different approach is needed if we want to improve distal perfusion in those patients that are suffering from impairment [18, 31]. Therefore a better understanding of vascular function is needed.

MECHANISMS OF VASCULAR FUNCTION

Collateral growth is a complex process and more effective results could be observed and complement or potentially replace therapeutic arteriogenesis by determining how to improve vasodilation. As stated previously in the introduction, blood
flow is controlled by the increase and decrease of lumen diameter in the resistance vasculature, arterioles, and feed arteries [1].

Vasoconstriction

Vasoconstriction involves the constriction of smooth muscle in a blood vessel to decrease the luminal diameter and decrease blood velocity and distal perfusion [4]. Normally, vessel tone is maintained through constant activity from the sympathetic nervous system [2]. Control of the vessel diameter can be divided into three separate categories: local, neural, and hormonal mechanisms [4]. One of the most recognizable ways of local vasoconstriction is in response to a cold stimulus which is a method of preserving core body temperature [2]. Stimulation of this control pathway causes various systemic effects, one of which is most relevant to this research, the increasing in peripheral resistance through the use of neuroephinephrine [2]. Vessel pressure also has an effect on vessel tone due to the myogenic response; vessels constrict in response to high pressure [2]. There are several hormones that cause vasoconstriction, such as Angiotensin II, which is a potent vasoconstrictor and a systemic way that blood pressure is regulated [4]. Just as blood pressure can be increased through vasoconstriction, it can be lowered through vasodilation.

Vasodilation

Vasodilation involves the relaxation of smooth muscle in a blood vessel to increase the luminal diameter and increase blood velocity and distal perfusion [4]. Local
factors of vasodilation include substances that are released from the vessel endothelium such as prostacyclin (PGI$_2$) and nitric oxide (NO) [2]. Hormonal mechanisms of vasodilation include atrial natriuretic peptide which causes vasodilation in the cardiac vasculature [4]. Vasodilation in skeletal muscle is known to be regulated by muscle metabolism, but to effectively increase flow, there must be coordination with vessels outside of the metabolic field, such as feed arteries. This occurs through a mechanism known as ascending vasodilation [46].

Ascending vasodilation is the process of the “spread” of a vasomotor response along a blood vessel [5]. Research has demonstrated that this is due to electrical signals that are capable of traveling for millimeters along the arteriolar endothelium [5, 47]. Ischemia may impair this process due to the resulting vascular dysfunction [48].

VASCULAR DYSFUNCTION

A healthy resistance vessel should dilate in response to ischemia. When this mechanism is dysfunctional, the downstream tissue becomes transiently ischemic [2], producing intermittent claudication. It is also thought that the injury associated with intermittent claudication could be among the causes for increased inflammatory activity and endothelial dysfunction in PAD patients [16]. One of the most common causes of endothelial dysfunction and inflammation is diabetes mellitus [37, 49, 50].

Endothelial dysfunction and inflammation in diabetes is due to hyperglycemia and it causes a decreased endothelial dependent relaxation due to increased thromboxane receptors, enhancing vasoconstriction [49]. Similarly, endothelial dysfunction observed in patients with PAD could be due to impaired endothelial vasodilator responses [11].
In patients with chronic limb ischemia, feed arteries from ischemic skeletal muscle showed exaggerated vasoconstrictor responses [51]. This was thought to be due to an increase in both α-1 and α-2 adrenergic receptors in the ischemic tissue [51]. The goal of this research is to better understand this mechanism to create efficacious treatments for impaired α-adrenergic receptor responsiveness.

Effects of Age

Age is one of the greatest risk factors for developing chronic ischemia [52]. Also, there are greater numbers of older people in hospitals when compared to younger people [53]. The effects of age on the human body are complex and include such as increased blood pressure (hypertension) and impaired wound healing [4, 17]. Advanced age also reduces muscle mass and increases vascular resistance [54]. Peripheral resistance is directly tied to the material properties and the structural presence of blood vessels, which changes with hypertension of blood vessels. As people get older, arteries lose their elasticity and become stiffer with atherosclerosis and other pathologies [4]. Sympathetic nerve activity also increases with age, causing vessels to be more constricted [54]. These changes may explain the negative effect of age on arteriogenesis [31].

These vascular impairments are recapitulated in animal models, in which VEGF expression was reduced in the ischemic limbs of aged mice and rabbits compared to young animals [55]. Endothelial dysfunctional could represent a putative basis for age-dependent impairments in angiogenesis [55]. Further, collateral numbers and endothelial-dependent vasodilation were reduced in adult mice (6mo of age) [37]. Senescent mice, aged 20 months exhibited reduced functional vasodilation, likely due to an increase in
concentration of \(\alpha \)-adenoreceptors in the microvasculature of an aged mouse [54]. From this research, it is hypothesized that endothelial dysfunction is responsible for this decrease in vasodilation in an aged, ischemic mouse.

THERAPEUTIC METHODS OF INCREASING VASCULAR FUNCTION

One of the only therapies currently known to increase vascular function is exercise. Exercise therapy for patients with intermittent claudication increases pain-free walking time, maximal walking time and overall physical capacity [41]. PAD patients that are more physically active have increased flow-mediated dilation [11]. Unfortunately, many patients with PAD are restricted or prevented from participating in these supervised exercise programs due to limited ability or lack of medical insurance coverage [11]. Additionally, the molecular mechanism of this benefit is not understood, consequently its therapeutic efficacy cannot be maximized. Additionally, to fully understand how exercise benefits vasodilation, we must understand why vasodilation is impaired in the first place. Therefore there is an obligation to discover alternative methods of treatment such as drug and surgical intervention.

Some drug therapies to increase revascularization have been ineffective and have many counterproductive side effects [19]. It is imperative for these new vessels to have proper vascular function, unfortunately research has shown otherwise [5]. One possible solution to this problem is the mechanism of eNOS. It is thought that eNOS causes an increase in endothelial NO production which is a known vasodilator [2], and it has been shown to increase skeletal muscle perfusion in a rat model [56].
Despite our improved understanding of arteriogenesis and significant success of preclinical trials, therapeutic vascular growth has not been successful in a clinical setting [18, 19]. It is unknown why arteriogenesis therapies have not worked, but it could be due to the competing mechanisms of atherosclerosis and arteriogenesis [19]. Regardless, it is imperative that the mechanism is fully understood in order to properly address the problem. More effective results could be observed and complement therapeutic arteriogenesis by determining how to improve vasodilation in these patients. Vascular function must improve in an ischemic environment, and resolving this problem is the basis of this research.

OBJECTIVES AND HYPOTHESIS

The goal of this research is to better understand how ischemia affects vascular function. This knowledge will help develop more effective therapies in the patient population. To achieve this goal, the following Specific Aims were completed:

1. Specific Aim 1 – Test the hypothesis that age will decrease the functional vasodilation during ischemia. The objective was to validate previous data on 3mo old mice, and advancing the data on 6mo old mice. It was also the intention to validate results with a different group’s research performed on mice at 3 and 6 months [37].

2. Specific Aim 2 - Establish a consistent superfused functional vasodilation protocol using healthy mice. The goal of this aim was to create a reproducible
protocol that allows studies to eventually use pharmacological agents during functional vasodilation to assess specific aspects of dysfunction.

3. *Establish an experimental protocol for assessing vascular reactivity using pharmacological agents.* The purpose of this aim was to explore the vascular reactivity to endothelial dependent and smooth muscle dependent vasodilators, as well as obtain a vascular range of motion with vasoconstrictors.

4. *Test the hypothesis that the ischemic profunda femoris artery will exhibit impaired endothelial-dependent vasodilation.* The purpose of this aim was to explore the vascular reactivity to endothelial dependent and smooth muscle dependent vasodilators in response to ischemia, as well as obtain a vascular range of motion with vasoconstrictors.

Completing these aims will help further the experimental options of the lab while discovering the potential mechanisms of dysfunction when ischemia is present.
METHODS

HUSBANDRY

All procedures were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of the California Polytechnic State University in accordance with the Guide for the Care and Use of Laboratory Animals. Male C57 mice aged 7-9 weeks were housed in the Cal Poly vivarium, with four mice to a micro-isolator cage. The room was temperature controlled with a 12 hour to 12 hour light-dark cycle. Harlan 18% protein rodent chow and water were provided *ad libitum*. During cage changes, isolation attire was worn to maintain aseptic conditions. Mice were monitored on a daily basis and any notes were taken if irregularities in behavior were noticed.

FEMORAL ARTERY RESECTION PROTOCOL

Surgeries were performed using a stereomicroscope on male C57 mice under sterile conditions using Isoflurane anesthesia (APPENDIX A). The hindlimb area was first shaved and removed of hair. Nolvasan was used to disinfect the surgical field and reduce the likelihood of infection. The mice were kept at a temperature of ~35 °C using a rectal-thermistor controlled heating pad. A sterile drape was placed over the mouse with an opening over the surgical area (*Figure 10*). *Figure 11* shows the approximate area of femoral artery and vein resected from the hindlimb. The first incision was made with a straight cut over the medial thigh of the mouse. The cut was extended proximally until the abdominal wall was visible. It was also extended distally to midway between the knee and ankle. Sterile saline solution was used to irrigate the incision and prevent tissue
desiccation. Connective tissue was blunt dissected over the femoral neurovascular bundle. Then, the epigastric fat pad and epigastric artery-vein pair were dissected using blunt dissection and heat cauterization.

Figure 10: Surgical Setup. Picture showing the surgical suite. The mouse is shown underneath the sterile drape. All surgical instruments and objects that touched the mouse during surgery were kept sterile to prevent infection.
Figure 11: Resected Region. (A) Hindlimb before resection. (B) Hindlimb with resected area denoted by a black line. The distal hindlimb area is not fully visible.

Once the fat pad was removed, the femoral artery and vein pair was separated from the nerve using gentle blunt dissection. The femoral artery and vein pair was then ligated proximal to the profunda femoris with a 6-0 silk suture. The profunda femoris was then cauterized as close to the femoral artery and vein pair as possible to minimize hemorrhage following femoral artery-vein resection. The femoral artery-vein pair was then ligated halfway between the knee and ankle. Veins branching off of the femoral
artery-vein pair were cauterized to leave some native circulation intact. Great care was taken by the surgeon to leave as many branches as possible. A cotton swab was used to apply counter-pressure on the tissue while the femoral artery vein pair was carefully pulled and separated from the underlying tissue and cut just distal to the proximal ligation. Finally, the skin incision was closed using 7.0 polypropylene suture, Figure 12.

