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Abstract 

 

A Neural Network Receiver for EM-MWD Communication 

Timothy P. Whitacre 

 

Baseband digital communication in electro-magnetic measurement while drilling 

(EM-MWD) systems is often corrupted by non-white surface noise. The inability to reliably 

decode the transmitted signals in a noisy environment limits the depth at which EM-MWD 

systems can operate. Correlation receivers, which are optimal in the presence of additive 

white Gaussian noise, can be sub-optimal in the presence of various types of field noise at 

different drilling sites.  

This thesis investigates the application of artificial neural networks (ANN) as 

communication receivers in EM-MWD baseband digital communication systems. The 

performances of various ANN architectures and training algorithms are studied and compared 

with conventional correlation receivers via computer simulations. Standard symbol error rate 

(SER) test results show that the NN receiver is able to adapt to site-specific noise and thus 

outperforms the traditional correlation receiver. 
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Chapter 1    Introductio n 

Modern directional drilling has increased the precision of drilling wells for oil, gas, 

and geothermal uses. It utilizes various sensors located near the drill bit as a means of 

transferring readings from sensors to drilling operators. Accelerometers, magnetometers, and 

gyros are used to determine the location and attitude of the drill bit with respect to gravity, 

magnetic north, and true north respectively. This information is necessary to ensure wells are 

drilled as planned within lease lines as well as drilled to the desired target location along the 

prescribed well profile [1]. 

Transferring sensor measurements to the surface, while drilling, commonly known as 

measurement while drilling (MWD), enables the drilling operators to guide the drill bit with 

increased precision. The data from the sensors are transferred to the drilling operators at the 

surface in two primary ways [2].  

The first transmission method uses pressure signals communicated through a column 

of fluid present in the well. This form of communication is known as mud pulsing. The 

pressure signals generated by the tool (sensors and associated electronics) are received by a 

pressure sensor near the surface of the well. The pressure signals are then decoded for the 

drilling operator. The main sources of noise associated with mud pulsing MWD are from 

pumps at the surface and drill motors beneath the surface [1]. 

The second method of communicating sensor readings is through electromagnetic 

waves (EM). Either a voltage is modulated across a gap, or a current is induced in the drill 

string by the EM MWD tool. The resulting EM waves propagate through the earth and are 

detected by equipment at the well surface. The majority of noise that the EM MWD systems 
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must deal with is generated at the well surface. Drill pumps, motors, and even lightning can 

generate noise, which degrades EM MWD system performance [3]. 

In order for the EM signal to be reliably detected, a receiver must be able to deal with 

the various noise sources near the drill rig. There are a number of methods used to aid in the 

filtering and decoding of EM signals in the presence of noise. At least one MWD company 

uses a correlation receiver preceded by various analog and digital filters [4]. This method 

proves to work well when the spectral content of the noise and the transmitted signals do not 

overlap significantly. The ability of the correlation receiver to correctly decode the 

transmitted symbols decreases as the noise spectrum encroaches on the signal spectrum, and 

as the signal to noise ratio decreases [5]. The majority of the power contained in the 

transmitted signal is in the low frequency band because the earth tends to act as a low-pass 

filter for EM waves. The noise sources on or near the drill rig usually have large power 

spectral densities in the same frequency band [4]. This explains why there can be much 

difficulty associated with the reception of EM signals under certain conditions.  

This thesis investigates the application artificial neural networks as communication 

receivers to detect EM signals at the well surface. Artificial neural networks are the result of 

attempts to solve problems by mimicking the manner in which biological neural networks (i.e. 

brains) function. Biological neural networks are able to learn, adapt, and process data 

nonlinearly. They are able to extract information in the presence of considerable amounts of 

noise [6]. It is expected that the neural network receiver is able to decode signals in the 

presence of noise that would normally be difficult for a correlation receiver.  

This thesis is organized as follows. Chapter Two provides a more detailed description 

of the problem statement. The operation of MWD systems is addressed with emphasis on the 
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communication of sensor data. In addition, relevant background on communication theory 

will also be reviewed, followed by an overview of the fundamental concepts and purposes of 

neural networks. Chapter Two concludes with a review of previously published work in the 

areas of neural networks, digital receivers, and EM MWD communication. Chapter Three 

describes the architecture of neural network receivers. Chapter Four outlines the computer 

simulation results and analysis. Finally, conclusions and suggestions for future works are 

presented in chapter Five.  
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Chapter 2    Background 

2.1 MWD Systems 

Monitoring While Drilling (MWD) systems allow for near real-time information on 

the orientation of the down-hole drill bit in oil and gas drilling applications. This information 

is necessary in order for the actual profile to match the desired profile of the well. 

Additionally, various sensors readings transmitted to the drilling operator can be used to 

optimize the location of the finished well for production of oil or gas. Many wells are often 

drilled from the same platform, increasing the probability of collisions with previously drilled 

wells. This coupled with the need to legally ensure the placement of wells within lease lines 

and other constraints makes the timely feedback of drill bit position and orientation extremely 

important. 

There are difficulties associated with providing reliable transmission of the 

information from the down-hole tool to the surface in a timely manner. Noise from location to 

location can vary drastically, as well as earth formation, and the depth of drilling. In order for 

MWD companies to competitive they must be able to provide consistent reliable 

communication while drilling.  

There are two widely used methods for the transmission of sensor readings from 

down-hole to the drilling operators at the surface. Mud pulsing is the older of the two and 

involves generating pressure waves in the drilling fluid to communicate from the tool to the 

surface. The second method creates electromagnetic waves that pass through the earth from 

the tool to the surface. This method is often referred to as EM.  MWD companies continually 

strive to improve the performance of these transmission options [1]. 
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2.1.1 MUD Pulse MWD Systems 

Mud-pulse systems use a column of fluid, mud, to transmit data encoded pressure 

signals uni-directionally from the tool to the surface. Opening and closing a valve through 

which the mud passes create the pressure signals. The pressure pulses are converted to 

electrical signals by a pressure transducer located at the surface. The message contained in the 

series of pulses is then decoded and the information is presented to the drilling operator. 

Alternate uses of the mud include powering the drilling motors located near the down-hole 

drill bit, lubricating the mud motors, and removing the cuttings from the well.  

Nearly all of the noise in a mud pulse system comes from pressure fluctuations in the 

fluid caused by sources other than the mud pulse tool. Noise introduced after the pressure 

signal is converted to an electronic signal is negligible. The attenuation of the pressure signal 

over distance is dependent upon the type of drilling fluid used, increasing as the density 

decreases. The data rates for mud-pulse systems are slow, usually in the 1 to 2 bits per second 

range.  

 

2.1.2 EM MWD Systems 

EM MWD systems communicate by either modulating a voltage source across an 

isolated gap, or inducing a current in the drill string. The resulting electromagnetic waves are 

sent to the surface where they are detected by an antenna. The data is then decoded and 

presented to the operator. An example of an EM MWD system is shown in Figure 2-1. 
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Figure 2-1 Basic Electromagnetic MWD System 

 

Numerous potential noise sources exist when using electromagnetic wave telemetry. 

Motors, power lines, lightning, and more can inject noise into the receiving antenna. The 

power spectral density of the noise often has spikes and is usually non-stationary. The 

strength of the EM signal degrades significantly as the distance between the MWD tool and 

antenna increases.  
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2.1.3 EM Advantages and Limitations 

EM systems provide higher data rates than mud-pulse systems. However, they are 

unable to reach the same depth as their mud-pulse counterparts due to the attenuation of the 

EM signal as it passes through the earth. EM systems are able to communicate in under 

balanced drilling situations where the drilling fluid density is too small for mud-pulse 

systems. The EM communication system does not use any moving parts, whereas the mud-

pulse systems must physically open and close valves. Noise abounds in both systems, but EM 

systems have a much lower signal-to-noise ratio (SNR) as the depth of the tool increases.  

