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ABSTRACT

Molecular Analysis Reveals Unique Microbiome in lleal Pouch During Pouchitis
Compared to Healthy Pouches in Ulcerative Colitis and Familial Adenomatous Polyposis

Tiffany Wallingford Glavan

In severe cases of ulcerative colitis (UC) unresponsive to current treatment options,
patients require a complete proctocolectomy, or surgical removal of the colon. lleal
pouch anal anastomosis (IPAA) has become the preferred surgical technique for
patients who require surgery, as this method restores rectal function. This procedure is
also used to treat colorectal cancers such as adenocarcinoma and familial adenomatous
polyposis (FAP). The surgery involves an abdominal colectomy with the construction of
an ileal pouch created from folded tissue recovered from the ileal portion of the small
intestine. Up to 50% of patients who require IPAA surgery experience an episode of
pouchitis, a non-specific inflammation of the constructed ileal pouch with unknown
etiology. Several hypotheses have been proposed regarding the pathogenesis of
pouchitis. Current theories include bacterial overgrowth due to fecal stasis, microbial
imbalance (dysbiosis), immune alteration, genetic susceptibility, metaplasia, ischemic
complications of surgery, a recurrence of UC, or even a novel form of inflammatory
bowel disease. The efficacy of antibiotics and probiotics in treating pouchitis and
maintaining remission underscores the importance of gut microbiota in the development
of this condition. In the study, we aimed to characterize the intestinal bacterial
communities that inhabit IPAA pouches of both UC and FAP patients, in an effort to
investigate the hypothesis that bacterial dysbiosis is involved in the pathogenesis of
pouchitis. Mucosal biopsy and stool samples were analyzed from patients with UC and
pouchitis (UCP), healthy UC controls (HUC) and healthy pouches with a background of
FAP (FAP). Samples were examined through analysis of terminal restriction fragment
length polymorphisms (TRF) and DNA sequencing. The data presented here
demonstrate that a microbial imbalance exists in pouchitis, as bacterial communities in
pouchitis differ significantly from healthy UC pouches and pouches constructed for FAP.
Both methods identified potential groups of organisms that may play a role in the
development of pouchitis, including decreases in protective Lactobacillus and
Bacteroides and increases in mucin-degrading Clostridium and Akkermansia. A better
understanding of the factors driving the pathogenesis of pouchitis will not only benefit
patients with this disease, but also lead to a better understanding of the complex
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relationship that exists between the human host and the diverse community of
organisms that inhabit the gastrointestinal tract.
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1.1 INTRODUCTION

Ulcerative colitis (UC) is a chronic but intermittent inflammatory bowel disease
(IBD) characterized by continuous ulcers, or open sores, in the mucosal layer lining the
large intestine [1]. This disease has a prevalence of 246 per 100,000 in the United
States, equating to approximately 700,000 Americans suffering from symptoms including
abdominal pain and cramping, bloody diarrhea, and fever [2]. The symptoms range in
severity and can be localized to the rectum or involve the entire colon, but unlike Crohn’s
disease, UC is restricted to the large intestine [1]. The etiology of this condition is
unknown, but studies indicate that both genetic and environmental factors are important.
Hypotheses regarding the origin of UC include an autoimmune response to an antigen, a
dysfunctional immune response to commensal organisms, or an infection with a
pathogenic microbe [1].

Treatment for UC includes anti-inflammatory drugs and immunomodulators,
which effectively suppress the disease in most cases [1]. Approximately 20-30% of
patients, however, do not respond effectively to drug therapy and instead require
surgical intervention [3]. Unlike Crohn’s disease, ulcerative colitis can be cured, in some
cases, by removal of the large intestines. The restorative proctocolectomy with ileal
pouch anal anastomosis (IPAA) has become the preferred surgical procedure used to
treat patients with severe UC [4]. This method involves an abdominal colectomy with the
creation of a pouch that is connected to the anus. The pouch is constructed from loops
of folded tissue recovered from the ileal portion of the small intestine. The alternative
surgical procedure involves the connection of the small intestine directly through the
abdominal wall. IPAA surgery is favored because the rectal muscular cuff and anal
sphincter are left intact, eliminating the need for a collection bag.

Although IPAA surgery has functional advantages over previously used surgical
techniques, a significant number of patients exhibit post-surgical complications. The
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most common is pouchitis, a nonspecific inflammatory condition that occurs in the
reconstructed ileal pouch. Approximately one-half of all UC patients who receive IPAA
surgery will develop pouchitis during their lifetime, a syndrome involving watery, frequent
diarrhea accompanied by urgency, incontinence, abdominal cramping, and fever [5-6].
Although the majority of pouchitis patients respond to antibiotics, the condition will
frequently return and becomes recurrent in approximately10-15% of patients [5, 7].