![Figure 12: Suture Timeline.](image)

Figure 12: Suture Timeline. (A) Hindlimb before incision is made (B) Hindlimb after resection surgery and suturing protocol (C) Hindlimb 14 days after surgery.

An incision, equivalent in length and placement, was made on the contralateral limb. Sterile saline was used to irrigate the incision and prevent tissue desiccation. Connective tissue over the femoral neurovascular bundle was blunt dissected similar to the previous limb. This was done to create a sham limb, designed to control for any effects of general surgical trauma. Finally, the skin incision was closed using 7.0 polypropylene suture. The mouse was then given a subcutaneous injection of buprenorphine (0.07 mg/kg) and placed in a warm recovery bin until ambulatory, then was returned to the vivarium.
INTRAVITAL MICROSCOPY WITH FUNCTIONAL VASODILATION PROTOCOL

SDF Imaging was used to evaluate profunda femoris artery diameter (APPENDIX B). Experimental preparation/dissections were performed using a stereomicroscope. The hindlimb area was first shaved and removed of hair and mice were maintained at ~35 °C using a rectal-thermistor controlled heating pad. The initial incision was made with a straight cut over the medial hindlimb of the mouse. The cut was extended proximally until the abdominal wall was visible. Phosphate Buffered Saline (PBS) solution was used to keep the incision irrigated and prevent tissue desiccation. Connective tissue was carefully dissected away from the leg, as to not harm the underlying muscle. The epigastric fat pad was then blunt dissected away from the abdominal wall, and cautery was used to bisect the fat pad into two parts. This was done to allow placement of the MicroScan over the profunda femoris artery.

Once the dissection was complete, the MicroScan was then placed over the profunda femoris artery and positioned such that the anterior gracilis muscle was visible at the bottom of the field of view. Two electrodes were then placed on the mouse hindlimb: the ground electrode on the skin of the mouse and stimulating electrode above the gracilis muscles (Figure 13). It was important to not puncture the muscle because this caused unwanted hemorrhage. To test proper placement, the gracilis muscle was stimulated with 1mA square waves 100µs in duration at 1 Hz until proper electrode placement was confirmed. If the hindlimb twitched and was visible on the video image, proper electrode placement was confirmed. At this point a KimWipe was used to remove the remaining PBS solution from the hindlimb. Mineral oil was then placed on the hindlimb using a pipette and covered with plastic wrap.
Figure 13: Electrode Placement. Areas of interest are labeled. Note the placement of the electrodes: on the gracilis muscle and on the skin. A retractor was used to fully show the entire hindlimb area.

The mineral oil prevents the tissue from desiccating and creates an effective barrier to prevent oxygen diffusion [57]. High pO₂ may cause vasoconstriction and alter basal tone as well as demand for oxygen. Therefore, to keep a controlled system, an environment free from oxygen diffusion is very important.

The experimental preparation was allowed to recover for 30 minutes. Following this recovery period, a 10 second video baseline measurement was taken. The gracilis muscle was then stimulated with 1mA square waves 200µs in duration at 8 Hz for 90 second. 10 second videos were taken before stimulation, after stimulation, and every two minutes afterwards until the resting diameter was reached, ±5µm. The gracilis muscle was then stimulated with 1mA square waves 500µs in duration at 8 Hz for 90 seconds. Again, 10 second videos were taken before stimulation, after stimulation, and every two minutes afterwards until the baseline diameter was measured. After both stimulation
protocols were complete, the hindlimb was covered with plastic wrap and the process was repeated on the contralateral limb; the order of measurement was randomized between the two limbs. This was done to prevent experimental error that was found when limb order was not randomized [58]. After the protocol was completed on both limbs, the mouse was euthanized by cervical dislocation. Sacrificed mice were stored in a -20°C freezer and disposed in a biohazard waste container.

INTRAVITAL MICROSCOPY WITH SUPERFUSION PROTOCOL

In order to test the effects of pharmacological agents on the current model, a method to apply them to the preparation without the use of mineral oil was needed. Therefore a superfusion protocol was proposed (APPENDIX C). The superfusion solution was a physiological salt solution (PSS) composed of the following compounds (in mM): NaCl 137, KCl 4.7, MgSO$_4$ 1.2, CaCaL$_2$ 2, and NaHCO$_3$ 18. Prior to each experiment, the PSS was warmed in a water bath at 45°C and deoxygenated/pH-balanced by bubbling with a 95%:5% N$_2$:CO$_2$ mixture for approximately 15 minutes. After the solution was prepared, a portion of the liquid was poured into the superfusion circuit (Figure 14).
Figure 14: Superfusion Circuit. Diagrams of the circuit used to apply superfusion solution on the hindlimb of the mouse. (A) Basic block diagram of the circuit (B) Image of the actual circuit used in experiments.

SDF Imaging was again used to evaluate the diameter of the profunda femoris artery, and the animal was prepared as described above. Once the dissection was complete, the MicroScan was then placed over the profunda femoris artery and positioned with the gracilis muscle at the bottom of the field-of-view. Superfusion solution was adjusted to flow at ~2mL·min\(^{-1}\) and a thermistor was used to ensure that a temperature of 35°C was maintained.

The limb was then allowed to recover for 30 minutes from the dissection. Following this recovery period, a 10 second video baseline measurement was taken.
before the addition of pharmacological agents in the following order: neuroepinephrine (10^{-4}M), acetylcholine (10^{-4}M), and sodium nitroprusside (SNP) (10^{-4}M). Agents were allowed to flow over the experimental preparation for 5 minutes; 10 second videos were taken within the last minute. After the protocol was complete, the hindlimb was covered with plastic wrap and the process was repeated on the contralateral limb. The order of experimentation was alternated between the right and left hindlimbs for each mouse [58]. After the protocol was completed on both limbs, the mouse was euthanized by cervical dislocation. Sacrificed mice were stored in a -20°C freezer and disposed of in a biohazard waste container.

DRUG MECHANISMS OF ACTION

Norepinephrine

Norepinephrine is one of the most important regulators of vasoconstriction in skeletal muscle resistance vessels [1]. Norepinephrine is a catecholamine, which is a class of amines that act as chemical transmitters [1], other examples include epinephrine and dopamine [1]. In a stressful situation, neuroepinephrine is synthesized from tyrosine and is secreted from sympathetic neurons that synapse on the smooth muscle [1]. Smooth muscle cells then have different receptors that receive the neurotransmitter. Specifically \(\alpha_1 \)-adenoreceptors and \(\alpha_2 \)-adenoreceptor and \(\beta \)-adenoreceptors [2], arterial vasoconstriction is predominantly mediated by \(\alpha_1 \)-adenoreceptors with a small contribution from \(\alpha_2 \)-adenoreceptors [34]. Previous studies have shown an increase in
certain receptors due to ischemia, thus the motivation for using this drug in the research
[34]. **Figure 15** shows the cellular mechanism of this endogenous neurotransmitter.

Figure 15: Neuroepinephrine Pathway. Concept map showing the cellular mechanism of neuroepinephrine. It binds to specific receptors and results in smooth muscle contraction, or in the case of blood vessels, vasoconstriction.
Acetylcholine

Acetylcholine is a neurotransmitter that is released by nerve endings, specifically the cholinergic fibers (Figure 16) [1]. Acetylcholine receptors are found on the endothelial cell and when activated result in vasodilation [59, 60]. This compound is typically used in order to assess endothelial dysfunction in vasodilation due to its ability to produce a robust dilation that is endothelial dependent, which was the main motivation in using this drug in the protocol [55]. However, there has been some debate regarding this due to a group that showed that vasodilatory chemicals may act differently than the natural pathway [61].
Figure 16: Acetylcholine Pathway. Concept map showing the cellular mechanism of acetylcholine. The process begins with acetylcholine binding to a cholinergic receptor and results in vessel vasodilation. This is an endothelial dependent vasodilator.
Sodium Nitroprusside

This mechanism is very similar to acetylcholine; only it completely skips the endothelial process and goes directly to giving rise to stimulating sGC (Figure 17). NO donors are typically used to assess smooth muscle functionality due to its mechanism, which was the main motivation for using this drug in the study [55]. Nitrates are also used as treatments for angina and cardiac ischemia in order to achieve greater blood flow in the heart [62].

Figure 17: Sodium Nitroprusside Pathway. Concept map showing the cellular mechanism of sodium nitroprusside. It begins with the donation of nitric oxide to the smooth muscle cell, which results in vasodilation of the vessel. This is a smooth muscle dependent vasodilator.
SUPERFUSION PLUS FUNCTIONAL VASODILATION PROTOCOL

Superfusion intravital microscopy was performed as described above, with the following modification (APPENDIX D). Once the MicroScan was placed over the profunda femoris artery, a ground electrode and placed on the skin and a stimulating electrode was placed above the gracilis muscles. Proper placement was confirmed with test contractions and the superfusion solution was adjusted to ~2mL·min\(^{-1}\).

After the 30-minute recovery period, the gracilis muscle was stimulated with 1mA square waves for 200\(\mu\)s or 500\(\mu\)s in duration at 8 Hz for 90 seconds. Ten-second videos were taken before stimulation, after stimulation, and every two minutes afterwards until baseline diameter was measured. After both stimulation protocols were complete, the hindlimb was covered with plastic wrap and the process was repeated on the contralateral limb. The order of experimentation was alternated between the right and left hindlimbs for each mouse [58]. After the protocol was completed on both limbs, the mouse was euthanized by cervical dislocation. Sacrificed mice were stored in a -20°C freezer and disposed of in a biohazard waste container.