2.2 Digital Communication 

Analog and digital communication systems transfer information from a transmitter, 

through a transmission channel, to a receiver. Both types of systems aim to provide the 

receiver with an exact replica of the information sent by the transmitter. 

The information transferred with an analog communication system has infinite 

resolution. The goal of the receiver is to preserve the fidelity of the information. 

With digital communication systems, information is first quantized into a sequence of 

digital symbols, also known as a bit stream. Thus the information sent is not infinite in 

resolution, but is represented by a finite set of digital symbols, each made up of k bits. These 

digital symbols are converted to digital waveforms that are compatible with the transmission 

channel through a process known as modulation. A transmitter is used to pass the digital 

waveform through the transmission channel to a receiver. The waveform is corrupted by 

various noise sources and the channel transfer function as it travels to the receiver. The 
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receiver demodulates the received waveform into a bit stream, which ideally matches the bit 

stream of the transmitter [5].  

The digital communication system addressed by this thesis is shown in Figure 2-2   

MWD TOOL

FILTERED BY EARTH

+

+

ANTENNA

FILTERING

DECODING

DOWN-HOLE EQUIPMENT

SURFACE EQUIPMENT

Transmitted Signal

Noise

Noise

 

Figure 2-2 EM MWD Digital Communication System 

  

2.2.1 Performance Evaluation 

 Digital communication systems are usually judged by the probability of incorrectly 

identifying a digital symbol from a transmitted waveform. The probability of bit error, 

otherwise known as bit error rate (BER), of a system is the specific way of normally 

evaluating this criterion. The BER for a communication system is often plotted against the 

signal to noise ratio, and results in a waterfall shape, with the probability of error decreasing 
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as the SNR increases. The probability of bit error is a special case of the probability of symbol 

error (SER) where the length of the symbol is one bit. The neural network receivers in this 

thesis are trained to identify symbols containing more than one bit, thus the SER is used 

exclusively.  

 

2.2.2 Signal to Noise ratio 

When dealing with communication systems, the signal to noise ratio is usually defined 

as the energy per bit to noise spectral density ratio. Most communication systems endeavor to 

maximize this ratio, which in turn increases the probability of correctly detecting the signal, 

or in the analog case, preserve the transmitted waveform. The ratio is usually expressed in 

decibels and is shown in equation 2-1, where bE  is the energy per bit, and 0N  is the noise 

spectral density.  

 ö
ö
÷

õ
æ
æ
ç

å
Ö=

0

1 log10
N

E
SNR b  (2-1) 

 

The noise power spectral density is in units of Watts per Hertz and represents the amount of 

power contained at each frequency band in the spectrum. White noise has a constant power 

spectral density across all frequencies and is often used as the corrupting source when 

analyzing communication systems.  

The noise power spectral density for non-white noise is not constant across all 

frequencies. Equation 2-4 shows the SNR definition used in this thesis, where sigE  is the 
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signal energy, and noiseE  is the noise energy. sigE  and noiseE  are defined in 2-2 and 2-3 

respectively, where N  is the number of samples for each signal.  
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2.2.3 Statistical Validity of Estimated SER 

 The SER obtained through simulations is a binomial proportion because each of the 

symbols transmitted results in either a success or failure. As the number of transmitted 

symbols increases, the percentage of symbols that were received in error approaches the 

actual probability of symbol error. In this thesis, the SER is an estimate of a given receiverôs 

probability of decoding the wrong symbol. One way to judge the reliability of an 

experimentally derived estimate is with confidence intervals. A confidence interval is usually 

stated as a percentage, such as a 95% confidence interval. As it relates to this project, the 

percentage represents how likely that the true probability of symbol error for a given receiver 

lies within the calculated confidence interval from a particular experiment. For example, 95% 

of identically run experiments will result in the true probability of symbol being within the 

calculated 95% confidence interval for each experiment.  

There exist a variety of methods for estimating confidence intervals for binomial 

proportions. [7] has shown that the Agresti-Coull confidence interval is more accurate than 
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the standard Wald confidence interval, especially as the true probability approaches 0 or 1. 

Equation 2-5 is the standard Wald confidence interval, with n  equal to the total number of 

samples, pĔ equal to the number of errors, x , divided by n , and z  taken from the standard 

normal distribution for the desired confidence percentile.  
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Equation 2-6 is the Agresti-Coull confidence interval.  
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This equation is similar in form to the Wald interval, which can be seen by using the 

following variable substitutions. 

 
2

~
2z

xx +=  (2-7) 

 2~ znn +=  (2-8) 

 
n

x
p ~

~
~=  (2-9) 

Using these substitutions with equation 2-6 results in the following equation, which is in the 

same form as the standard Wald interval.  
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n

pp
zpCI ~

)~1(~
~ -
°=  (2-10) 

The size of the confidence interval is thus given by equation 2-11. 

 
n

pp
zWCI ~

)~1(~
2

-
=  (2-11) 

The confidence intervals obtained by applying equation 2-10 to the SER test results will be 

used to validate the comparisons made. 

2.2.4 Correlation Receivers 

The correlation receiver contains M  individual correlators, where M  is the number 

of symbols contained the code set. Each correlator integrates the product of a received signal, 

()tr , with a replica of one of the symbol waveforms, ()tsi  over a single symbol interval, T , 

as is shown in Equation 2-12. 

 () ()() MisrTz

T

ii .,..,1,
0

==ñ dttt  (2-12) 

When the received signal is sampled, the discrete version of the correlation receiver is used. 

 () ()()ä
=

==
N

k

ii MikskrNz
0

,...,1,  (2-13) 

The decision as to which symbol was most likely transmitted is made by choosing the 

correlator with the largest output. This has been shown to be the best possible choice as long 

as each of the symbols has the same probability of being transmitted and the received signal is 

corrupted by AWGN [5]. 
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2.3 Artificial Neural Networks 

The field of artificial neural networks (ANN) aims to process data in a way similar to 

that of biological neural networks, i.e. brains. The brain is amazing; it handles thousands of 

nonlinear inputs simultaneously and learns to process them into something meaningful. It can 

easily pick out important inputs, and disregard others. Think about the very fact that you are 

reading this. You are able to process raw image data into intelligible letters, words, phrases, 

and thoughts. You are even able to extract meaning out of noisy data. For example, you 

porlbably arje wndorenig why I am msislpelnig nurmuruos wrods in a thises peapr. Waht yu 

rielay suhulod ask is how yu can raed and udnretsand tntihs at all. Your brain is able to 

analyze data in a way that is fundamentally different from the way computers traditionally 

process data. Artificial Neural Networks (ANN) aim to mimic the brainôs method of thinking 

and learning. In order to mimic, one must first observe, thus we first look at a few features of 

biological neural networks. 

 

2.3.1 Biological Neural Network Fundamentals 

First, let us look at a simple comparison between the brain and traditional computers. 

Table 2-1 shows a few of the fundamental differences between the two [8]. 
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Processing 

Elements 
Processing 

Speed 
Computation 

Style 
Fault 

Tolerance 
Learning 

ability 
Intelligent, 

Conscious 

Brain 
1014 

Synapses 
100 Hz 

Parallel, 

Distributed 
Yes Yes Usually 

Computers 
108 

Transistors 
109 Hz 

Serial, 

Centralized 
No A little 

Not 

Currently 

Table 2-1 Biological Neural Networks vs. Computers 

 

It is evident from the table that there are major differences between computers and biological 

brains. The parallel nature of the brain makes it very effective at processing multiple inputs 

efficiently. Classifying and associating the numerous inputs allows humans to learn, think, 

and adapt to new types of inputs. Computers process data serially, which makes it more 

suitable for more óleft brainedô types of applications. 