Several hypotheses have been proposed regarding the pathogenesis of
pouchitis. Current theories include the following: bacterial overgrowth due to fecal stasis,
bacterial dysbiosis (imbalance), immune alteration, genetic susceptibility, metaplasia,
ischemic complications of surgery, a recurrence of UC, or even a novel form of IBD [8].
Multiple lines of evidence point to a pivotal role for bacteria in pouchitis. First of all,
inflammation of the mucosa has been shown to be localized to areas with the highest
concentration of bacteria [9]. In addition, sonicated flora from pouchitis patients induces
activation of ex vivo mononuclear cells while sonicates from healthy patients did not [10].
Furthermore, symptoms associated with pouchitis are often effectively treated with
antibiotics [11-12]. Four week treatment of metronidazole with ciprofloxacin has been
shown to be highly effective in patients with recurrent or refractory pouchitis [13].
Metronidazole accumulates in anaerobes and produces toxic free radicals, while
ciprofloxacin is a broad spectrum antibiotic that inhibits DNA gyrase, halting bacterial
replication. These two antibiotics have been shown to work best synergistically [7, 14].

Additional evidence supporting the involvement of intestinal microflora in
pouchitis is the efficacy demonstrated by probiotic VSL#3 in maintaining remission after
recovering from an episode of pouchitis [7, 15]. VSL#3, marketed as “The Living Shield”,
is s mixture of eight different strains of bacteria, including Bifidobacteria, Lactobacillus,
and Streptococcus. A once daily high dose administration of VSL#3 has been shown to
be effective in maintaining antibiotic introduced remission in patients experiencing
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recurrent pouchitis or pouchitis refractory to therapy [7]. Patients treated with VSL#3 are
shown to have lower levels of mucosal mMRNA expression of proinflammatory cytokines
IL-1B, IL-8, and IFNy [16]. VSL#3 has also demonstrated efficacy in treating ulcerative
colitis [17]. Single-strain probiotic Lactobacillus rhamnosus GG has also been tested in
cases of pouchitis, but effects were limited [18].

This clinical evidence has prompted much investigation into the relationship
between pouchitis and intestinal bacteria. The results of these studies, however, are
mixed, and no study has been able to identify a single pathogenic organism or toxin
responsible for pouchitis. Multiple groups have used culture-based techniques that
indicate a decrease in the ratio of anaerobic to aerobic bacteria in pouchitis [19-21].
Several studies cite an increase in sulfate reducing bacteria in the pouches of UC
patients and implicate the production of hydrogen sulfide gas in the development of
pouchitis [22-23]. Other studies have implicated increases in Clostridia or Fusobacter
and decreases in Lactobacilli, Bifidobacteria or Streptococci[24-26]. Yet other studies
indicate no difference in microbiological communities between inflamed and healthy
pouches [22, 27-29].

Part of the reason for the inconsistent findings between studies is the high
subjectivity in the classification of pouchitis. Prior to 1994, the criteria used in the
diagnosis of pouchitis varied widely between clinicians. A classification system has since
been developed in order to objectively quantify the condition of pouchitis, using a
diagnostic scoring system known as the pouchitis disease activity index (PDAI) [30]. The
PDAI score is determined using three principal components: symptoms (0-6pts),
endoscopy (0-6pts), and histology (2-6pts). The clinical section of the PDAI rates
symptoms such as stool frequency, rectal bleeding, fecal urgency or abdominal
cramping, and fever. The level of inflammation is described during endoscopy through
observation of factors such as edema, granularity, and ulceration. The histological
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section of the score considers levels of polymorphic nuclear leukocyte infiltration and
ulcerations per low-power field. A combined score greater than seven qualifies as
pouchitis. The use of the PDAI scoring system has led to more consistent classification
of pouchitis patients.

Another probable reason for the discrepancies in findings between studies is the
variation in the types of control samples used for comparison to pouchitis. It is difficult to
compare ileal pouch flora from pouchitis patients directly to ileal flora of healthy patients,
due to inherent challenges in collecting samples from the small intestines. The majority
of studies compare inflamed UC pouches to healthy UC pouches or to ileostomy. The
problem with this comparison is that it does not detect differences that may be due to the
underlying condition of ulcerative colitis, since all samples have a background of the
disease. In the study presented here, patients who receive IPAA surgery for UC are
compared to patients who underwent the same surgery for familial adenomatous
polyposis (FAP). FAP is a heritable condition in which hundreds to thousands of polyps
form in the mucosal surface lining the intestine. If not treated, these polyps almost
inevitably transform into malignancies, therefore surgery is employed in FAP cases to
eliminate the risk of colon cancer. Patients who undergo IPAA surgery due to familial
adenomatous polyposis (FAP) are ten times less likely to experience symptoms of
pouchitis [31-32].