IMAGING AND STATISTICAL ANALYSIS

Automated Vascular Analysis (AVA) was used to measure diameters from stabilized videos (APPENDIX E). Data was analyzed using the statistics package in Microsoft Excel. Paired t-tests were used for data sets that showed a linear association which was indicative of dependence between the two sets of data. This was true for all data sets in the first Aim except for when comparing between adult and young mice, in
which a one-way ANOVA was used. In Aims three and four, groups were compared by using a one-way ANOVA. Summary data are represented as mean values ± standard error.
RESULTS

EFFECTS OF AGE & ISCHEMIA ON FUNCTIONAL VASODILATION

For Specific Aim 1 (Page 26), the hypothesis that age and ischemia reduce functional vasodilation in the profunda femoris feed artery was tested. It was hypothesized that the effects of these treatments would be additive, which was tested by comparing age and ischemia individually against a control. Arteries were measured as stated in the methods section (Figure 18).
Figure 18: Example of Profunda Femoris Measurements.

Microscan images taken of profunda femoris artery (lighter color) on the hindlimb of the mouse. Taken at different time points:

(A) Sham artery before stimulation.
(B) Sham artery after 200 µs stimulation, note increase in diameter.
(C) Sham artery after 500 µs stimulation, note smaller increase in diameter.
(D) Experimental artery before stimulation.
(E) Experimental artery after 200 µs stimulation, note increase in diameter.
(F) Experimental artery after 500 µs stimulation, note smaller increase in diameter.
Impact of Ischemia

In young mice (2-3mo), the resting ischemic artery was significantly larger than the control artery, 103.1 ± 10.3 μm vs. 54.1 ± 3.6 μm, p= 0.0006 (n=8), (Figure 19). However, arterial diameter was not different between ischemic and control arteries following functional vasodilation (Table 1). Therefore, percent change in diameter compared to resting state was examined as the more accurate indicator of vascular reactivity (Figure 20). When the gracilis muscles were stimulated with 200 μs duration square waves, control arteries dilated significantly more than ischemic arteries, 104.1 ± 13.0% vs. 15.2 ± 5.0%, p<0.001, (n=8) (Figure 20). When the gracilis muscles were stimulated with 500 μs duration square waves, control arteries dilated significantly more than ischemic arteries, 137.8 ± 14.3% vs. 14.4 ± 4.6%, p<0.0001 (n=8).

![Young Ischemic vs. Young Sham](image)

Figure 19: Young Ischemic vs. Young Sham. A bar graph of the profunda femoris artery diameter during rest, after a 200 μs stimulation and 500μs stimulation *p=0.004
Table 1: Ischemia Data Table (Young Mice). Average values taken from functional vasodilation protocol with young mice (2-3mo), p value < 0.5 is significant

<table>
<thead>
<tr>
<th></th>
<th>Young Sham</th>
<th>Young Ischemic</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>54.1 ± 3.6 µm</td>
<td>103.1 ± 10.3 µm</td>
<td>0.0006</td>
</tr>
<tr>
<td>Moderate Contraction (200µs duration)</td>
<td>108.3 ± 6.0 µm</td>
<td>116.8 ± 10.0 µm</td>
<td>0.48</td>
</tr>
<tr>
<td>Intense Contraction (500µs duration)</td>
<td>125.8 ± 4.6 µm</td>
<td>117.0 ± 11.7 µm</td>
<td>0.50</td>
</tr>
<tr>
<td>Rest vs. Post 200µs Stimulation % Change</td>
<td>104.1 ± 13.0 %</td>
<td>15.2 ± 5.0 %</td>
<td>0.0002</td>
</tr>
<tr>
<td>Rest vs. Post 500µs Stimulation % Change</td>
<td>137.8 ± 14.3 %</td>
<td>14.4 ± 4.6 %</td>
<td>0.00003</td>
</tr>
</tbody>
</table>

Figure 20: Young Ischemic vs. Young Sham % Change. A bar graph of the profunda femoris artery diameter percent change comparing post 200 µs stimulation to rest and post 500 µs stimulation to rest *p<0.001 ×p<0.0001
Impact of Age

To test a corollary of the main hypothesis for this aim, the impact of age alone on function vasodilation was examined. There was a trend towards a larger resting diameter in the adult mice, $62.4 \pm 4.9 \mu m$ vs. $54.1 \pm 3.6 \mu m$, this difference did not achieve statistical significance, $p=0.21$ (n=10/8) (Figure 21). However, arterial diameter was not different between young and adult arteries following functional vasodilation (Table 2). Therefore, percent change in diameter compared to the resting state was examined as the more accurate indicator of vascular reactivity (Figure 22). When the gracilis muscles were stimulated with 200 μs duration square waves, there was a trend towards larger young artery dilation, $104.1 \pm 13.0\%$ vs. $79.8 \pm 11.9\%$, this difference did not achieve statistical significance, $p=0.19$ (n=8/10) (Figure 22). When the gracilis muscles were stimulated with 500 μs duration square waves, young arteries dilated significantly more than adult arteries, $137.8 \pm 14.3\%$ vs. $103.0 \pm 9.4\%$, $p=0.05$ (n=8/10).

Figure 21: Adult Sham vs. Young Sham. A bar graph of the profunda femoris artery diameter. Note the increase in adult resting diameter compared to the young resting diameter.
Table 2: Age Data Table (Sham Limb). Average values taken from functional vasodilation protocol with adult mice (6-7mo) and young mice (2-3mo) from the sham limb, p value < 0.5 is significant

<table>
<thead>
<tr>
<th></th>
<th>Young Sham</th>
<th>Adult Sham</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>54.1 ± 3.6 µm</td>
<td>62.4 ± 4.9 µm</td>
<td>0.21</td>
</tr>
<tr>
<td>Moderate Contraction (200µs duration)</td>
<td>108.3 ± 6.0 µm</td>
<td>108.0 ± 5.5 µm</td>
<td>0.98</td>
</tr>
<tr>
<td>Intense Contraction (500µs duration)</td>
<td>125.8 ± 4.6 µm</td>
<td>123.8 ± 7.8 µm</td>
<td>0.84</td>
</tr>
<tr>
<td>Rest vs. Post 200µs Stimulation % Change</td>
<td>104.1 ± 13.0 %</td>
<td>79.8 ± 11.9 %</td>
<td>0.19</td>
</tr>
<tr>
<td>Rest vs. Post 500µs Stimulation % Change</td>
<td>137.8 ± 14.3 %</td>
<td>103.0 ± 9.4 %</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Figure 22: Adult Sham vs. Young Sham % Change. A bar graph of the profunda femoris artery diameter percent change comparing post 200 µs stimulation to rest and post 500 µs stimulation to rest. Note the increase in adult resting diameter compared to the young resting diameter. *p=0.05
Impact of Age and Ischemia

A similar pattern of profunda femoris diameters was observed in adult mice (6-7 mo). The resting ischemic artery was significantly larger than the control artery, 102.9 ± 10.3 µm vs. 62.4 ± 4.9 µm, p=0.004 (n=10), (Figure 23). However, arterial diameter was not different between ischemic and control arteries following functional vasodilation (Table 3). Therefore, percent change in diameter compared to the resting state was examined as the more accurate indicator of vascular reactivity (Figure 24). When the gracilis muscles were stimulated with 200 µs duration square waves, control arteries dilated significantly more than ischemic arteries, 79.8 ± 11.9% vs. 7.6 ± 3.4%, p <0.00001 (n=10) (Figure 24). When the gracilis muscles were stimulated with 500 µs duration square waves, control arteries dilated significantly more than ischemic arteries, 103.0 ± 9.4% vs. 16.8 ± 5.9%, p=0.000002 (n=10). Age did not affect the resting diameter or functional vasodilation of the ischemic artery (Table 4, Figure 25, and Figure 26).
Figure 23: Adult Ischemic vs. Adult Sham. A bar graph of the profunda femoris artery diameter during rest, after a 200 µs stimulation and 500µs stimulation *p=0.0006

Table 3: Age and Ischemia Data Table (Adult Mice). Average values taken from functional vasodilation protocol with adult mice (6-7mo). Chart shows average vessel diameters and percent change from rest at rest, moderate contraction and intense contraction. p value < 0.5 is significant.

<table>
<thead>
<tr>
<th></th>
<th>Adult Sham</th>
<th>Adult Ischemic</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>62.4 ± 4.9 µm</td>
<td>102.9 ± 10.3 µm</td>
<td>0.004</td>
</tr>
<tr>
<td>Moderate Contraction (200µs duration)</td>
<td>108.0 ± 5.5 µm</td>
<td>111.8 ± 12.2 µm</td>
<td>0.78</td>
</tr>
<tr>
<td>Intense Contraction (500µs duration)</td>
<td>123.8 ± 7.8 µm</td>
<td>119.2 ± 12.2 µm</td>
<td>0.75</td>
</tr>
<tr>
<td>Rest vs. Post 200µs Stimulation % Change</td>
<td>79.8 ± 11.9 %</td>
<td>7.6 ± 3.4 %</td>
<td>0.00003</td>
</tr>
<tr>
<td>Rest vs. Post 500µs Stimulation % Change</td>
<td>103.0 ± 9.4 %</td>
<td>16.8 ± 5.9 %</td>
<td>0.000002</td>
</tr>
</tbody>
</table>
Figure 24: Adult Ischemic vs. Adult Sham % Change. A bar graph of the profunda femoris artery diameter percent change in adult mice comparing post 200 µs stimulation to rest and post 500 µs stimulation to rest *p<0.0001 ×p<0.00001

Table 4: Age and Ischemia Data Table (Young and Adult Mice). Average values taken from functional vasodilation protocol with young mice (2-3mo) and adult mice (6-7mo). Chart shows average vessel diameters and percent change from rest at rest, moderate contraction and intense contraction. p value < 0.5 is significant

<table>
<thead>
<tr>
<th></th>
<th>Young Ischemic</th>
<th>Adult Ischemic</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>103.1 ± 10.3 µm</td>
<td>102.9 ± 10.3 µm</td>
<td>0.99</td>
</tr>
<tr>
<td>Moderate Contraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(200µs duration)</td>
<td>116.8 ± 10.0 µm</td>
<td>111.8 ± 12.2 µm</td>
<td>0.77</td>
</tr>
<tr>
<td>Intense Contraction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(500µs duration)</td>
<td>117.0 ± 11.7 µm</td>
<td>119.2 ± 12.2 µm</td>
<td>0.90</td>
</tr>
<tr>
<td>Rest vs. Post 200µs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulation % Change</td>
<td>15.2 ± 5.0 %</td>
<td>7.6 ± 3.4 %</td>
<td>0.21</td>
</tr>
<tr>
<td>Rest vs. Post 500µs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulation % Change</td>
<td>14.4 ± 4.6 %</td>
<td>16.8 ± 5.9 %</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Figure 25: Adult Ischemic vs. Young Ischemic. A bar graph of the profunda femoris artery diameter averages in adult and young ischemic mice. No clear difference was seen.