 

Neurons 

The human brain contains approximately 10 billion neurons. Each of these neurons is 

a fully self-contained processing element. Inputs to the neuronôs cell body are known as 

dendrites. The cell body processes these inputs and provides an output through the axon of the 

neuron. Axon terminals propagate the output to other neurons [9]. Figure 2-3 depicts a typical 

neuron. 
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Figure 2-3 Biological Neuron Components 

 

Processing the inputs consists of comparing the summation of all inputs to a threshold 

level. Once the inputs exceed this threshold, the neuron depolarizes, meaning it discharges a 

spike. After a neuron depolarizes it is unable to provide an output for a short amount of time, 

known as the refractory period. The refractory period consists of an absolute period, followed 

by a relative period. For somewhere around a millisecond after the depolarization of a neuron, 

the neuron is unable to fire. The neuron becomes progressively easier to stimulate during the 

relative refractory period as can be seen in Figure 2. Neurons, therefore, do not process data 

continuously, but in discrete time steps [10]. 
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Figure 2-4 Temporal Response of Biological Neuron 

 

Synaptic Connections 

Each individual neuron is connected to thousands of other neurons. The network of 

neurons within the brain contains an immense amount of connections. This is the key to the 

processing power of the brain. Synapses are the connections between neurons. They consist of 

the axon terminals, a dendrite of another neuron, and a gap in-between. Signals passing 

through the axon jump across the gap with help from neurotransmitters [6]. 
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Figure 2-5 Neuron Synaptic Connection 

 

Synaptic Learning 

Synaptic learning is how the brain is able to work so well. By adding and deleting 

synaptic connections, as well as strengthening and weakening existing ones, the vast network 

of neurons within the brain are able to learn. Each input to a neuron thus has a modifiable 

weighting factor. It follows that the processing function of each neuron will change along 

with each of the individual input weights. 

 

Mimicking Nature 

Biomimicry is a science that studies nature's models and then imitates or takes inspiration 

from these designs and processes to solve human problems. For example, Velcro was 

developed to imitate the way burrs are able to attach to animal fur. Nature is full of 

ingeniously elegant designs just waiting to be imitated. The field of artificial neural networks 

is devoted entirely to imitating the processing nature of the brain. Computers would able to 
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perform in more uncontrolled environments if they could process information in the same 

fashion as the brain. The following are a few of the important characteristics and features of 

the neural network within the brain that artificial neural networks aim to imitate [6]. 

 

¶ Parallel, distributed information processing  

¶ High degree of connectivity among basic units  

¶ Connections are modifiable based on experience  

¶ Learning is a constant process, and usually unsupervised  

¶ Learning is based only on local information  

¶ Performance degrades gracefully if some units are removed 

 

2.3.2 Artificial Neurons 

Artificial neurons imitate the various features of biological neurons. Figure 2-6 shows 

the structure of a basic artificial neuron. 

 

Figure 2-6 Basic Artificial Neuron 
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Weighting Factors 

In order to mimic the synaptic strengths of biological neurons, weighting factors are 

needed for the inputs to the artificial neuron. Each weight signifies the importance of their 

respective input in the processing function of the neuron. Inputs with larger weights will 

contribute more to the neural response than those with lesser weights. The potential to learn is 

incorporated into the artificial neuron (and thus the network), by allowing the input weights to 

be adaptive coefficients. The adaptation process is performed in response to training sets of 

data, and depends on both the networkôs specific topology as well as the learning rule being 

applied. 

 

Summation Function 

The first step in the operation of an artificial neuron is the summation function. As the 

name implies, this is usually a summation of the weighted inputs to the neuron. The 

summation function can be more complex than a simple summation. Other functions that can 

be used include minimum, maximum, majority, product, or several normalizing algorithms. 

The specific algorithm is chosen by the network architecture and paradigm. A bias factor is 

often included and is summed along with the weighted inputs.  

 

Transfer function 

After the inputs have passed through the summation function, they are then fed 

through a transfer function. This transfer function is usually not a linear function. One of the 

goals of artificial neural networks is to be able to provide nonlinear processing. However, the 

ability of a neural network to perform in a nonlinear fashion is dependent upon the transfer 
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function of the individual neurons. By choosing a linear transfer function, the overall network 

would be limited to simple linear combinations of the inputs. Various transfer functions are 

typically used. A common transfer function is the hyperbolic tangent, which is shown in 

Figure 2-7. The hyperbolic tangent is a continuous function and its derivatives are as well. 

 

Figure 2-7 Hyperbolic Tangent Function 

 

Scaling and Limiting 

Implementation of this portion of the artificial neuron model is optional. The output of 

the transfer function is manipulated in order to lie within certain bounds. Scaling is performed 

first, followed by some sort of threshold function. A number of transfer functions, such as the 

hyperbolic tangent function, have bounded outputs already, and thus additional limiting is not 

needed.  

 

Output Function 

This portion of the model is also optional. Normally the output of the neuron is equal 

to the output of the transfer function. When implemented, the output function allows for 

competition between the outputs of various neurons. Within a small óneighborhoodô of 
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neurons, a large output by one neuron will cause the output of a different neuron to diminish. 

In other words, the loudest neuron causes the other neurons to be quieter. 

 

Error function 

The raw error of a network is the difference between the desired output and the actual 

output. The error function transforms this raw error to match the particular network 

architecture in use. Propagation direction of this error is usually backwards through the 

network. The back-propagated value serves as the input to other neuronsô learning functions. 

 

Learning Function 

The learning function modifies the input weights of the neuron. Other names given to 

this function are the adaptation function, or learning mode. There are two main types of 

learning when dealing with neurons and neural networks. The first type, supervised learning, 

is a form of reinforcement learning and requires a teacher, usually in the form of training sets 

or an observer. Unsupervised learning is the other type, and is based upon internal criteria 

built into the network. The majority of neural networks utilize the supervised learning 

method, as unsupervised learning is currently undergoing research. 

 

2.3.3 ANN Structure 

Artificial neural networks function as parallel distributed computing networks. Each 

node in the network is an artificial neuron. These neurons are connected together in various 

architectures for specific types of problems. It is important to note that the most basic function 
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of any ANN is its architecture. The architecture, along with the algorithm for updating the 

input weights of the individual neurons, determines the behavior of the ANN. Neurons are 

typically organized into layers, with connections between neurons existing across layers, but 

not within. Each neuron within each layer is fully connected to all neurons in the associated 

layer. This obviously leads to a vast amount of connections existing within the network, even 

with relatively few neurons per layer. 

 

Input Layer 

Individual neurons are used for each input of an ANN. These inputs could be collected 

data, or real world inputs from physical sensors. Pre-processing of the inputs can be done to 

speed up the learning process of the network. If the inputs are simply raw data, then the 

network will need to learn to process the data itself, as well as analyze it. This would require 

more time, and possibly even a larger network than with processed inputs. 

 

Hidden Layers 

The input layer is typically connected to a hidden layer. Multiple hidden layers may 

exist, with the inputs of each hidden layerôs neurons being fully connected to the outputs of 

the previously layerôs neurons. Hidden layers were given their names due to the fact that they 

do not see any real world inputs nor do they give any real world outputs. They are fed by the 

input layerôs outputs, and feed the output layerôs inputs. The number of neurons within each 

of the hidden layers, as well as the number of hidden layers themselves, determines the 

complexity of the system [8]. Choosing the right number for each is a major part of designing 

a working neural network for a given application. 
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Figure 2-8 Simple Artificial Neural Network  

 

Output Layer 

Each neuron within the output layer receives the output of each neuron within the last 

hidden layer. The output layer provides real world outputs. These outputs could go to another 

computer process, a mechanical control system, or even dumped into a file for analyzing. Like 

the output function of an individual neuron, the output layer may perform some sort of 

competition between outputs. This lateral inhibition can be seen in Figure 2-8 above.  
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Figure 2-9 Artificial Neural Network Layers  

 

2.3.4 ANN Learning 

A variety of different learning modes exists for determining how and when the input 

weights of the individual neurons are updated within a network. The types of learning are 

either supervised or unsupervised. The choice of learning method for a network drastically 

affects its resulting performance. 