In addition to subjectivity in classification and variation in the types of samples
compared, a third reason for inconstant findings within pouch microbiota studies is high
variability in the experimental techniques (compounded by high intersubject variability).
Available methodologies for studying gut microbiota have changed dramatically over the
past twenty years. Original culture based techniques were problematic with gut samples,
due to the high numbers of anaerobes and the difficulty in growing fastidious organisms
or those with mutualistic dependence on other species. It is estimated that only about
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20% of organisms can be cultured from the gut. Molecular techniques for community
fingerprinting are now more commonly used and are typically based on variability within
conserved regions of the 16S ribosomal RNA gene. The techniques are similar in that all
start with PCR using primers for sequences in this gene that are conserved in all
prokaryotes. The methods differ in how the fragments are separated. Density Gradient
Gel Electrophoresis (DGGE) uses chemical gradients of urea and formamide to separate
fragments and temperature gradient gel electrophoresis (TGGE) is based on sequence
dependent differences in the temperature at which double stranded DNA melts. In
Terminal Restriction Fragment Length Polymorphism (TRFLP or TRF) one end of each
PCR-amplified fragment is fluorescently labeled and the fragments are digested with
restriction enzymes and separated using capillary gel electrophoresis on an automated
sequence analyzer. TRF data have the advantage of being simply and rapidly produced,
providing more information than DGGE or TGGE. Data are easily converted into a form
that can be analyzed using a variety of statistical approaches and databases are
available for comparison. Ideally, TRF is used for monitoring bacterial community
structure over time. The resolution of TRF is, however, limited, as fragment sizes overlap
in most cases, making absolute identification impossible. As more restriction enzymes
are used, however, more information is available to differentiate species of bacteria. In
addition to analysis using TRF profiles, PCR amplicons derived from this study were also
sent for DNA sequencing. Sequences of 16S ribosomal RNA genes provide more power
to precisely identify the community composition in inflamed pouches versus healthy
controls.

Both colonic biopsies and stool samples were obtained from IPAA patients
enrolled in this study. The concurrent analysis of both mucosal and luminal samples is a
strength of this study compared to earlier studies that generally assessed only stool
samples. Analysis of mucosa is important since it has been shown that microorganisms
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interacting with the mucosa are significantly different than those found in fecal samples,
and the interaction between the organisms is thought to be integral to the development
of pouchitis [25, 33]. Only two other pouchitis studies compared mucosal and fecal flora
[20, 25].

The aim of this study was to characterize the intestinal bacteria that inhabit IPAA
pouches of both UC and FAP patients to investigate the hypothesis that an imbalance in
bacterial populations is involved in the pathogenesis of pouchitis. Mucosa and stool
samples were analyzed from patients with UC and pouchitis, healthy UC controls and
FAP controls. Samples were examined using both TRF and DNA sequencing. The data
presented here demonstrate that bacterial dysbiosis exists in pouchitis and the bacterial
communities in pouchitis differ significantly from healthy UC pouches as well as from
pouches constructed for FAP. Both methods identified potential groups of organisms that
may play a role in the development of pouchitis. A better understanding of the factors
driving the pathogenesis of pouchitis will not only benefit patients with this disease, but
also lead to a better understanding of the complex relationships that exist between the
human host and the diverse community of organisms that inhabit the gastrointestinal
tract.

1.2 METHODS
Inclusion Criteria

Patients who have received care for a restorative proctocolectomy with IPAA at
Massachusetts General Hospital were invited to participate in this study. Patients were
enrolled in this study only if IPAA surgery was performed more than three months prior
to enroliment. Patients were divided into three cohorts: those with UC and pouchitis
(UCP); those with UC but no pouchitis (healthy UC pouch, HUC); and those with a
history of FAP without pouchitis (healthy FAP pouch, FAP). Subjects enrolled as case
subjects were those experiencing symptoms of at least three episodes of pouchitis in the
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past year. Pouch inflammation was documented by histological and endoscopic
investigation and a PDAI score was assigned. PDAI scores greater than seven qualified
the patient into the pouchitis (UCP) group. HUC control subjects included patients who
had never experienced an episode of pouchitis or who had received a PDAI score less
than seven.
Exclusion Criteria