Figure 26: Adult Ischemic vs. Young Ischemic % Change. A bar graph of the profunda femoris artery diameter percent change in young and adult ischemic mice comparing post 200 µs stimulation to rest and post 500 µs stimulation to rest.
SUPERFUSED FUNCTIONAL VASODILATION PROTOCOL

For Specific Aim 2 (Page 26), a protocol was developed for a superfused functional vasodilation. This was completed to eventually test the effects of pharmacological agents on the current model during a functional vasodilation protocol. This protocol solves the problem of not being able to add drugs to the preparation through mineral oil. By adding the drugs to a superfusion solution, pharmacological agents can be easily added to the preparation. The goal was to create a consistent protocol with minimal dilation caused by the superfusion solution.

No significant difference in diameter was noticed between the right and left limb (Figure 27, Table 5). However, arterial diameter increased following the addition of the superfusion solution 89.7 ± 11.3 µm vs. 50.4 ± 6.8 µm, p=0.0007 (n=10) (Table 6). Looking at percent change in diameter, vascular reactivity to the superfusion solution was more accurately examined (Figure 28). Following the addition of the superfusion solution, arterial diameter increased 84.3 ± 13.0% for the left limb and 65.6 ± 17.2% for the right limb.
Figure 27: Superfused Functional Vasodilation: Right vs. Left Comparison.
Profunda femoris artery diameter measurements at rest, 30 minutes after superfusion solution was applied, and after a 500 µs stimulation. No significant differences were observed between right and left limbs.

Table 5: Superfused Functional Vasodilation Data Table. Average values taken from superfused functional vasodilation protocol. Chart shows average vessel diameters and percent change from rest at rest, moderate contraction and intense contraction.

<table>
<thead>
<tr>
<th></th>
<th>Left Limb</th>
<th>Right Limb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>50.4 ± 6.8 µm</td>
<td>56.6 ± 4.7 µm</td>
</tr>
<tr>
<td>Post Superfusion</td>
<td>89.7 ± 11.3 µm</td>
<td>89.9 ± 9.0 µm</td>
</tr>
<tr>
<td>Post Stimulation</td>
<td>101.5 ± 9.6 µm</td>
<td>112.6 ± 5.7 µm</td>
</tr>
<tr>
<td>Rest vs. Post</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superfusion % Change</td>
<td>84.3 ± 13.0 %</td>
<td>65.6 ± 17.2 %</td>
</tr>
<tr>
<td>Rest vs. Post</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulation % Change</td>
<td>116.0 ± 16.6 %</td>
<td>108.0 ± 14.0 %</td>
</tr>
</tbody>
</table>
Table 6: Superfused Functional Vasodilation Data Analysis Table. Statistical analysis of data in Table 5 n=10

<table>
<thead>
<tr>
<th></th>
<th>Left Limb p values</th>
<th>Right Limb p values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest vs. Post Superfusion</td>
<td>0.0007</td>
<td>0.003</td>
</tr>
<tr>
<td>Post Superfusion vs.</td>
<td>0.04</td>
<td>0.004</td>
</tr>
<tr>
<td>Post Stimulation</td>
<td>0.00001</td>
<td>0.00000009</td>
</tr>
<tr>
<td>% Change</td>
<td>0.07</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Figure 28: Superfused Functional Vasodilation: Right vs. Left % Change Comparison. Profunda femoris artery diameter percent change measurements. No significant differences were observed between right and left limbs.
SUPERFUSSED VASOACTIVE AGENTS PROTOCOL

For Specific Aim 3 (Page 26), a protocol was developed for superfusing vasoactive agents. This was completed to test the effects of pharmacological agents on the current model by creating a method to apply them to the preparation without the use of mineral oil. Previous work completed by this lab (Thomas Kessler) resulted in a protocol for the use of two different drugs, Ach and SNP. The goal of this protocol was to assess the potency of NE and examine the feasibility of using three different drugs in one superfusion experiment. First, a dose response curve to NE was generated (Figure 29).

No significant difference between limbs was observed (Table 7).

Figure 29: Dose Response Curve to Neuroepinephrine. A plot of the diameters of the profunda femoris artery with increasing doses of NE (in M). Note that the final dose is KCl, a potent vasoconstrictor. No significant difference was found between limbs.
Table 7: NE Dose Response Curve. Average values taken from superfusion protocol, p value < 0.5 is significant

<table>
<thead>
<tr>
<th></th>
<th>Left Limb</th>
<th>Right Limb</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>110 ± 6 µm</td>
<td>105 ± 20 µm</td>
<td>0.78</td>
</tr>
<tr>
<td>10⁻⁸ M NE</td>
<td>107 ± 4 µm</td>
<td>106 ± 21 µm</td>
<td>0.98</td>
</tr>
<tr>
<td>10⁻⁷ M NE</td>
<td>105 ± 2 µm</td>
<td>106 ± 23 µm</td>
<td>0.96</td>
</tr>
<tr>
<td>10⁻⁶ M NE</td>
<td>108 ± 3 µm</td>
<td>105 ± 18 µm</td>
<td>0.87</td>
</tr>
<tr>
<td>10⁻⁵ M NE</td>
<td>106 ± 2 µm</td>
<td>102 ± 16 µm</td>
<td>0.82</td>
</tr>
<tr>
<td>10⁻⁴ M NE</td>
<td>41 ± 15 µm</td>
<td>66 ± 29 µm</td>
<td>0.32</td>
</tr>
<tr>
<td>10⁻⁴ M KCl</td>
<td>42 ± 9 µm</td>
<td>47 ± 12 µm</td>
<td>0.34</td>
</tr>
</tbody>
</table>

No significant was noticed between limbs for the protocol setup (Figure 30, Figure 31). Due to the large difference in diameter between ACh/SNP and NE, dynamic range was calculated. No significant difference between limbs was noticed (Figure 32). Because no significant differences were found between all groups, the protocol was completed with sham and experimental groups.
Figure 30: Superfusion: Right vs. Left. A bar graph of the profunda femoris artery diameter and its response to three vasoactive agents: NE, Ach, and SNP. No significant difference was found between limbs.

Figure 31: Superfusion: Right vs. Left % Change. A bar graph of the profunda femoris artery diameter percent change compared to resting diameter and its response to three vasoactive agents: NE, Ach, and SNP. No significant difference was found between limbs.
Figure 32: Superfusion Dynamic Range. Dynamic ranges of the right and left limb. The maximum was determined from the value of the SNP diameter and the minimum from the NE diameter. No significant difference was found between limbs.

EFFECTS OF ISCHEMIA ON ENDOTHELIAL AND SMOOTH MUSCLE DEPENDENT REACTIVITY

For Specific Aim 4 (Page 26), the hypothesis that ischemia reduces vascular reactivity in the profunda femoris feed artery was tested. It was hypothesized that the cause of this difference would be endothelial dysfunction.

There was no trend or significant difference noticed between the ischemic and sham limbs for both the resting and NE diameters (*Figure 33*). There was a trend towards a larger diameter in the sham artery when superfused with ACh, $133.8 \pm 7.5 \mu m$ vs. $109.6 \pm 12.3 \mu m$, this difference did not achieve statistical significance, $p=0.12$ (n=8). A similar trend was seen with SNP, $137.5 \pm 7.6 \mu m$ vs. $113.3 \pm 12.7 \mu m$, this difference did not achieve statistical significance, $p=0.12$ (n=8). Due to the lack of significance, percent
change in diameter compared to the resting state was examined as the more accurate indicator of vascular reactivity (**Figure 34**). Again, when superfused with NE, no significance was noticed between groups. When the hindlimb was superfused with ACh, control arteries dilated significantly more than ischemic arteries, 80.5 ± 11.4% vs. 39.6 ± 13.6%, p=0.04, (n=8). When the hindlimb was superfused with SNP, control arteries dilated significantly more than ischemic arteries, 85.1 ± 10.5% vs. 43.0 ± 11.7%, p=0.02, (n=8). When dynamic range was calculated, the control arteries had a significantly larger range, 112.4 ± 6.9 µm vs. 87.5 ± 9.4 µm, p=0.05, (n=8) (**Figure 19**).

Figure 33: Ischemic vs. Sham Superfusion Response. A bar graph of the profunda femoris artery diameter and its response to three vasoactive agents: NE, Ach, and SNP. No significant difference was found between limbs; however a trend was noticed for ACh and SNP between groups.
Figure 34: **Ischemic vs. Sham % Change.** A bar graph of the profunda femoris artery diameter percent change compared to resting diameter and its response to three vasoactive agents: NE, Ach, and SNP. A significant difference was observed between ischemic and sham groups for the ACh percent change and SNP percent change *p<0.05.

Figure 35: **Dynamic Range.** Dynamic ranges of the ischemic and sham limb. The maximum was determined from the value of the SNP diameter and the minimum from the NE diameter. A significant difference was observed between ischemic and sham groups *p=0.05.
DISCUSSION

RESTATEMENT OF EXPERIMENTAL OBJECTIVES

To help guide the discussion of experimental results, the primary objectives of the thesis are listed below:

1. Test the hypothesis that age will decrease the functional vasodilation during ischemia.
2. Establish a consistent superfused functional vasodilation protocol using healthy mice.
4. Test the hypothesis that the ischemic profunda femoris artery will exhibit impaired endothelial-dependent vasodilation.

AIM 1: IMPACT OF AGE ON FUNCTIONAL VASODILATION

Age is one of the greatest risk factors for developing chronic ischemia [52]. Systemic pathologies such as hypertension and impaired wound healing are also present with advanced age [4, 17, 54]. One of the most pertinent effects of age, with regards to this research, is its negative effect on revascularization, which have been recapitulated in animal models [37, 54]. Acetylcholine-dependent dilation in vitro can be impaired as early as 6 months of age [37], while in vivo functional vasodilation is known to be decreased in mice of advanced age, 20 months [54]. Given the impact of age on
vasodilation we hypothesized that age plus ischemia would have an additive effect on reducing functional vasodilation.