 

Supervised 

Learning in a supervised mode starts with a comparison of the networks generated 

outputs and the desired outputs. Input weights of each neuron are adjusted to minimize any 

differences found. This process is repeated until the network is deemed to be accurate enough. 

After the training phase, the neuronsô weights are typically frozen, which allows the network 

to be used reliably. Another option is to let the network still learn online, but simply lower the 

rate at which the network will learn. The second option allows the network to adapt to any 

slight variations that it may come across. One of the most important things to do when 
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training a network is to carefully choose the data used for training. Typically data is separated 

into a training set and a much smaller test set. The training set is used to train the network to 

perform a task. The test set is used to verify that the network is able to generalize what it has 

learned to slight variations. Without this separation of data sets, it would not be known if the 

network simply memorized the data set without being able to generalize. 

 

Unsupervised 

Unsupervised learning is performed without any form of external reinforcement. The 

network contains within itself a method of determining when its outputs are not what they 

should be. This method of learning is not nearly as well understood as the supervised method. 

It requires that the network learn online. Current work has been limited to networks such as 

self-organizing maps, which learn to classify incoming data. Further developments with this 

type of learning would have uses in many situations where adaptation to new inputs is 

required regularly.  

 

Learning Rates 

The learning rate of a network is determined by many factors. Network architecture, 

size and complexity play a big role in the speed at which the network learns. Another factor 

that affects the learning rate is the learning rule or rules employed. Slow and fast learning 

rates each have their pros and cons. A lower rate will obviously take longer to arrive at a 

minimum error at the output. A faster rate will arrive more quickly, but has a tendency to 

overshoot the minimum. Both of these characteristics are shown in Figure 2-10. Some 
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learning rules use the best of both worlds, and start off with a high learning rate, and lower it 

gradually until a minimum is reached.  

 

 

 

Figure 2-10 Characteristics of Different Learning Rates 

 

Common Learning Laws 

Learning laws govern how the input weights of neurons within the network are 

modified. Typically, the error at the output is propagated back through the various layers of 

the network. The resulting error gradient is used in calculating the adjustment to each weight 

of the network to reduce the error. The exact direction the weights are adjusted and the 

magnitude of adjustment vary between the different learning laws. A few common learning 

laws include Hebbôs, Hopfieldôs, Delta, and Kohonen.  
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The three learning laws used in this thesis are gradient descent with momentum and 

adaptive learning rate, Levenberg-Marquardt [11], and conjugate gradient backpropagation 

with Polak-Ribiere updates [12].  

 

2.3.5 ANN Applications and Limitations 

Applications for artificial neural networks generally fall into one of five categories: 

prediction, classification, data association, data conceptualization, and data filtering. Each of 

these categories uses slightly different types of network architectures and learning laws. 

 

Prediction 

Artificial neural networks have successfully been created to perform various types of 

prediction. In general, the networks employed for prediction use input values to predict some 

output. An example of a financially desirable application is prediction of the best stocks in the 

market. Other applications include weather prediction and identification of people with risks 

for certain diseases.  

 

Classification 

A successful application of classification networks is with optical character 

recognition. Visual data is presented to the network and the network outputs what character 

the data most resembles. This thesis focuses on the classification of noisy transmission 

signals.  
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Data Association 

Data association is similar to classification, but the network also recognizes data that 

contain errors. With optical character recognition, the network might not only identify the 

characters that were scanned but also identify when the scanner is not working properly.  

 

Data Conceptualization 

The networks used for data conceptualization analyze the inputs to infer grouping 

relationships. Advertising would possibly utilize a data conceptualization network to extract 

from a database the names of those people most likely to buy a particular product. 

 

Data Filtering 

One of the first applications of neural networks dealt with data filtering. A network 

was developed that could filter out the echo in phone lines. 

 

Limitations 

A number of limitations currently exist which prevent neural networks from being 

more widespread. One of the major hurdles is the limited knowledge of how the brain truly 

learns. It is difficult to accurately model something that is not known well. The most 

significant limitation is the lack of highly parallel hardware available. Computers are 

normally serial in nature, which doesnôt correlate well with the parallel nature of neural 

networks. Specialized very large-scale integrated chips have been fabricated for artificial 

neural networks, but they are not widespread, and have seen limited success. 
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2.3.6 ANN Mathematical Model 

The following ANN model conforms to the representation used in the Matlab Neural 

Network Toolbox version 4.0.1 as well as in [13]. 

 

Neuron Model 

The input vector P  to a neuron is comprised of R  elements. The elements of the input 

vector are Rppp ...,, 21 . The input elements are multiplied by weighting factors Rwww ...,, 21 . 

The neuron transfer function f  takes as its input the weighted sum of the input vector and a 

neuron bias constant b . The weighted sum is equivalent to the dot product of the row vector 

w  and column vector p . Equations 2-14 and 2-15 define the output a  of the neuron: 
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 ( )bwpfa +=  (2-15) 
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Layer Model 

A layer of an artificial neural network containing S  neurons, and having R  inputs is 

considered. Each of the S  neurons contains R  weighting factors to the R  inputs. This results 

in a weight matrix jiW , , connecting the thj  input to the thi  neuron. The vector p , of length 

R , is the input vector to the layer. A bias vector b , of length S , represents the bias 

connections to each of the neurons. The output of the neuron layer, labeled a , is a vector of 

length S . It is given by equation 2-16.  

 ( )bWpfa +=  (2-16) 

 

Generic Network Model 

Superscripted integers are used to distinguish between elements of different layers. 

Two integers are used for elements connecting two different layers, such as a layer weight 

matrix. Note that jiIW ,  designates a weight matrix connecting the thj  input vector to the thi  

layer, whereas jiLW ,  is a weight matrix connecting the thj  layer to the thi  layer. This 

notation allows for the possibility of multiple input vectors, but usually only one input vector 

is specified. The output of the thi  neuron layer is described by equation 2-17, where L  is the 

number of layers and I  is the number of inputs: 
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Any combination of layer outputs can be considered the output of the neural network, where 

normally the last layer in the network is chosen. An example artificial neural network is 

shown in Figure 2-11. 
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Figure 2-11 Example Neural Network 

 

The mathematical model of the example network in Figure 2-11 above is depicted in 

equation 2-18. 

 ( )( )( )32111,111,222,333 bbbpIWfLWfLWfa +++=  (2-18) 

 

Also relevant to the discussion, is the limit on the connections allowable within a network. A 

delay must exist in the connection path between any neuronôs output and its input. It is only 

possible for the current output of any processing element to be dependent upon past outputs of 
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that same processing element. Some of the networks contained in this thesis contain recurrent 

connections. This means that one or more delayed outputs of one or more layers are 

connected to one or more layers whose output feeds the input of that layer. The difference 

between a recurrent and non-recurrent neural network is similar to the difference between 

finite impulse response (FIR) filters and infinite impulse response (IIR) filters. Like an IIR 

filter, the present output of a recurrent neural network is dependent upon past outputs of one 

or more layers. A third weighting matrix, designated ji

DLW , , connects delayed outputs of thj  

layer to the thi  layer. The delayed outputs of the thj  layer are given the designator i

Da . Given 

n  delayed versions of the output of a layer results in i

Da  as shown in equation 2-19. 

 [ ])()2()1( nkakakaa iiii

D ---= 3  (2-19) 

 

ji

DIW ,  is the weighting matrix connecting the delayed inputs, j

Dp , to the thi  layer. Equation 

2-20 shows j

Dp  with n  delayed versions of the input vector. 