Subjects taking probiotics, non-steroidal anti-inflammatory drugs, and
immunosuppressants were excluded from the study, as well as any subject who had
received topical immunosuppressant rectal therapy in the previous two weeks. Subjects
chronically taking antibiotics were allowed in the study if the antibiotics were
administered more than three months prior to sample collection and if the patient’s
symptoms persisted with antibiotic use. Subjects with any clinical evidence of Crohn’s
disease or any other immunological or hematological iliness deemed significant to this
study were excluded. Nineteen test subjects ultimately enrolled in the study and
provided informed consent. The Massachusetts General Hospital and California
Polytechnic State University human subject committees each approved the protocol and
written consent was obtained from each individual.
Specimen collection

The pouch of each patient was examined to determine PDAI score. Each
enrolled patient underwent a flexible sigmoidscopy performed by one of the study
physicians. Patients received a bowel preparation one day in advance with phospho-
soda. Both stool and mucosal biopsy specimens were obtained from each test subject.
One ml stool samples were suctioned into three vials containing 10% glycerol/90%
sterile water and were immediately placed in dry ice. Biopsies were removed from the
most inflamed area within the pouch, at least four centimeters from the anus. The
biopsies were washed in 500 mL of saline and placed into a vial containing 10%

7



glycerol/90% sterile water were immediately placed in dry ice. Both types of samples
were frozen at -80°C within 30 minutes.
DNA extractions

DNA was isolated using MoBio’s Power Soil DNA extraction kit, according to the
manufacturer’s protocol (MoBio Laboratories, Carlsbad, CA). Triplicate 0.1 g samples
were used for the extraction of stool samples, while the entire biopsy sample was used
for the isolation of DNA from tissue samples. The 16S subunit bacterial ribosomal RNA
gene was amplified from both isolates using the forward primer 8DF (5-AGA GTT TGT
TCM TGG CTC AG-3’) and the reverse primer 536-K2R (5’-GTA TTA CCG CGG CTG
CTG G-3). The forward primer was fluorescently labeled with a phosphamide dye. 50 pl
reactions were assembled using 1 pl of undiluted DNA, 5 pl of 10X buffer, 3 pl of 10 mM
dNTPs, 2 pl of 20mg mL™" BSA, 7 ul of 25 mM MgCl,, 1 pl of each primer, and 0.3 pl of 5
UL TaqGold (Applied Biosystems, Foster City, CA). Reaction temperatures and times
were as follows: 95°C for 10 min followed by 30 cycles of 95°C for 1 min, 60°C for 1 min,
and 72°C for 2 min, followed by a final extension of 72°C for 10 min. The quality of the
extractions and PCR reactions were confirmed using gel electrophoresis. PCR
triplicates were combined during a PCR cleanup performed using MoBio’s PCR Cleanup
Kit following the manufacturer’s protocol (MoBio Laboratories, Carlsbad, CA). PCR
products were quantified using a FLX800 microplate fluorescence reader tuned to the
labeling dye (Bio-Tek Instruments; Winooski,VT).
Digestion and Resolution of TRF patterns

Enzyme digests were independently performed using cleaned-up PCR product
and the restriction endonucleases Haelll, Hpall, and Alul (New England Biolabs;
Beverly, MA). Each 40 pl digest included 75 ng DNA, 1 U enzyme, and 4 ul buffer.
Samples were digested for 4 h at 37°C and inactivated for 20 min at either 65°C (Hpall
and Alul) or 80°C (Haelll). Resulting fragments were ethanol precipitated and
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resuspended in 20 yl formamide and 0.25 yl CEQ 600 base pair standard. Terminal
restriction fragments were separated using capillary gel electrophoresis and profiles
were obtained using a Beckman Coulter CEQ8000X DNA analysis system.

Terminal restriction fragment lengths (in nucleotides) and relative peak areas
(relative abundance) were exported from the CEQ8000 into Excel (Microsoft, Seattle,
WA). The area under each peak was normalized for loading and expressed in parts per
million to standardize the data for comparison. Peaks with an area less than 10,000 ppm
(<1.0% of the total) were excluded from the analysis to reduce excess noise. Data from
three independent restriction digests were performed to provide better resolution (reduce
incidence of distinct sequences with equivalent TRF lengths) and thus help tentatively
identify groups when performing database comparisons between fragment lengths and
in silico restriction enzyme digests of 16S rRNA gene sequences in GenBank (NCBI,
Bethesda, MD).