Aim 1: Impact of Age on Functional Vasodilation

Age reduced the functional vasodilation response observed in the sham limb. In young mice, the profunda femoris dilated 140% in response to 500 µs pulses vs. 100% in adult mice. Furthermore, the young profunda femoris artery showed a non-significant trend of a lower resting diameter 54 µm, compared to 62 µm in the adult animal. This was similar to values from previous research, in which adult C57 mice exhibited less resting tone than young C57 mice [37]. It was observed that the average weight of the young mice was ~20g and that of the older mice was ~30g. There was also a considerably higher amount of visible adipose tissue around the artery in the adult mice compared to the young mice. Adipose tissue has been shown to increase vessel relaxation due to adipocyte-derived relaxing factor (ADRF) [63], opens K⁺ channels in vascular smooth muscle cells [64]. Therefore, an increase in adiposity may explain the lower resting tone observed in the adult mice.

Aim 1: Impact of Ischemia and Age on Functional Vasodilation

Ischemia impaired functional vasodilation in both young and adult mice with only 10-15% increase in diameter of the ischemic leg, compared to 100-140% for the sham limb. Ischemia causes cells to release vasoactive products such as NO [65]. The response
to this hypoxia such as molecule concentration and duration, depends upon degree and duration of the hypoxic injury [7]. The ischemia surgery induces a significant amount of inflammation, which was visually assessed through the observation of connective tissue over the surgical site after 14 days. Even though it is such a long time after an inflammatory response, the mouse could have aggravated the inflammatory response through scratching or biting of the surgical area during the 14 days of recovery. Several mice bit off their tails after 14 days; this could be due to the pain at the surgical site, however great efforts were taken to mitigate this through an injection of buprenorphine after surgery. Increased monocyte recruitment to the area due to the inflammation could have led to a larger resting diameter through the release of vasodilatory factors.

Due to the significantly different vasodilatory response between the sham and ischemic arteries, the increase in diameter could also be attributed to improper surgical technique. The only time the profunda femoris artery was touched during the resection surgery was when the artery and vein pair was cauterized as proximal to the femoral artery as possible. One of the problems with using cautery is heat propagation through the surrounding tissue [66]. When heat propagates through a tissue, it causes cellular temperature to rise, leading to death of the cell. If the heat propagates too far or gets too hot, less viable tissue remains. Thus, with increased heat propagation, a smaller section of artery can be analyzed 14 days later. Also, this heat could have propagated into the artery and caused a significant amount of endothelial dysfunction, creating a difference in diameter. Heat ablation causes intimal thickening as well as activation of the coagulation cascade, which is “dose dependent”; meaning a larger amount of heat application from the cautery would increase the negative effects [67, 68]. Due to the fact that the heat
cautery is battery operated, the actual temperature of the cautery tip, and the time spent cauterizing the artery was variable for each surgery. If the cautery tip was left near the tissue for too long, the surrounding area would become burnt and charred. This occurred only a few times, but was the result of improper cautery equipment or technique. Extra effort was made to make sure that this never happened to the tissue; however the variable cautery temperatures made this difficult. After a new cautery was acquired, resting diameters and tissue charring decreased.

Another possible explanation for the increased artery diameter, which may have reduced the dynamic range and dilation potential of the vessel, is the tissue dissection technique of the ischemic limb before the intravital microscope and microelectrodes were placed. If there was a significant inflammatory response to the surgery, there was a significant amount of connective tissue that needed to be dissected in order to clearly visualize the artery. Even if it was visible through the light microscope, a layer of connective tissue on top of the profunda femoris artery could prevent successful focusing of the intravital microscope. Also, if the tissue around the artery was agitated during dissection, this could have injured and dilated the profunda femoris artery. Extra care was taken to ensure that the connective tissue was carefully dissected away from the artery before measurements were taken.

Several other precautions were taken during the experiment in order to maintain consistency between subjects. The ischemic and sham legs measurements were alternated as recommended by a previous researcher in the lab, Matt Yocum [58]. Even with efforts to improve consistency, there was still a significant difference between the two groups. This further supports the theory that the surgery affected the artery in some way.
The result of a high resting diameter was most likely due to the cautery and surgical/dissection technique. After performing several surgeries and dissections, my technique and consistency improved. Additionally, with the acquisition of the new cautery, the issue of large resting diameters disappeared.

Aim 1: Future Recommendations

Several problems were observed with the current imaging protocol. As previously mentioned, the MicroScan intravital microscope has an immersion lens, leaving very little space between the microscope tip and underlying tissue. Contact between these two surfaces may irritate the artery and cause it to dilate. Also, due to the nature of the surgery that is used and the experimental model, finding a clear picture of the artery is sometimes difficult (Figure 36). An elevated inflammatory response due to surgical trauma can cause a buildup of connective tissue and/or increase vascularization. This causes a reduction in image clarity and sometimes vascular response to stimulus. Furthermore, with older or larger mice, increased adipose tissue can cause similar difficulties.
For future researchers interested in assessing the impact of age and ischemia on vasodilation, several topics must be analyzed further. Further research is needed to determine why there was a significant difference between resting diameters in the experimental and sham profunda femoris. By using a superfusion setup, pharmacological agents can be added to the artery and help further explain the cellular pathways that could be dysfunctional. First, this experiment should be repeated using the proper cautery to potentially eliminate that variable. Eventually, pharmacological inhibitors to vasodilation could be superfused before and after stimulation to block hypothesized pathways.

Figure 36: Poor Vessel Images. Examples of poor image quality of vessel due to (A) vascularization due to inflammatory response (B) overlying adipose tissue due to larger or older mouse
AIM 2: DEVELOPMENT OF FUNCTIONAL VASODILATION PROTOCOL FOR PHARMACOLOGICAL DELIVERY

In the lab, there currently is no way to electrically stimulate the gracilis muscle while delivering pharmacologic agents to the area. This protocol solves the problem of not being able to add drugs to the preparation through mineral oil. By adding the drugs to a superfusion solution, pharmacological agents can be easily added to the preparation. The goal was to create a consistent protocol with minimal dilation caused by the superfusion solution. A superfused functional vasodilation protocol would allow for further research into the impact of ischemia on the cellular pathways controlling vasodilation. Pharmacological factors could be added to the superfusion solution to enhance or inhibit factors in the cellular pathways, creating an opportunity to assess causal relationships. Irrigating the exposed tissue with an isotonic, degassed solution allows for the delivery of pharmacological agents while preventing desiccation and minimizing oxygen diffusion.

The results of the protocol showed a significant increase in diameter, approximately 75%, after the addition of the superfusion solution to the preparation. Because of the pre-dilation, it creates a higher resting diameter for the artery, reducing its maximal dilation potential. The intention of the protocol development was to minimize this increase in response to the superfusion solution and increase the consistency of the data collection. Consistency is desired due to the variable nature of the surgical model that is used. Dr. Steven Segal of the University of Missouri, a veteran in superfusion protocols, was consulted during this protocol development and made some recommendations on how to improve the superfusion experimental protocol.
Aim 2: Completed Modifications

One of the first controls put into place was monitoring the pH of the physiological salt solution, because changes in pH can alter vessel tone and oxygen exchange with tissues [1]. Another recommendation was bubbling the solution with CO$_2$:N$_2$ gas before superfusing it over the hindlimb. N$_2$ gas is used because helps deoxygenate the solution. This is important because oxygen transport from the atmosphere directly to skeletal muscle will cause the smooth muscle to constrict [2]. The combination of these modifications produced an interesting result. Right after the PSS was mixed, the pH was measured and averaged 7.9; after the PSS was bubbled, pH decreased to 7.1. Both of these values are above and below the desired pH values (7.30 - 7.35), respectively. The pH was then measured after it had flowed through the circuit and was within desired values, this was possibly due to the carbon dioxide diffusion out of the solution during the time it was in the circuit. Efforts were made to pH balance the solution before adding it to the irrigation circuit; however this did not produced positive results. Further, application of varying pH levels, demonstrated that a change in pH was not the cause of the resting vasodilation.

In addition to pH, vascular tone is also affected by temperature. Thus, another modification was to vary the temperature and flow rate of the solution. Previous investigators maintained the PSS at 35 °C with a flow rate of ~2mL·min$^{-1}$ [47]. Adjusting the syringe heater the flow rate could both change the temperature due to the gain and loss of temperature through the circuit, respectively. Great efforts were taken to minimize this temperature loss by insulating the circuit, but a temperature loss of about 10 °C from the beginning to end of the circuit was still observed. Both the temperature and flow rate
changed throughout the experiment and extra care was taken to maintain both of these values close to preferred ranges. Dr. Segal recommended that a temperature of 37 °C should be used. Unfortunately, a similar loss of vessel tone was seen at both high (40 °C) and low (30 °C) temperatures.

Given that changes in PSS properties did not affect vascular tone, it was also speculated that the shear stress between the surface of the profunda femoris artery and the intravital microscope lens caused vasodilation. To test this, the intravital microscope was removed and the vessel was observed with a stereo light microscope, which has a ~10 cm working distance and does not directly contact the tissue. Unfortunately, altering the flow conditions of the PSS over the profunda femoris did not impact the resting vasodilation.

After eliminating temperature and pH, other variables that were analyzed were the freshness of the solution and the cleanliness of the superfusion circuit equipment. This recommendation was made because the salts in the solution and superfusion circuit precipitate in the solution and adsorb in the circuit, causing changes in the concentration of the different compounds. Due to the potential buildup of salts in the circuit, the dishes cleaning protocol was changed, implementing a different rinse into the process, and changing out all of the tubing that was used with new tubing. It was also determined that a piece of metal in the circuit was corroding from the acid rinse during the cleaning protocol. The metal was replaced with a plastic piece to prevent this corrosion. Again, no difference in vessel tone was observed with these changes.

Since precipitated salts were not causing the problem, the final variable to change was the actual salts used in the solutions. The compounds used were the same; however
the product numbers were different from those of Dr. Segal’s group. Even after changing
to the same product numbers, similar results were seen with loss of vessel tone 30
minutes after the superfusion solution was applied.