 [ ])()2()1( nkpkpkpp iiii

D ---= 3  (2-20) 

 

Equation 2-21 is the resulting generic model for the output of the thi  layer of a recurrent 

network. L  is the number of layers, and I  the number of input vectors.  
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An Elman network is a recurrent network that contains a feedback from the first layer output 

to the first layer input. This feedback connection allows it to learn both temporal and spatial 
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patterns. The Elman network is one of the network architectures evaluated in this thesis for 

use as a digital communication receiver. 

  

2.3.7 Backpropagation 

Backpropagation is the method by which the gradient of a neural networkôs output 

error is calculated with respect to each of the weights of the network. The term 

backpropagation is often used to refer to a combination of the calculation of the gradient and 

the gradient descent algorithm. It is a supervised learning method that updates the weights of 

the network according to the delta rule, along the negative of the performance function 

gradient. The following is the derivation of the error gradient taken from [14] is reproduced 

here for the sake of completeness. iA  represents the set of neurons that are anterior to i  

meaning that their outputs serve as inputs to i . iP  represents the set of neurons that are 

posterior to i , to which i  is an input. First start with the output error of the network 

accumulated over every training point p , where 0t  is an output target and 0y  is an output 

unit. 
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The gradient is simply the derivative of this error with respect to each weight, ijw , of the 

network. 
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The gradient can be expanded into two terms. 
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The first term is the error of unit i , denoted iD. The second is 
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The gradient thus becomes 

 jiij yw D=D  (2-26) 

The second term is simply the forward activation of unit j . 
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The first term is the error of unit i , which can be expanded using the chain rule. 
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The first term of this is the error of unit h . The second term is the weight that connects unit i  

to unit h . 
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The third term is the derivative of the transfer function for unit i  evaluated at inet . 
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The resulting expression for the error of unit i  is 
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The error of output unit o is the difference between the target and the actual output. 
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 ooo yt -=D  (2-32) 

Note that the error is the derivative of the performance function, which in this case is the sum-

squared error. 
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Substituting all of these terms back into the gradient equation results in 
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The backpropagation of the error starts by using equation 2-32 to calculate the output error, 

and then uses equation 2-34 to determine the error gradient at each unit. The most basic 

algorithm updates the weights to follow along the negative error gradient, which is why it is 

often referred to as steepest descent. The weight update for this algorithm is shown in 

equation 2-35, with kw  as the vector of connection weights, kg  as the current gradient for all 

network weights, and ka  as the learning rate. 

 kkkk gww a-=+1  (2-35) 

 

Other variations of the algorithm include gradient descent with momentum, variable learning 

rate, resilient backpropagation, Levenberg-Marquardt, and various conjugate gradient 

methods. Each of these variations attempts to improve the speed of convergence and/or 

reduce the susceptibility of the network to home in on a local shallow minimum [11][12].  

 



 

 

36 

2.3.8 Gradient Calculation for Recurrent Networks 

Figure 2-12 shows a simple recurrent network (SRN) consisting of a single neuron and 

a delayed recurrent connection. 

 

Figure 2-12 Simple Recurrent Network 

 

The output for this SRN is: 
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The gradient for this SRN is now derived in order to highlight the differences of applying 

backpropagation to non-dynamic networks as opposed to those with dynamic connections. 

We start by expanding the second term of 2-24 with the specifics of the example SRN. 
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Note that the delayed recurrent connection has introduced a second term that is not present in 

equation 2-25. This result is expanded out further in the following equations. 
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The last term in 2-41 is the same as the last term in 2-24 with the exception that it is one step 

back in time. The difficulty of calculation the gradient for recurrent networks quickly 

becomes apparent as equation 2-41 is expanded further. Not only is the error gradient with 

respect to a given weight dependent on the source feeding the weight but also upon all past 

outputs and weights contained in the recurrent loop. These dependencies result in relatively 

large performance and storage requirements for learning algorithms that use the true gradient 

during training such as RTRL and BPPT [13][14][15]. A common way of calculating an 

approximation to the gradient is to ignore the effects of a given weight on all past neuron 

outputs. 
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This is often referred to as the Elman Gradient, and can be calculated by treating the previous 

outputs of neurons as inputs to the network. The differences between the Elman Gradient and 
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the true gradient decrease as the absolute values of the delayed and recurrent connection 

weights approach zero. 
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There are two main ways to minimize undesirable side effects of using the Elman 

Gradient to train recurrent networks. The first is to ensure that all recurrent connections are 

initialized to small non-zero values. The second is to use a relatively small learning rate 

during training. Both methods are used in this thesis to train recurrent and dynamic networks.  

 

2.4 Previous Work 

The oil and gas industry is highly competitive which tends to limit the amount of 

detailed research that is published. That being said, there have been a number of papers 

published on the use of neural networks in the digital communication field as well as a few 

papers on methods to improve MWD digital communication. There are also similarities 

between the type of networks used in this thesis and those used for pattern recognition. 

Gorodnichy [16] introduced a neuro-associative approach to recognition, which can 

both learn and identify an object from low-resolution low-quality video sequences. The 

network was able to incrementally learn via the pseudo-inverse learning rule. Face recognition 

tests were performed in which the network recognized faces from low-resolution video. The 

detection of objects through multiple frames of low-resolution video requires a single decision 

to be made given multiple sequential inputs. Similarly, some of the neural network receivers 

in this thesis process one portion of a received symbol at a time and must decide a single 
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decision from multiple sequential inputs. Two different post-processing techniques suggested 

by [8] are tested for the neural network receivers in this thesis. 

An artificial neural network approach to the signal decision problem of a digital 

communication receiver was presented by Fernandes [17]. The type of modulation scheme 

was limited to those with signal elements that belonged to a finite bidimensional constellation 

such as multilevel ASK, PSK and QAM. The neural network used was a multilayer 

perceptron and was trained using backpropagation with gradient-descent. The network 

effectively models a maximum-likelihood receiver. 

White [1] addressed the problem of EM detection in the presence of non-stationary 

noise by adaptively changing the transmission frequency of the BPSK coded signals. The 

algorithm uses estimates of the noise power spectral density to find spectral nulls at which to 

concentrate the power spectral density of the transmitted signal. Results showed a marked 

improvement in detection of transmitted EM signals using BPSK. The portion of the EM 

MWD system addressed by White [1] differs from that of this thesis, focusing primarily on 

the adapting characteristics of the transmitted signal to improve the bit error rate. This thesis, 

on the other hand, addresses the receiver filtering and decoding portions of the 

communication system shown in Figure 2-2. 

The method of spectral subtraction was applied to the EM MWD noise problem by 

Suh [3]. During gaps in communication, the power spectral density of the noise is calculated. 

It is then subtracted from the power spectral density of the noise corrupted transmission 

signal. The resulting power spectral density is used with the phase information from the noise-

corrupted signal to reconstruct the transmitted signal. Test results show a significant 
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improvement in the signal to noise ratio in the presence of typical rig surface noise. This 

addresses the receiver-filtering portion of Figure 2-2, but not the decoder. 
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Chapter 3    Artificial Neural Network Receiver  

This chapter presents the candidate artificial neural networks for use as receivers in low 

frequency baseband digital communication. The communication system in which the ANN 

acts as the receiver is described first. Details of the various types of ANNôs that are used as 

the receiver are then discussed. The chapter concludes with a detailed look at the methods 

used for training and performance evaluation of the ANN digital communication receivers. 

 

3.1 Digital Communication System 

The EM MWD digital communication system addressed in this thesis is the same as in 

Figure 2-2.  

3.1.1 Signal Transmission 

The signal generated by the EM MWD system down-hole travels through the earth 

and drill string to the antennas on the surface. Noise is added to the transmitted signal by two 

different paths. The first location of added noise is during the generation of the EM signal. 