Data analysis

TRF data sets were transformed by taking the square root of the area under each
peak to de-emphasize large TRF peaks while still accounting for relative abundance.
Transformed data were compared using Bray-Curtis similarity, multidimensional scaling,
and analysis of similarity (Primer, London, UK; Microsoft Excel, Seattle, WA). TRF
fragments were subjected to ANOSIM analysis to determine the TRF fragments that
differ most between groups. These fragments were compared to available GenBank
sequences to tentatively identify potential bacterial populations associated with bacterial
dysbiosis. The database for TRF matching was created by obtaining all 16S rRNA gene
sequences from GenBank. These sequences were processed using in silico PCR and
restriction enzyme digests. Observed TRF peaks were compared to the predicted
lengths based on the database, allowing for a difference of one base pair between the
lengths of observed and predicted fragments.
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Statistics

Transformed data were compared between groups using Bray-Curtis similarity,
multidimensional scaling, and analysis of similarity (ANOSIM) (Primer E, Plymouth, UK).
Bray-Curtis was used to determine overall level of similarity between groups. ANOSIM
was used to identify the factors that made the groups different. ANOVA was used to
compare relative abundances of specific TRF elements between groups.
16S Ribosomal DNA-based DNA Sequencing

Four fecal samples from each of the UCP and FAP groups were selected and
pooled for sequencing analysis. Samples were chosen based on greatest intersubject
similarity, using Bray-Curtis similarity indices. Extracts from selected samples were
subjected to PCR with the same primers used in TRF, without the fluorescent label.
Resulting fragments were pooled and sent to the Broad Institute in Cambridge
Massachusetts for sequencing.

Samples were cloned into pCR2.1-TOPO vectors and sequenced on an ABI3730
DNA sequencer. Resulting sequences were trimmed using LUCY, a tool that examines
raw DNA sequence data for quality assurance [34]. Read pairs from each clone were
assembled using an alignment-assisted assembly method implemented at the Broad
Institute. 16S rRNA gene sequences obtained from Greengenes provided the alignment
template used as a reference sequence for the read pairs [35]. The reference sequence
with the greatest number of k-mers matching with the aggregate k-mer set of both
forward and reverse reads was selected. The forward and reverse reads were aligned to
the core reference sequence using basic local alignment search tool (NCBI, Bethesda,
MD) [36]. Aligned forward and reverse reads were then assembled based on base
quality scores. High quality reads longer than 1100 nucleotides were used for
classification. Sequences were classified according to comparisons with the Ribosomal
Database Project sequence collection [37-38].
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1.3 RESULTS
Patient Characteristics

Nineteen patients were enrolled in the study. The samples were divided into
groups based on the reason for IPAA surgery (ulcerative colitis vs. familial adenomatous
polyposis) and the PDAI score (healthy pouch vs. pouchitis) (Table 1). Twelve patients
received surgery for ulcerative colitis, and of these 9 had pouchitis (UCP) and 3 had
healthy pouches. Seven patients were enrolled that received IPAA surgery for familial
adenomatous polyposis. There were no significant differences between patient
demographics (age and gender) or disease characteristics (duration of ulcerative colitis
and pouch). PDAI scores were significantly higher in the pouchitis group, and each
biopsy in this group were shown to display histologic evidence of active pouchitis as part
of the PDAI score (defined by presence of polymorphonuclear infiltrates and
ulcerations). Several patients enrolled in the UCP group were receiving chronic antibiotic
therapy. Two patients were currently taking antibiotics, one for eight years and one for
one year, while still having episodes of pouchitis. Three other patients had received
short courses of antibiotics during the past year, but not during the three month time

span prior to enrolling in the study.

TABLE 1. Patient Demographic and Disease Characteristics

UCP (n=9) FAP (n=7) HUC (n=3) P-value
Mean age in years (range) 32.2 (22-61) 45.5 (29-55) 39.3 (26-55) 0.15
Gender M= 2 (22%) M =4 (57%) M = 1(33%) 0.48
F =7 (78%) F =3 (43%) F =2 (67%)
Mean duration of pouch in years (range) 5.9 (1.5-13) 8.7 (14-21) 12.3 (2-20) 0.51
Mean duration of UC in years (range) 8.8 (2.5-14) n/a 14.7 (3-25) 0.31
Mean PDAI score (range) 8.8 (7-12) 0 1(1) < 0.001*

*Statistically significant. UCP, UC pouchitis; FAP, familial adenomatous polyposis; HUC, healthy UC.
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Terminal Restriction Fragment Analysis