Aim 2: Future Recommended Modifications

Recommended modifications involve gaining more control of the superfusion
circuit. The following variables changed throughout the experiment: gas bubbling rate,
flow rate and temperature. Often times during the experiment, the rate of bubbling in the
solution was variable. To solve this problem the bubbling rate of the superfusion solution
needs to be higher to prevent a decrease in bubbling rate that was seen. The level of
superfusion liquid was kept at 60 mL in the syringe heater, leaving a small volume for the
bubbling solution. Decreasing this volume to 50 mL in the syringe will allow more room
for bubbling at a higher rate without the solution spilling out of the top of the syringe. To
maintain temperature and flow rate, flow rate must be more accurately controlled.
Currently, flow rate is monitored through compressing a tube with a screw clamp. It is
difficult to obtain and maintain using this method.

Flow over the profunda femoris artery must also be consistent. Often, the
intravital microscope prevented flow over the artery if it was depressed too much. The
positive effect was lack of vasodilation of the artery, however if a drug was in the
superfusion solution, it had no effect on the artery. To combat this problem, a different
intravital microscopy method is needed. This could be accomplished by using a
microscope with a larger working distance, such as a compounded reflected light
microscope; so more space could be put between the microscope and the profunda femoris artery.

The development of a consistent superfused functional vasodilation protocol is imperative for future understanding of endothelial dysfunction due to ischemic injury. The ability to target and inhibit or enhance specific cellular mechanisms during a functional vasodilation experiment is essential for determining the impact of ischemia on this process.

AIMS 3 AND 4: IMPACT OF ISCHEMIA ON CELL DEPENDENT DILATION AND CONSTRICTION

Previous work has demonstrated impaired vasodilation in arterioles, but the effect of ischemia on feed arteries is unknown. Understanding how ischemia affects feed arteries is important because feed arteries play a critical role in determining tissue blood flow. A healthy artery has the ability to vasodilate and vasoconstrict in order to ensure the homeostasis of oxygen and other nutrients of the downstream tissues. In response to acute ischemia/hypoxia, vessels dilate to increase the blood flow to the affected area. Unfortunately, chronic ischemia leads to vasodilatory dysfunction. Ischemic arterioles in the lower leg have impaired functional vasodilation, which could be explained by impaired endothelial-dependent dilation [69, 70]. Similar results were found in rat collateral arteries in vitro [71]. In both studies, exercise restored endothelial function. Due to this result, it was hypothesized that post-resected mice would present a similar endothelial dysfunction and dilate less to ACh than SNP.
Aim 4: Possible Smooth Muscle Dysfunction

Due to the fact that ACh and SNP produced similar results and there was no significant difference between the two treatments, smooth muscle dysfunction is the best reason for this result. Since only three pharmaceuticals were used in the experiment, further research is needed to discover what mechanism is dysfunctioning. One explanation for why smooth muscle dependent process would be impaired is due to the pressure in the profunda femoris artery. The surgical removal of the femoral artery, which feeds the profunda femoris, is assumed to decrease pressure the ischemic side. Knowing the pressure could help further differentiate the role of cellular dysfunction in smooth muscle cells versus altered vasodilation due to changes in hemodynamics. There could be a biochemical difference in the smooth muscle causing dysfunction as well.

To better understand the resulting pathology of the resection surgery, further research must be done to fully rule out endothelial dysfunction. In addition to using endothelial-dependent vasodilators, the impact of ischemia on the endothelium can be assessed by damaging or removing the endothelium. The endothelium can be damaged by perfusing an air bubble through the vessel or by using an intravascular dye that heat-injures the endothelium following excitation [47].

Vasoconstriction was also analyzed to fully understand the dynamic range of the artery. Previous groups have shown an increased vasoconstrictive response by ischemic limbs [51] while others have shown a reduction in sympathetic tone with chronic ischemia [41]. In this study, both groups responded similarly to neuroepinephrine. This discrepancy could have contributed to the difficulty in measuring the vessel when it was vasoconstricted, as the differences in such a small diameter were difficult to differentiate.
due to the microscope resolution. Also, due to the fact that the previous demonstration of enhanced constriction was performed with human tissue, there are several comorbidities involved in the patient when compared to the mouse that could explain this difference, such as hypertension.

Differences between Superfusion and Functional Vasodilation

There are some observed differences between the functional vasodilation and superfusion results. The measured resting values of the ischemic limbs are different. For both the young and adult mice in the first aim, they are around 100 µm. In the fourth aim, the resting diameter is around 80 µm.

First, the differences in ischemic resting diameter will be addressed. In previous work from Matt Yocum, possible causes of an increased diameter was a decreased time between dissection and measurement, and contact between the MicroScan tip and the profunda femoris artery [58]. These recommendations were understood before both aims. When a higher resting diameter was noticed, more time was added to the timer (more than 30 minutes) and great care was taken to move the MicroScan as high as possible to prevent contact between it and the underlying tissue.

One possible hypothesis to this observed difference in resting values could be the difference in surgical equipment and technique used between the two aims. The cautery used in the first aim was old and inconsistent and was replaced with brand new cautery after Aim 1 was completed. This created a more consistent heat profile that burned through the artery faster, allowing for more visible artery length 14 days later. There was
also a difference in technique that was used during dissection before the superfusion experiment in aim 4. Microdissection scissors were used to carefully cut away the connective tissue above the profunda femoris artery, as opposed to careful blunt dissection that was previously used. This could have caused less stretching of the artery, allowing for less distress to the artery and surrounding tissue.

In summary, ischemia impairs vascular reactivity however it remains unclear if it is endothelial dysfunction or smooth muscle dysfunction. The proposed data implies smooth muscle dysfunction; however more research needs to be completed to fully rule out endothelial dysfunction.

FINAL CONCLUSIONS

This study has shown that ischemia and age significantly affect vascular function. Determining the cause of this dysfunction requires additional studies and protocol improvements. This leads to further possibilities of research with this model. First a few key problems need to be addressed.

The resection model proves to be difficult due to the current experimental setup. This model could become a more viable option if the surgical protocol did not involve cautery, a method that as stated previously is hard to control with current equipment. Also, using a microscope that allows for a larger focal distance that restricts tissue contact will help control the model to allow for more consistent results. Digital calipers will also provide a more controlled and consistent method to measure arterial diameters. Once these problems are addressed future experimental methods can be attempted.
As stated in the introduction, mice have a large number of transgenic options to allow experiments that test causal relationships. Surgical methods also provide opportunities to look at the possibility of endothelial dysfunction. Superfusion protocols with different drugs such as inhibitors can help address specific cellular pathway dysfunctions. Also, with improvements made in superfusion, the effects of age using cell-specific vasoactive agents can be addressed. Exercise is also a possible treatment to be attempted, as previous research has showed improvement in endothelial function [41, 70, 71] following exercise. It is still unclear what specifically impairs vascular function in ischemic conditions; it is the goal of this research to solve those questions. There has been a history of efficacy of therapies in animal models and disappointing results seen in randomized patient trials, perhaps the current way this model is used is the answer to this problem.

To better understand the current model and its dysfunction, age must be addressed with the superfusion protocol to determine if endothelial dysfunction exists in adult mice. Also, old mice, that could present more dysfunction than young mice, should be examined. Finally, different pharmaceuticals such as inhibitors need to be used in the superfusion setup to better differentiate between endothelial dysfunction and smooth muscle dysfunction.

With the knowledge gained from these results, it is shown that ischemia and age significantly impairs vasodilation in a feed artery. By improving vasodilation in patients with ischemia, blood flow could be partially restored. More specifically, therapies targeting smooth muscle could prove more effective.
REFERENCES

APPENDIX A

RESECTION PROTOCOL

Date ____________________ Hindlimb Ischemia Surgery - Resection ____________________ Initials ____________

Mouse Information
DOB: ____________________ ______. 1. forceps (2)
Sex: ____________________ ______. 2. fine forceps (2)
Genotype/strain: ____________________ ______. 3. ultraline forceps (1)
Cage: ____________________ ______. 4. fine scissors (1)
 ______. 5. microsurgery spring loaded (1)

Materials
Sterilize - autoclave or flash autoclave
 ______. 6. cotton gauze (2)
 ______. 7. cotton swabs (12)
 ______. 8. 6.0 silk suture (2 x 1-inch)
 ______. 9. needle holder (1)

Pre-sterilize in autoclave
 ______. 10. sterile Petri dish w/ sterile saline
 ______. 11. sterile gloves
 ______. 12. sterile 7.0 prolene suture
 ______. 13. cautery
 ______. 14. FST heat pad w/ rectal probe
 ______. 15. heat pad
 ______. 16. recovery bin & weigh boat
 ______. 17. depilatory cream
 ______. 18. non-sterile cotton swabs
 ______. 19. non-sterile cotton gauze
 ______. 20. isolation mask & cap
 ______. 21. analgesic (Buprenorphine)

Surgery preparation
 ______. 22. Spray surgery area with Novocain
 ______. 23. Weigh animal in weight boat
 ______. 24. Place animal in anesthetia box
 ______. 25. Open the oxygen cylinder and set anesthetia-machine flow meter to ~3 lmin⁻¹
 ______. 26. Anesthetice animal w/ 5% isoflurane
 ______. 27. Affix non-rebreathing circuit to bench-top with tape
 ______. 28. Reduce flow rate to 0.5-1.0 lmin⁻¹ and the isoflurane to 1.3%”
 ______. 29. Apply eartag high on left ear
 ______. 30. Lay animal supine with nose in cone
 ______. 31. Shave hair on the right hindlimb & lower abdomen with clippers
 ______. 32. Remove excess hair with depilatory cream
 ______. 33. Spray right hindlimb with NOVAN
 ______. 34. Return animal to anesthetia box
 ______. 35. Apply 4x4 gauze to heat pad to protect animal from excessive heat
 ______. 36. Affix non-rebreathing circuit to surgery table w/ chemistry clamp

Surgery
 ______. 37. Lay animal supine on circulating heat pad w/ nose in cone
 ______. 38. Insert rectal probe and set thermo-controller to 37°C
 ______. 39. Apply veterinary ointment to eyes to avoid drying during procedure
 ______. 40. Apply veterinary ointment to anus and place rectal probe ~1 cm into anus to monitor core-body temperature