Noise from the electronics of the MWD tool finds its way onto the transmitted signal. This 

noise is filtered out as the signal travels through the earth, which acts as a low pass filter. The 

second source of noise is the largest. The antennas on the surface pick up surface noise 

generated by machinery, lightning, other EM MWD tools, and other EM sources. 

Quantization noise and other receiver electronic also play a part, but are minimal compared 

with the other noise sources [1]. The first noise source is ignored in this thesis, as its 

contribution is miniscule with respect to the noise generated at the surface. 
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The transmitted signal and corrupting noise are then presented to the neural network 

receiver after optionally being filtered. The ANN receiver decides what symbol from the set 

of possible symbols was transmitted by the down-hole EM MWD tool. The weights of the 

ANN are then adapted to the characteristics of the incoming signal. The design of the neural 

network receiver does not address synchronization of the transmitter and receiver; 

synchronization is assumed. 

 

3.1.2 Waveform Coding 

The mapping of data to transmitted waveforms has a great effect on the performance 

of any communication system. Selection of the symbol set must take into account the 

expected noise, the bandwidth of the channel, available power, amidst many other application 

specific criteria. The artificial neural network receiver of this thesis attempts to correctly 

identify the transmitted waveforms in the presence of colored noise. The initial characteristics 

of the noise are unknown a-priori and therefore the type of waveform coding cannot be based 

upon the expected noise. The combination of a low bandwidth baseband channel with the 

requirement of low power communication with EM MWD systems limits the waveform 

coding possibilities. The optimal set of symbols for transmission in this case is out of the 

scope of this thesis. 

An orthogonal symbol set has the benefit that the bit distance between any two 

symbols in the set is the same. The bit distance between two symbols is the minimum number 

of bits that must be changed to convert one symbol to the other. Equal bit distances make the 

probability of correctly detecting any of the symbols in the presence of a given SNR the same, 
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when using a correlation receiver in the presence of AWGN.  This uniformity aids in 

analyzing the performance of the neural network receiver, as will be seen in the simulation 

results later on.  

Bipolar Baseband M-ary orthogonal signaling is used in this thesis. Every k bits of the 

data to be transmitted is converted into one of M waveforms. 

 kM 2=  (3-1) 

 

Equation 3-2 below shows an example of an orthogonal symbol set containing two symbols, 

with each symbol containing two digits [5].  
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Orthogonal symbol sets with k = N can be generated from the orthogonal codeword set for k 

= N-1. Equation 3-3 shows the case for k = 2, and equation 3-4 is the case for k>1. 
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The optimal number of neurons in the ANN receiver increases as the number of different 

symbols it must identify increases. The number of bits, k, is thus limited in order to reduce the 

computation requirements of the neural network simulations. The actual sets of symbols used 

are shown in equations 3-5 and 3-6.  
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The initial zero of each of the codes is used to help reduce any possible inter-symbol 

interference.  

3.2 ANN Receiver Architecture 

 

Figure 3-1 Flow Chart of a Simple Neural Network Receiver 
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This thesis evaluates a number of neural network architectures for use as EM MWD 

digital communication receivers. A neural network has an input layer, an output layer, and 

optional hidden layer(s). Some of the networks tested in this thesis have a single layer that 

serves as both the input layer and the output layer. Figure 3-1 shows an example of a neural 

network receiver. The following sections explain the details of the neural network receiversô 

architecture. 
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3.2.1 Network Inputs 

The received signal is digitized and then formatted to match the neural network 

receiver. The number of inputs of the network dictates how many sampled data points are fed 

to the network at a time. A neural network receiver having only a single input will process a 

received symbol one sample at a time in order to output a single decision. When the length of 

the sampled symbol is equal to the number of inputs, the entire symbol is presented to the 

network at the same time. In this case, the neural network receiver will output a single 

decision for every slice of data presented to it. Equation 3-7 gives the relationship between the 

number of samples per symbol N , the number of inputs I , and the number of data samples, 

K , processed per symbol by each input.  

 
K

N
I =  (3-7) 

 

Note that equation 3-7 does not specify which of the N  samples are fed to each input. 

In this thesis, the first input processes the first K  samples and the second input processes the 

next K  samples. For a simple example, consider a 4-bit symbol made up of 8 samples. 

,+*,+*,+*,+* 1
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BitBitBitBit

xxxxxxxx  

Figure 3-2 4-bit symbol made up of 8 samples 
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A network with four inputs used to process this symbol, would result in the first input 

processing the first two samples. The second input would process the 3
rd
 and 4

th
 samples. 

Since each bit of the symbol is made up of two samples, each of the four inputs would have 

processed a single bit.   

[ ]
[ ]
[ ]
[ ] 478

356

234

112

Inputxx

Inputxx

Inputxx

Inputxx

Ý

Ý

Ý

Ý

 

Figure 3-3 Input formatting for a 4 -input network used to process the symbol of Figure 3-2 

 

The neural network receivers will produce an output for each set of inputs presented to 

it. Some of the networks evaluated in this thesis had their input sizes matched to the bit length 

of the symbols. This results in each of the inputs of the network receiving data points from 

only one of the transmitted bits, similar to the example above. The choice of input size, as 

well as the number of recurrent connections, determines the balance between the spatial and 

temporal information that the neural network is attempting to learn. A completely spatial 

neural network will have the same number of inputs as samples per symbol, and will only 

receive one input vector per symbol during training and simulation. This type of detection is 

the exact same as image detection. As the number of inputs decreases, the number of input 

vectors presented to the network per symbol increases. The sampled symbol now is fed to the 

network as a sequence of vectors instead of one single large vector. The outputs of the 

network must also be post-processed over the multiple outputs per symbol in order to 

determine a single decision per symbol. This is similar to image detection using multiple 

frames of low-resolution video [16]. 
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3.2.2 Neuron Transfer Functions 

Non-linear transfer functions are utilized by the neurons in each layer for most of the 

neural network receivers. A linear transfer function of slope equal to one was also used with 

some of the single layer networks. The network outputs in this case, each reduce to a simple 

weighted sum of the inputs. Figure 3-4 shows the plots of the different transfer functions used. 

Neuron Transfer Functions
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Figure 3-4 Neuron Transfer Functions 
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The equations used for each of the transfer functions in this thesis are shown below. Note that 

Table 3-1 gives the Matlab function names that implement each transfer function as well as 

the names that will be used for the remainder of this thesis.  

 

Transfer Function Matlab Function Name Used In Thesis 

Hyperbolic Tangent 

Approximation 
tansig SIG 

Radial Basis Function radbas RB 

Linear purelin LIN 

Saturated Linear satlins SLINS 

Table 3-1 Transfer Function Names 
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3.2.3 Network Layers 

Each layer of a network behaves similarly to each other. Every neuron in a layer takes 

a weighted sum of its inputs, and passes it through a transfer function to produce a single 

valued output. There are three different types of layer interconnections used in the neural 

network receivers. The first type is a basic feed forward network as shown in Figure 2-11. 

The second is recurrent network in which the output of each layer is connected to its input. A 
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delay is introduced in this connection so the current output of each layer is dependant upon 

both the current inputs and the previous output of the layer. The final type uses cascaded 

connections, meaning that the inputs to each layer are made up of the inputs to the network as 

well as the outputs of each previous layer. A basic diagram of each type of layer interconnect 

used is shown in Figure 3-5. 