The total number of peaks provides a measure of overall community diversity.
There were significant differences in the total number of TRF peaks in the mucosal
biospsies compared to stool (average total peaks, mucosa=64.8, feces=41.3, p<0.001 ).
(Figure 1). Fecal and mucosal microbial fingerprints were significantly more similar within
samples from a single subject compared to between subjects (p=0.027). Compared to
stool samples, mucosal samples taken as a whole revealed significantly greater
intersubject percentage similarity (p<0.001). The total number of fecal TRF peaks, a
marker of overall diversity, was lower in pouchitis compared to stool from healthy
subjects without proctocolectomy (42.3 in UCP, 64.0 in normal stool, p<0.001). TRFs
used for this analysis were collected from healthy seniors at California Polytechnic State
University as part of an independent study. However, HUC and FAP groups also showed
significantly lower microbial diversity in the stool samples compared to healthy subjects

without proctocolectomy (HUC=35.3, p<0.05; FAP=41.4, p<0.005).
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Figure 1. Representative TRF profiles. These two patterns were generated from the stool and
mucosa of a single patient. The mucosa had a higher degree of community diversity, based on

the total number of peaks.
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Overall, there was a higher degree of similarity within TRF profiles from the FAP
group (37.78%) compared to the UCP group, where microbial profiles were more
variable overall (20.11%). TRF profiles were significantly different between UCP and
FAP groups when evaluating mucosal and stool separately, or when combined (p<0.05,
Figure 2). Profiles were also distinct between UC patients with and without pouchitis
(p<0.05). No significant differences were observed in patients taking antibiotic therapy.

The analysis of similarity (ANOSIM) analysis from the three different restriction
digests were compared to find sets of peaks that were most different between groups in
each digest. This analysis revealed a set of TRFs matching Lactobacillus and
Streptococcus (Hae 264-5, Hpa 97-9, Alu 76,532) were present at higher relative
abundance in both mucosal and fecal samples from FAP patients compared to UCP
(ratio 5:1 in mucosa, 3:1 in stool). A second set of TRF peaks (Hae 272-4, Hpa 222-3,
Alu 440) matching Clostridium, Eubacterium and Roseburia genera were present at five
time the relative abundance in stool from UCP patients compared to FAP patients. Fecal
samples from HUC pouches also had fewer peaks matching Clostridium, Eubacterium
and Roseburia compared to UCP (ratio 1:15). Profiles from healthy UC pouches had
fewer Escherichia, Streptococcus, and various sulfur-oxidizing bacteria (Hpa 496, Hae
205, Alu 74) at a ratio of 1:2 compared to UCP. Mucosal samples from healthy UC
pouches also showed less Escherichia, Streptococcus, and various sulfur-oxidizing
bacteria compared to UCP (ratio 1:2). There were no groups that were increased in

healthy UC pouches that were statistically significant.

13



A A "
5 A a & A
A A
AA
o A =} g O 4 5=
v 49
v
v A vl v
5 o v a v =
¥ Mucosa A UCP Mucosa + Stool v
vV FAP
A
o o i ¥ UCP vs FAP |UCP vs HUC | FAP vs HUC
0 nHUC
A AT 5
v Mucosa p=0.014 p=0.005 p=0.008
A
A
4 g v Stool p=0.04 p=0023 p=0017
Mucosa + i = =
i Stool Stool p=0.005 p=0.005 p=0.008

Figure 2. Multi-dimensional scaling (MDS) analysis. This analysis is used to compare TRF
profiles between groups. Each symbol represents the profile of one subject and the distance
between symbols is representative of overall similarity. Significant differences in microbial

communities were observed between each experimental group.

DNA Sequencing

Pooled fragments from the UCP and FAP group were sent for cloning and
sequencing at the Broad Institute. For each of the samples, 2304 clones were
processed in total. In the UCP pooled sample, 712 sequences were identified at the
genus level, and for the FAP samples, 1015 were identified. The groups were first
compared at the phylum level. These data showed increased Firmicutes and
Verrucomicrobia in the UCP group and more Bacteroidetes in the FAP group
(p<0.001)(Table 2). Sequences between groups were also compared at the genus level.
Table 3 shows the classification of the sequences that were different between
experimental groups. Like the TRF data, the sequencing data revealed more Clostridia,

namely Roseburia in the UCP group and more Escherichia in the FAP group.
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TABLE 2. Comparison of DNA Sequencing Results

by Phylum

Percent of Identifiable DNA Clones

(Absolute Number)

UCP FAP P-value
Bacteroidetes 20% (144) 1% (716) < 0.001
Firmicutes 52% (379) 19% (216) < 0.001
Fusobacteria 1% (4) <1% (4) NS
Proteobacteria 5% (30) 5% (44) NS
Verrucomicrobia 22% (155) 3% (35) < 0.001
Actinobacteria <1% (0) <1% (1) NS
NS, not significant; UCP, UC pouchitis; FAP, familial adenomatous

polyposis.
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1.4 Conclusions/Discussion