 ______. 41. Make a small incision on the middle, medial aspect of the left thigh
 ______. 42. Extend the incision up to the abdominal wall
 ______. 43. Blunt dissect the subcutaneous connective tissue to maximize surgical exposure
 ______. 44. Use cautery to remove fat pad overlying femoral a-v pair & cauterize epigastric a-v pair
 ______. 45. Blunt dissect the femoral artery-vein pair from the nerve starting just upstream to the muscular branch, extending to half-way between the knee & ankle
 ______. 46. Tie off the saphenous a-v pair with 6.0 silk suture, halfway between the knee & ankle
 ______. 47. Tie off the femoral a-v pair with 6.0 silk suture, halfway just upstream to the muscular branch
 ______. 48. Grasp the distal ligature, use the cautery & microscissors to remove the a-v pair up to the upstream ligature
 ______. 49. Gently rent cotton swabs on hemorrhage sites
 ______. 50. Use 6.0 polypropylene suture to close the skin
 ______. 51. Make a small incision on the middle, medial aspect of the right thigh
 ______. 52. Extend the incision up to the abdominal wall
 ______. 53. Blunt dissect the subcutaneous connective tissue to maximize surgical exposure

Post-Surgical
 ______. 54. Give the animal an intravenous injection of buprenorphine (0.075 mg/kg)
 ______. 55. Place the animal in the recovery bin, on a blue bench cover, above a heat pad and allow to recover
 ______. 56. Turn flow meter down to 0, turn off isoflurane, and close the oxygen cylinder
 ______. 57. Indicate surgery on cage card

Notes __
__
__
__
__

Figure 37: Resection Protocol
APPENDIX B

DUAL FUNCTIONAL VASODILATION PROTOCOL

<table>
<thead>
<tr>
<th>Date</th>
<th>Functional Vasodilation</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mouse Information
- DOB:
- Sex:
- Tag:
- Genotype/strain:
- Cage:

Materials
- Instruments:
 - 1. forceps (2)
 - 2. fine forceps (2)
 - 3. ultrafine forceps (1)
 - 4. fine scissors (1)
- Obtained in surgery suite:
 - 5. Petri dish w/ sterile saline
 - 6. gloves
 - 7. FST heat pad w/ rectal probe
 - 8. heat pad
 - 9. non-sterile cotton swabs
 - 10. non-sterile cotton gauze

Surgery preparation
- 11. Weigh animal in weight box
- 12. Place animal in anesthesia box
- 13. Open the oxygen cylinder and set anesthesia-machine flow meter to ~3 l/min
- 14. Anesthetize animal w/ 5% isoflurane
- 15. Reduce flow rate to 0.5-1.0 l/min and the isoflurane to 1-3%
- 16. Lay animal supine with nose in nose-cone
- 17. Lay animal supine on circulating heat pad w/ nose in nose-cone
- 18. Insert rectal probe and set thermo-controller to 35°C
- 19. Apply veterinary ointment to eyes to avoid drying during procedure

Measurement preparation
- 20. Make a small incision on the middle, medial aspect of the left thigh
- 21. Extend the incision up to the abdominal wall
- 22. Blunt dissect the subcutaneous connective tissue to maximize surgical exposure
- 23. Maximize visibility of muscular branch
- 24. Place wooden end of cotton swab on knee and secure to allow for isometric contraction and ensure that the hind limb is level
- 25. Place black electrode on the center of the gracilis anterior and secure electrode
- 26. Place red ground electrode at the lateral aspect of the knee underneath the skin. Secure electrode.
- 27. Place mineral oil over exposed areas
- 28. Place microscan in stand and insure proper connectivity to computer.
- 29. Open AVA instruments and create new folder containing the date of procedure and make this the directory save location.
- 30. Select capture on AVA main menu for microscan imaging
- 31. Label patient ID with the number of patient first followed by exp for experimental hind limb or sham for control hind limb and frequency
- 32. Locate muscular branch and adjust microscan for best resolution.
- 33. Allow 30 minute time period to pass before taking measurement
- 34. Capture video file of muscular branch to capture resting diameter
- 35. Open Lab Chart 6 open file in blood pressure measurement folder then open microscan default settings.
- 36. Set frequency to 8Hz, duration to 200μs, and 1mA
- 37. Turn on stimulator panel
- 38. Stimulate muscle for 90 sec
- 39. Immediately capture video and continue to capture every two minutes for 10 minutes
- 40. Set frequency to 8Hz, duration to 500μs, and 1mA
- 41. Turn on stimulator panel
- 42. Stimulate muscle for 90 sec
- 43. Immediately capture video and continue to capture every two minutes until vessel has returned to resting diameter
- 44. Perform same procedure on control limb

Analysis
- 45. Open analysis section in AVA and open file of interest
- 46. Set Frames from 0 to 100 and stabilize file
- 47. Analyze vessel diameter by manually drawing diameter
- 48. Record results in provided table

Post-Surgical
- 49. Cervical dislocation to euthanize animal

Notes
-
-

Figure 38: Functional Vasodilation Protocol (Page 1)
<table>
<thead>
<tr>
<th>Date</th>
<th>Functional Vasodilation</th>
<th>Initials</th>
</tr>
</thead>
</table>

Experimental Limb

<table>
<thead>
<tr>
<th>File ID #:</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting:</td>
<td></td>
</tr>
<tr>
<td>exp201</td>
<td></td>
</tr>
<tr>
<td>PostStim:</td>
<td></td>
</tr>
<tr>
<td>exp202</td>
<td></td>
</tr>
<tr>
<td>exp203</td>
<td></td>
</tr>
<tr>
<td>exp204</td>
<td></td>
</tr>
<tr>
<td>exp205</td>
<td></td>
</tr>
<tr>
<td>exp206</td>
<td></td>
</tr>
<tr>
<td>File ID #:</td>
<td>Diameter</td>
</tr>
<tr>
<td>Resting:</td>
<td></td>
</tr>
<tr>
<td>exp501</td>
<td></td>
</tr>
<tr>
<td>exp502</td>
<td></td>
</tr>
<tr>
<td>exp503</td>
<td></td>
</tr>
<tr>
<td>exp504</td>
<td></td>
</tr>
<tr>
<td>exp505</td>
<td></td>
</tr>
<tr>
<td>exp506</td>
<td></td>
</tr>
<tr>
<td>exp507</td>
<td></td>
</tr>
<tr>
<td>exp508</td>
<td></td>
</tr>
<tr>
<td>exp509</td>
<td></td>
</tr>
<tr>
<td>exp510</td>
<td></td>
</tr>
</tbody>
</table>

Control Limb

<table>
<thead>
<tr>
<th>File ID #:</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting:</td>
<td></td>
</tr>
<tr>
<td>sham201</td>
<td></td>
</tr>
<tr>
<td>PostStim:</td>
<td></td>
</tr>
<tr>
<td>sham202</td>
<td></td>
</tr>
<tr>
<td>sham203</td>
<td></td>
</tr>
<tr>
<td>sham204</td>
<td></td>
</tr>
<tr>
<td>sham205</td>
<td></td>
</tr>
<tr>
<td>sham206</td>
<td></td>
</tr>
<tr>
<td>File ID #:</td>
<td>Diameter</td>
</tr>
<tr>
<td>Resting:</td>
<td></td>
</tr>
<tr>
<td>sham501</td>
<td></td>
</tr>
<tr>
<td>sham502</td>
<td></td>
</tr>
<tr>
<td>sham503</td>
<td></td>
</tr>
<tr>
<td>sham504</td>
<td></td>
</tr>
<tr>
<td>sham505</td>
<td></td>
</tr>
<tr>
<td>sham506</td>
<td></td>
</tr>
<tr>
<td>sham507</td>
<td></td>
</tr>
<tr>
<td>sham508</td>
<td></td>
</tr>
<tr>
<td>sham509</td>
<td></td>
</tr>
<tr>
<td>sham510</td>
<td></td>
</tr>
</tbody>
</table>

Figure 39: Functional Vasodilation Protocol (Page 2)
APPENDIX C

SUPERFUSION PROTOCOL

Mouse Information
- Date: ____________
- DOB: ____________
- Sex: ____________
- Tag: ____________
- Genotype/strain: ____________
- Cage: ____________

Materials
- forceps (2)
- fine forceps (2)
- ultrathin forceps (1)
- fine scissors (1)
- 60ml syringe
- Volumetric flask
- Side arm flask
- Kim wipes
- Vacuum pump evacuation flask
- Vasodilator/vasoconstrictor
- 20X PSS
- 20X NaHCO₃
- non-sterile cotton swabs
- non-sterile cotton gauze
- 10ml Graduated cylinder
- Stopwatch

Instrument Preparation
- Turn on ultrasonic bath to 45°C
- Transfer 50ml of 20x PSS into 1L volumetric flask
- Transfer 50ml of 20x NaHCO₃ into 1L volumetric flask
- Dilute PSS & NaHCO₃ to 1L with 18MΩ H₂O
- Transfer 500 ml of 1X PSS to side-bar flask & place on stir plate
- Fill syringe in syringe heater with 50ml of 1x PSS & turn on syringe heater
- Place thermistor in syringe heater
- Weigh out or thaw vasoactive agents

Surgery Preparation
- Weigh animal in weight boat
- Place animal in anesthesia box
- Open the oxygen cylinder and set anesthesia-machine flow meter to ~3 l/min
- Anesthetize animal with 5% isoflurane
- Reduce flow rate to 0.5-1.0 l/min² and the isoflurane to 1-3%
- Lay animal supine with nose in nose-cone
- Lay animal supine on preparation bench in nose-cone
- Use trimming clippers & deplriatory cream to remove hair on the medial aspect of the hindlimb
- Transfer mouse to stage on FST heat pad

Intravital Microscopy with Superfusion
- Insert rectal probe and set thermo-controller to 37°C
- Apply veterinary ointment to eyes to avoid drying during procedure
- Open stopcock on delivery tubing to check flow rate of superfusion solution and use thermistor to measure temperature
- Adjust flow rate or temperature to achieve ~2ml/min² and ~35°C at tip

Measurement preparation
- Make a small incision on the middle, medial aspect of the left thigh
- Extend the incision up to the abdominal wall
- Blunt dissect the subcutaneous connective tissue to maximize surgical exposure
- Maximize viability of muscular branch - minimize contact/truma of the artery