Layer 1 Layer 2Input Output

Layer 1 Layer 2Input Output

Layer 1 Layer 2Input Output

Delay Delay

Feed Forward

Recurrent

Cascade

 

Figure 3-5 Types of Network Layer Interconnections 

 

Figure 3-6, Figure 3-7, and Figure 3-8 show the details of the connections between the 

neurons of the different layers for each of the types of networks used. Note that the circles 

containing a ñBò represent the bias weights for each neuron.  
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Figure 3-6 Example Neuron Connections for Feed Forward Networks 

 

 

Figure 3-7 Example Neuron Connections for Recurrent Networks 
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Figure 3-8 Example Neuron Connections for Cascade Networks 

 

3.2.4 Network Output 

Each neuron in the output layer of the networks represents one of the symbols of the 

code set. The neuron with the largest output is determined to be the correctly decoded symbol 

for a given input. When the sampled data points of a single received symbol are not presented 

to the network at a single time instance, then post processing of the outputs must be 

performed to arrive at a single decision for a symbol. 

The network of Figure 3-3 is a simple example of this. If the code set used for the 

example contained two symbols then the network would have two output neurons. Each of the 

neurons would output a distinct value for each of the inputs it was presented. This means that 

there would be two output values for each neuron. Post processing is required to combine the 

two output values of each neuron into a single metric that can then be used to determine 

which neuron has the highest value. 
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Figure 3-9 Neural Network Inputs and Outputs 

 

The post processing method used is a simple weighted sum of the outputs. Equation 

3-12 shows how the multiple outputs,()1Ny  and ()2Ny  for each neuron N  of Figure 3-9, are 

weighted and summed to arrive at a single metric, NO . 
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When each of the weights is identical then the post processing is simply an averaging, or sum, 

of the individual outputs. Another weighting scheme used in this thesis has the weight 

assigned to each output increasing over the time it takes for a complete symbol to be 

presented to the network. 

 

3.2.5 Similarities with Correlation Receivers 

The simplest neural network receiver evaluated in this thesis is virtually identical to the 

architecture of a correlation receiver. A neural network that uses linear transfer functions, 
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consisting of a single layer, and having an equal number of inputs as samples per symbol, is 

essentially a bank of linear filters, which is the same architecture as a correlation receiver. In 

this application, they both have the exact same inputs, same outputs, and same number of 

filter weights. The difference between the two is the values of the weights and how they are 

determined. The weights of the neural network are trained whereas the correlation receiversô 

weights are set to be equal to stored prototypes of each symbol in the symbol set. In digital 

communication systems, the correlation receiver is the decision stage that follows any 

preprocessing, such as anti-aliasing filters. 

The stored prototypes used in the correlation receiver are ideally modified to account 

for the transmission channel being used. This makes the correlation receiver identical in 

function to that of a bank of matched filters, which is optimal in the presence of AWGN [5].  

What about situations when the noise is band-limited AWGN, or contains distinct spectral 

peaks? If the statistical characteristics of the noise are known a priori then it is still possible to 

use a bank of matched filters, which means a correlation receiver can still be optimum. It is 

expected that the simple linear neural network will adapt its weights towards that of the 

optimal correlation receiver. When the statistics of the noise is not known a priori then a 

linear neural network may be able to perform better than a correlation receiver. The more 

complex neural network architectures are expected to behave similarly and possibly even 

better due to the added non-linear processing capability.  
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3.3 Simulation Methods 

Simulations of the EM MWD digital communication system and the neural network 

receivers were performed with the Matlab Neural Network Toolbox. Scripts and functions 

were written to test the ability of a static neural network to recognize transmitted symbols in 

the midst of a wide range of signal to noise ratios for different types of noise.  

 

3.3.1 AWGN Generation 

The signal to noise ratio definition used in this thesis is the ratio of signal power to 

noise power. 
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The first step in generating AWGN for a specific SNR is to calculate the average 

power of the signal. With N equal to the number of samples in the signal ()ks , the average 

power of the signal is given by equation 3-14.  
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The next step is to generate an initial random noise signal ()kn¡  of length N with a 

normal distribution. The function randn is used to generate such a signal with Matlab. The 

average power of the noisy signal is then calculated. 

 () ( )Nrandnkn ,1=¡  (3-15) 
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The desired average noise power nP  is determined by combining equations 3-13 and 

3-14.  
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The following equations show the derivation of the required noise-scaling factor that 

results in the desired average noise power. 
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3.3.2 Colored Noise Generation 

White noise has a power spectral density that contains an equal amount of energy in 

every frequency band, for a given bandwidth. This means that there is as much energy in the 
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0Hz to 100Hz band as in the 1000Hz to 1100Hz band for white noise. The PSD of pink noise 

has an equal amount of energy contained in every octave. It has just as much energy in the 

50Hz to 100Hz band as in the 1kHz to 2kHz band. The PSD of pink noise is equal to 1/f, 

where f is the frequency. Equation 3-22 shows the method used to generate the PSD for the 

non-white noise used during simulations. This method allows for generation of noise 

containing spectral peaks or plateaus with the power spectral density decreasing at various 

rates as the frequency moves farther away from the peak or plateau. BW  is the bandwidth of 

the plateau, CF  is the center frequency of the plateau or peak, and b determines the rate at 

which the PSD decreases as the frequency deviates from the center frequency. Pink noise is 

generated by setting b to 1, BW  to 0, and CF  to 0.  
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3.3.3 Sampled Noise Data 

Noise sampled at various rig sites was used to corrupt simulated transmission signals 

for training and evaluating the neural network receivers. The data acquired was separated into 

sections; one for training, and one for testing. This ensures that the inputs to the networks 

during testing are not identical to the inputs that the networks were trained on. Dividing the 

noise sources in this manner helps test each networkôs ability to generalize. The noise data is 

scaled as described in section 3.3.1 before being added to the transmission signals. Some tests 
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were also performed where the noise used for testing was taken from the same section used 

for training. The point in doing so is to observe the performance of the networks in an ideal 

case.  

 

3.3.4 EM MWD Digital Communication Simulation 

The first step in simulating an EM MWD digital communication system is generating 

a transmission signal from a known symbol set using a given pulse width and sampling 

frequency. In order to mimic typical EM MWD communication characteristics, a 200 Hz 

sampling frequency (5ms sampling period) and a 50ms pulse width is used. Using these 

values, with the each symbol in the set shown in equation 3-5, results in 40 samples per 

symbol. The resulting sampled symbol set is shown in Figure 3-10 
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Figure 3-10 Bipolar 4-Ary Orthogonal Symbol Set Sampled at 200Hz with 50ms pulse width 

 

Combining multiple random permutations of the symbol set results in a transmission 

signal that contains equal occurrences of each symbol.  
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Figure 3-11 Transmission Signal consisting of 2 random permutations of the symbol set 

 

A multiple pole low pass filter chain is used to mimic the filtering that occurs as an 

EM signal passes through the earth. The simulated transmission signal is passed through this 

filter chain before noise is added.  

The noise used for corrupting the transmission signal is either generated or taken from 

real world samples. Varying amounts of signal to noise ratios are generated by scaling the 

corrupting noise as detailed in sections 3.3.1. The noise added to the transmission signal 

represents the noise picked up by the antenna in an EM MWD system. 

More filtering is performed after the noise is added, which corresponds to the various 

analog and digital filters used in a typical receiver. Some of the simulations in this thesis use 
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no post-noise filtering whereas others use a second order low pass filter with varying cutoff 

frequencies and Q values.  

The final step is to pass the resulting signal to both the neural network receiver and the 

correlation receiver. Figure 3-12 shows an example of a transmitted signal at the different 

stages of simulation. 