The precise role of intestinal bacteria in the pathogenesis of pouchitis remains
unclear. This investigation, however, has revealed the existence of distinct pouch
environments in patients who have pouchitis and those with healthy pouches in UC and
FAP, using TRF and DNA sequencing techniques based on sequence variability in the
gene for 16S rRNA. The pouch microbial environment, including both mucosal and
luminal communities, is significantly altered in patients with UC-associated pouchitis
compared to patients who received IPAA surgery in the setting of FAP. These findings
demonstrate that bacterial dysbiosis exists in pouchitis and thus underscore the
importance of the relationship between microbiota colonizing the gastrointestinal tract
and the health of the host. This study was limited by the small number of healthy
ulcerative colitis patients enrolled and the necessity of pooling fragments prior to DNA
sequencing.

Multiple studies have indicated reductions in community diversity in pouchitis [27,
29], yet other studies demonstrate no change in diversity [39]. In TRF, diversity is
represented by total number of peaks. The data collected here indicates that there is
less community diversity in stool samples after IPAA surgery, indicated by fewer overall
peaks in stool samples from all enrolled patients compared to stool from healthy subjects
with intact colons. The finding is expected based on the fact that the colon supports a
much greater bacterial load [40]. Between different experimental groups, however, there
were not significant differences in total numbers of peaks between each of the three
groups. The profiles of mucosal biopsies was shown to harbor greater numbers of total
peaks than the fecal samples, providing supporting evidence for the idea that the
bacteria found in stool comprise a subset of bacteria found in at the mucosal surface [33]

(Figure 2).
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The bacterial community profiles were shown to be significantly different between
all three experimental groups. This finding suggests that pouchitis is related to
underlying factors in ulcerative colitis, since the communities found in healthy UC
pouches was different from healthy FAP pouches. Although symptoms of UC are
localized to the large intestine, underlying genetic and immune alterations (i.e. NOD2
polymorphisms or increased cytokine production) could lead to a similar pathology in the
small intestines post-surgery. This finding is supported by clinical evidence that UC
pouches are known to be 10X more susceptible to pouchitis than FAP pouches [32].

Both TRF and sequencing data indicate decreased abundance of protective
Lactobacillus and Bacteroides in diseased pouches. Both species have well-
demonstrated protective effects for the host. Lactobacillus is a known probiotic organism
that protects the gut through competitive inhibition of other colonizing microbes. Certain
species of Lactobacillus have been shown to reduce inflammation in the mouse model of
inflammatory bowel syndrome, likely by modulating cytokine function. Lactobacillus have
been shown to increase occludin and claudin production, upregulating tight junction
formation and helping to maintain epithelial barrier function in the host. Several other
studies have indicated decreased Lactobacillus in pouchitis [24, 26]. Bacteroidetes,
specifically genus Bacteroides, typically comprise a large portion of the gastrointestinal
tract. These mutualistic bacteria also provide competitive inhibition of pathogenic
species, likely gaining a competitive advantage through the ability to process complex
polysaccharides. Studies investigating the effects of probiotics on microbial flora report
increases in Bacteroides after probiotic therapy [41], and this effect may help explain the
efficacy demonstrated by probiotic therapy in pouchitis. In general, the importance of
protective species is underscored by the efficacy of probiotic species in maintaining

remission in pouchitis.
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Both TRF and sequencing data indicate increased abundance of Phylum
Firmicutes in diseased pouches, including genus Clostridium and Roseburia. Clostridia
are resistant spore-forming anaerobes and multiple members of this class are known
human pathogens. Clostridium difficile is a common opportunistic pathogen that is
known to increase in abundance after antibiotic treatment. C.difficile infections are
common in pouchitis, with or without antibiotic treatment [42]. Several species of
Clostridium are mucolytic and capable of breaking down the protective mucus layer in
the host’s intestinal lumen, potentially leaving the underlying epithelium more prone to
invasion. Mucins provide an important energy source for bacteria as well as important
barrier for the human host. In a healthy host, there exists a balance between the
production of mucus by goblet cells and the breakdown of mucins by resident bacteria.
An overabundance of Clostridium could disrupt this balance, due to enhanced
glycosidase activity. Several other studies have demonstrated increases in Clostridia in
pouchitis, including Clostridium perfringens [11, 24]. Members of genus Roseburia were
also increased in diseased pouches. Roseburia are common flagellated butyrate
producing bacteria. Bacterial flagellin has been shown to be a dominant antigen in
Crohn’s disease and, furthermore, serum IgG from patients with CD and mice with colitis
both reacted specifically to flagellin from Roseburia [43]. Another group that was shown
to be increased in diseased pouches was Akkermansia in Phylum Verrucomicrobia. This
genus, like Clostridia, is known for mucin degradation. The loss of the protective mucus
layer allows for direct contact between the intestinal epithelium and commensal
organisms and may perpetuate inflammation.