Intravital Microscopy
- Redo flow rate and temperature of superfusion solution
- Place microscan in stand and insue proper connectivity to computer
- Open ABA instruments and create new folder containing the date of procedure and make this the directory save location
- Select capture on ABA main menu for microscan imaging
- Label patient ID. with the number of patient first followed by left or right hind limb or sham for control hind limb
- EX: 25LeftAcb
- Locate muscular branch and adjust microscan for best resolution
- Position superfusion delivery tubing with ball-bearing manipulator at microscan lens to ensure flow over the artery
- Place kim-wipe wick on thigh of animal (avoid contact with muscle)
- Attach tubing from evacuation container/vacuum line to kim wiper
- Use ABA to measure muscular branch diameter every 5 minutes until diameter stabilizes (~30 minutes)

Figure 40: Superfusion Protocol (Page 1)
<table>
<thead>
<tr>
<th>Date</th>
<th>Intravital Microscopy with Superfusion</th>
<th>Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>52.</td>
<td>Ensure that 60ml syringe contains 60ml of PSS & close stopcock from side-arm flask</td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td>Add first dose of vasoactive agent</td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td>Allow superfusion to flow for 5 minutes and record video in the final minute</td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td>Clear the syringe</td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td>Open stopcock from side-arm flask and refill 60ml syringe to 60ml before re-closing</td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td>Add second vasoactive agent</td>
<td></td>
</tr>
<tr>
<td>58.</td>
<td>Allow superfusion to flow for 5 minutes and record video in the final minute</td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td>Clear the syringe</td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td>Open stopcock from side-arm flask and refill 60ml syringe to 60ml before re-closing</td>
<td></td>
</tr>
<tr>
<td>61.</td>
<td>Add third vasoactive agent</td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td>Allow superfusion to flow for 5 minutes and record video in the final minute</td>
<td></td>
</tr>
<tr>
<td>63.</td>
<td>Repeat procedure on the contralateral limb</td>
<td></td>
</tr>
</tbody>
</table>

Analysis

64.	Open analysis section in AVA and open file of interest	
65.	Set Frames from 0 to 160 and stabilize file	
66.	Analyze vessel diameter by manually drawing diameter and chaining sections together	
67.	Record results in provided table	

Post-Experiment

68.	Cervical dislocation to euthanize animal	
69.	Rinse superfusion line (bubbler, superfusion tubing, syringe, & side-arm flask) with water (flush tubing w/ syringe)	
70.	Flush superfusion line with 1M HCl & rinse with water	
71.	Flush superfusion line with 18MΩ H₂O	

Limb 1

<table>
<thead>
<tr>
<th>Left or Right</th>
<th>Resting Diameter</th>
<th>Vasoactive agent 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose 1 volume & concentration</td>
<td>Dose 1 diameter</td>
</tr>
<tr>
<td></td>
<td>Vasoactive agent 2</td>
<td>Dose 2 volume & concentration</td>
</tr>
<tr>
<td></td>
<td>Dose 2 diameter</td>
<td>Vasoactive agent 3</td>
</tr>
<tr>
<td></td>
<td>Dose 3 volume & concentration</td>
<td>Dose 3 diameter</td>
</tr>
</tbody>
</table>

Limb 2

<table>
<thead>
<tr>
<th>Left or Right</th>
<th>Resting Diameter</th>
<th>Vasoactive agent 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dose 1 volume & concentration</td>
<td>Dose 1 diameter</td>
</tr>
<tr>
<td></td>
<td>Vasoactive agent 2</td>
<td>Dose 2 volume & concentration</td>
</tr>
<tr>
<td></td>
<td>Dose 2 diameter</td>
<td>Vasoactive agent 3</td>
</tr>
<tr>
<td></td>
<td>Dose 3 volume & concentration</td>
<td>Dose 3 diameter</td>
</tr>
</tbody>
</table>

Notes

Figure 41: Superfusion Protocol (Page 2)
APPENDIX D

SUPERFUSED FUNCTIONAL VASODILATION PROTOCOL

<table>
<thead>
<tr>
<th>Date</th>
<th>Superfused Functional Vasodilation</th>
<th>Initials</th>
</tr>
</thead>
</table>

Mouse Information
- DOB:
- Sex:
- Tag:
- Genotype/strain:
- Cage:

Materials
1. forceps (2)
2. fine forceps (2)
3. ultralene forceps (1)
4. fine scissors (1)
5. 60ml syringe
6. Volumetric flask
7. Side arm flask
8. Kim wipes
9. Vacuum pump evacuation flask
10. Vasoconstrictor
11. 20X PSS
12. 20X NaHCO3
13. non-sterile cotton swabs
14. non-sterile cotton gauze
15. 10ml Graded cylinder
16. Stopwatch

Instrument Preparation
17. Turn on ultrasonic bath to 45⁰C
18. Transfer 50ml of 20x PSS into 1L volumetric flask
19. Transfer 50ml of 20x NaHCO3 into 1L volumetric flask
20. Dilute PSS & NaHCO3 to 1L with H2O
21. Check pH of diluted PSS solution
22. Bubble N2 gas into diluted PSS solution
23. Weigh out or thaw vasoconstrictor/chemical

Surgery Preparation
24. Weigh animal in weight boat
25. Place animal in anesthesia box
26. Open the oxygen cylinder and set anesthetic machine flowmeter to ~3 L/min
27. Anesthetize animal w/ 5% isoflurane
28. Reduce flow rate to 0.5-1.0 L/min and the isoflurane to 1.5%
29. Lay animal supine with nose in nose-cone
30. Lay animal supine on preparation bench in nose-cone
31. Use trimming clippers & depilatory cream to remove hair on the medial aspect of the hindlimb
32. Transfer mouse to stage on PSS heat pad
33. Insert rectal probe and set thermo-controller to 35⁰C
34. Check pH of diluted PSS solution
35. Open stopwatch on delivery tubing to check flow rate of superfusion solution and use thermometer to measure temperature
36. Adjust flow rate or temperature to achieve ~2 ml/min and ~35°C at tip

Measurement preparation
37. Make a small incision on the middle, medial aspect of the left thigh
38. Extend the incision up to the abdominal wall
39. Blunt dissect the subcutaneous connective tissue to maximize surgical exposure
40. Maximize visibility of muscular branch to minimize contact/trauma of the artery
41. Place black electrode on the center of the gracilis anterior and secure electrode
42. Place red ground electrode at the lateral aspect of the knee underneath the skin. Secure electrode

Intravital Microscopy
43. Recheck flow rate and temperature of superfusion solution
44. Place microscope in stand and assure proper connectivity to computer
45. Open AVA instruments and create new folder containing the date of procedure and make this the directory save location
46. Select capture on AVA main menu for microscan imaging
47. Label patient ID. with the name of patient first followed by mus for experimental hind limb or sham for control hind limb
48. Locate muscular branch and adjust microscan for best resolution
49. Position superfusion delivery tubing with ball-bearing manipulator at microscan lens to ensure flow over the artery
50. Place kim-wipe wick on thigh of animal (avoid contact with muscle)
51. Attach tubing from evacuation container/vacuum line to kim wipe
52. Use AVA to measure muscular branch diameter every 5 minutes until diameter stabilizes (~30 minutes)
53. Open Lab Chart 6 open file in blood pressure measurement folder then open microscan default settings
54. Set frequency to 8Hz, duration to 500µs, and 1mA
55. Turn on stimulator panel
56. Stimulate muscle for 90 sec
57. Immediately capture video and continue to capture every two minutes until vessel has returned to resting diameter
58. Perform same procedure on control limb

Figure 42: Superfused Functional Vasodilation Protocol (Page 1)
<table>
<thead>
<tr>
<th>Analysis</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>59.</td>
<td>Open analysis section in AVA and open file of interest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td>Set Frames from 0 to 160 and stabilize file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.</td>
<td>Analyze vessel diameter by manually drawing diameter and chaining sections together</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td>Record results in provided table</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Post-Experiment			
63.	Cervical dislocation to euthanize animal		
64.	Rinse superfusion line (bubbler, superfusion tubing, syringe, & side-arm flask) with water (flush tubing w/ syringe)		
65.	Flush superfusion line with 1M HCl & rinse with water		
66.	Flush superfusion line with 18MΩ H2O		

Limb 1	Vasoactive agent		
	Pre-stimulation diameter		
	Post-stimulation diameter		
	2 min post diameter		
	4 min post diameter		
	6 min post diameter		
	8 min post diameter		
	10 min post diameter		
	12 min post diameter		

Limb 2	Vasoactive agent		
	Pre-stimulation diameter		
	Post-stimulation diameter		
	2 min post diameter		
	4 min post diameter		
	6 min post diameter		
	8 min post diameter		
	10 min post diameter		
	12 min post diameter		

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 43: Superfused Functional Vasodilation Protocol (Page 2)
APPENDIX E

SDF IMAGING ANALYSIS USING AVA SOFTWARE

In order to produce accurate measurements, the MicroScan was first calibrated according to the manufacturers specifications. For the data collection portion, the MicroScan was placed on a horizontal plane. This was usually accomplished through secure placement in the boom stand. It was also important for the MicroScan to not be in contact with the profunda femoris, but to be as far above it as possible while keeping the vessel in focus.

In order to record a video, AVA 3.0 was first opened which led to a main menu screen (Figure 44). After selecting the “data” button, the specific folder where the videos were saved was chosen. The “capture” button was then selected and specific information regarding the experiment was entered (mouse tag, sham or exp, etc.). Videos were taken for 10 seconds by pressing the “start capture” button. These videos were automatically saved in the folder that was determined earlier in the process.

For data analysis, selecting the “analysis” button opened a video file (Figure 45). Once the specific video file was chosen, sliding the white bars at the bottom of the screen chose the number of frames. Then, the “stabilize video” button was chosen and the result was a video file that stabilized and accounted for the breathing of the mouse. Then, the outline of the profunda femoris artery was carefully traced and the average diameter was recorded. This process of analysis was repeated for each video file and was performed the same way each time.
(A) Front screen where options to create folders [Settings], create videos for analysis [Capture] and analyze videos to create data points [Analysis]. (B) Once selecting “Capture” the menu allows for creation of videos with [Start capture]
Figure 45: Image Analysis

(1) Stabilize image before analysis (2) Draw outline of artery (3) Example of artery outline (4) Delete outline of drawing if not accurate on vessel wall (5) Average diameter measurement