These data, along with many previous studies, fail to pinpoint one specific group
of bacteria associated with pouchitis, and therefore do not support the hypothesis that a
single pathogenic organism leads to inflammation in pouchitis. Evidence in a shift of
predominant microbial communities, however, was apparent. These findings provide
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support for the hypothesis that pouchitis involves alterations in the homeostasis of
commensal organisms. Increased abundance of colitogenic bacterial species, such as
Clostridia and Akkermansia identified in this study, may initiate inflammation by
disrupting barrier function or destroying the mucosal surface of the host gastrointestinal
tract.

It is, however, difficult to separate cause from consequence. Changes in
microbial structure could initiate inflammation, but changes in immune function could
drive changes in microbial communities. There is mounting evidence that links immune
alterations to pouchitis, and it is hypothesized that a loss of tolerance to commensal
organisms leads to inflammation. Ferrante et al retrospectively investigated serum
antibody production and pattern recognition receptor polymorphisms in a large cohort of
IPAA patients and found associations between pouchitis and outer-membrane porin
antibodies and toll-like receptor 1 polymorphisms, implying immune dysfunction [44].
Another study demonstrated increased proliferation of immature plasma cells near ulcers
and inflamed mucosa of pouchitis, suggesting an immune defect in B cell development
[45]. Increases have been demonstrated in levels of activated mucosal CD4+ cells and
multiple proinflammatory cytokines, including IFNy, IL-1B, IL-6, IL-8, and TNFa [46-47].
High proinflammatory cytokine production promotes inflammation and can lead to
intestinal epithelial destruction and crypt hyperplasia. Genetic susceptibility loci have
also been identified that likely contribute to immune dysfunction. A recent study indicates
that nucleotide oligomerization domain-2 (NOD2) mutations are found at higher
frequencies in patients with severe pouchitis [48].

Although it is difficult to separate changes in community makeup and immune
function in terms of cause and consequence, the importance of the relationship between
commensal microorganisms and the human host are becoming increasingly clear. Host-
microbe relationships in the gut are the focus of a rapidly growing field of research aimed
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at understanding how the two interact. Much advancement has been made in
understanding the role of bacteria in human health. Germ-free mice were the first to
demonstrate the critical role of bacteria in the development and maturation of the
immune system, as mice raised in a sterile environment have altered development of
both gut mucosal and peripheral immune systems, with a lack of expansion of CD4+ T-
cells and a lack of lymphoid structure [49]. Stimulation by bacterial products is necessary
and sufficient to initiate the maturation process [50].

In addition to being instrumental in the initial development of the immune system,
bacteria also help maintain the health of the adult host. Some species of bacteria
actively stimulate the host to produce anti-microbial peptides and proteins involved in
tight junction formation, contributing to the maintenance of host epithelial integrity [40]. It
is well established that bacteria help us digest complex polysaccharides, but only
recently has it been appreciated that bacteria play a role in how we extract nutrients from
food and in the uptake of lipids and dietary fiber. The composition of the gut microflora
has recently been implicated in metabolic disorders such as obesity and diabetes [40].
As more and more data are compiled describing the composition of human intestinal
microflora, enterotypes, or robust clusters of certain species, are emerging. Certain
species drive the different enterotypes, based more on microbial functions (i.e.
metabolism) than host factors (i.e. age or gender) [51]. It is hypothesized that persons
with different microbial enterotypes respond differently to diet and drug intake.

Collectively, research on host-microbe interactions in the gut has demonstrated
that there is a complex interplay in mucosal immunology between three systems that
determine gastrointestinal health: host genetics, bacterial community structure, and
immune function. Each system can influence the other systems and the wrong
combinations of aberrant factors lead to mucosal pathogenesis. The pathogenesis of
pouchitis, like gut health in general, is likely to be multi-factorial, involving overlapping
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factors and creating a spectrum of disorders rather than a single disease. Much work is
left to be done to uncover the complex host-microbe relationships and interactions
between microbes and the host. Future studies should aim to concurrently study
microbiota while also investigating immune function through cytokine and antibody
production, or attempt to link pouchitis with genetic polymorphisms in large patient
cohorts. Knowledge gained from future research efforts in this area will have wide
applications to improving human health and well-being, not only including patients
suffering from pouchitis after IPAA surgery. The complexity and diversity of life in our
intestines and the relationship between the host and resident bacterial community pose
a significant challenge to researchers, but the knowledge gained from these studies has

the potential to dramatically increase our understanding of human health.
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