 

Figure 3-12 EM MWD Simulation Signal Stages 
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3.3.5 Network Training 

The ANNôs used in this thesis are trained offline in batch mode. Online training was 

not attempted. The term batch refers to the method of calculating the error gradient over 

multiple input vectors, which constitutes a batch, as opposed to online training, which uses a 

single input vector. Each batch is generated by the method shown in section 3.3.4 and 

contains multiple sets of symbols. Each set consists of a random permutation of all the 

symbols of the symbol code set. This results in each symbol in the code set occurring an equal 

number of times in the training batch. Each set of symbols within the transmitted signal can 

be corrupted by different signal to noise ratios as well as different filters. There is a constraint 

on the number of symbol sets present in the training batch in order to give the same amount of 

training time for each possible combination of SNR and filter type. The number of symbol 

sets must be a multiple of the number of possible combinations of SNR and filter type. Using 

multiple SNRôs and multiple filters with batch mode allows the gradient to be calculated over 

a wide operating range. The resulting trained network should perform well over the entire 

range of SNRôs and filters used during training. Multiple ANNôs are trained with the exact 

same inputs and targets during a training session. The training signal is formatted to match the 

input size of each network. A simple example will now be given using the symbol code set 

shown in Figure 3-10.  

Let us begin with two ANNôs, net
1
 and net

2
, having input sizes of 4 and 8 

respectively. We desire to train these networks to function as digital communication receivers 

in the presence of AWGN with SNRôs in the 5dB to 15dB range. We will train the networks 

using signals with SNRôs of 5dB, 10dB, and 15dB in order to accomplish this. Second order 

low pass filters will approximate the filtering due to the earth. Two different filters will be 
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used during training to represent the range of possible filtering expected. The first filter will 

have a corner frequency of 80Hz, and a Q value of 0.3. The second filter will have a corner 

frequency of 10Hz, and a Q value of 0.5. The selection of corner frequencies and Q values for 

this example is meant to include the wide possible range of transmission channels 

encountered from drill site to drill site [22]. The number of symbol sets contained in the batch 

size must be a multiple of the number of combinations possible by choosing one SNR and one 

filter. The number of combinations is six in this case. Using six symbol sets in the training 

batch, with each symbol set containing four symbols, and each symbol containing 40 samples, 

results in a total of 960 samples. In this case, each symbol set will be modified by a unique 

combination of SNR and filtering. If 12 symbol sets had been chosen, then two symbol sets 

would be modified by every unique combination of SNR and filtering. Each unique 

combination of SNR and filtering will be used to simulate an EM MWD transmission, as 

described in section 3.3.4. Figure 3-13 shows one possible training signal of minimum length 

for this setup. 
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Figure 3-13 Signal Generation for Network Training a) Transmitted symbol idôs consisting of 6 random 

permutations of the symbol set.  b) Corresponding Digital Signal.   c) 1
st
 half is filtered by 80Hz LPF, 2

nd
 

half is filtered by 10Hz LPF.    d) 3 different levels of noise added to the filtered signal.   e) SNR levels of 

resulting signals. 

 

Once every portion of the training batch has been simulated, then the resulting 

corrupted transmission signal is formatted to match the input size of each network. The input 

to net
1
 must be a sequence of vectors of length 4, whereas input vectors of size 8 are required 

for net
2
. See 3.2.1 for information on the relationship between input size and number of input 

vectors per symbol. The training batch will therefore be formed into 240 vectors of length 4 

for net
1
, and 120 vectors of length 8 for net

2
. Figure 3-14 below shows an example of filtered 
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input signal, as it would be formatted for net
2
. The figure shows the settling time due to the 

filtering. 

 

 

Figure 3-14 Example of input formatting for net
2
.  The training input signal of plot i is divided up for the 8 

input neurons as shown in plots a through h. Plot j shows the symbols used for training. 

 

Each output neuron of a network represents one of the symbols in the code symbol set. 

The corresponding output neuron for a transmitted code must be trained to output a 1 when 

that code is presented to the network. Therefore, when a network is being trained to identify 

the 1
st
 symbol of a symbol set, than the target value for the 1

st
 output neuron would be a 1. For 
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the 2
nd

 symbol the target value for the 2
nd

 neuron would be set to 1. The target values for all 

neurons that do not correspond to the symbol being identified are set to 0 or ï1 depending on 

the output neurons transfer function. Figure 3-15 shows training targets for a typical training 

batch.  

 

Figure 3-15 Training targets for a symbol set containing 4 symbols
 

 

 The overall training algorithm is shown in Figure 3-16. 
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Figure 3-16 Neural Network Receiver Training Flow Chart 

 

3.3.6 Receiver Testing 

Testing of the simulated digital communication receivers of this thesis involves 

generating symbol error rate (SER) plots. These plots are used to compare the performance of 

various types of receivers. Figure 3-17 shows the process flow for testing of the neural 

network receivers, as well as the correlation receivers.  
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Figure 3-17 EM Di gital Communication Receiver Performance Evaluation Flow Chart 

 

The method for generating an input to the receivers for testing is almost identical to 

what is done for training the neural networks. The main difference is that only one SNR value 

is used at a time during testing, whereas training involves using multiple values in a single 

batch. The SNR values used during testing does not always match the values used during 

training in order to test the various networksô ability to generalize. 

 In order to obtain tight confidence intervals around the SER, as was discussed in 

section 2.2.3, it is necessary to simulate a large number of transmitted symbols. As was done 

in the first phase, random orders of symbols are put together to create a transmission signal. 

All the networks are then simulated with this signal after it has been filtered and corrupted 

with noise. A tally of the total number of errors for each receiver is kept. The receivers are 

repeatedly simulated until a minimum number of errors occur or a maximum number of 

symbols are transmitted. All of this is repeated with varying signal to noise ratios to obtain the 

data needed for the SER plots. 
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3.3.7 Correlation Receiver Implementation 

Correlation receivers match a sampled signal with the most likely symbol in the symbol 

set. In order to do this the correlator must store copies of the symbols contained in the set. The 

earth and any preprocessing the receiver implements distort the signal that is seen by the 

correlator. For this thesis, the stored copies of the symbols are ideal in the sense that they are 

distorted by the exact filters that the transmitted signals pass through. If no noise corrupts the 

transmitted signals, than the received signal will exactly match one of the stored symbols [5]. 

In the real world, the transfer function of the earth is unknown and must be estimated. 

Correlation receiver performance improves as the accuracy of the estimation increases.  
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Chapter 4    Simulations and Results 

This chapter contains the results of numerous ANN digital communication receiver 

simulations. Each simulation contains a few different neural network architectures and/or 

training parameters that are trained and tested with exactly the same inputs. The variations in 

architectures include the number of layers, layer sizes, input sizes, transfer functions, as well 

as the inclusion or exclusion of recurrent connections. Variations in training parameters 

include number of epochs, batch size, learning rate, and training algorithms. Multiple ANNs 

were simulated for each variation, each of which was initialized with different connection 

weights. A single correlation receiver is also included in each simulation for performance 

comparison. 

M-ary bipolar orthogonal signaling was used with k set to 2 and 3, corresponding to 4 

and 8 symbols per set respectively. Six different noise sources were used during simulations. 

The first noise source is AWGN, which is the typical corrupting noise source for measuring 

the performance of a digital communication receiver. The second type of noise has a non-flat 

power spectral density. Various PSD shapes were used during simulations. The last four noise 

sources are actual sampled noise data taken from drilling sites. 

4.1 Presentation Format 

Each test variation will be presented by two figures and two tables. First, a figure 

depicting the connections between the different layers for each type of network is given. This 

is followed by a table that details the network architecture as well as the training and test 

parameters used. The symbol error rate (SER) results from each test are then shown 

graphically in a modified waterfall plot. 
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Figure 4-1 Example SER Plot. The circled bars correspond to the SER for the receivers at a SNR of ï7dB.  

 

The values used in generating the SER plot are finally tabulated along with the total number 

of symbols transmitted for each network. An example of the tabulated SER data is shown 

below. 

Receiver -19dB -15dB -11dB -7dB -3dB

(40)-4 0.51719 0.37085 0.18211 0.03498 0.00080

(20)-4 0.51638 0.37110 0.18383 0.03542 0.00075

(8)-4 0.53249 0.39596 0.21138 0.05178 0.00268

(4)-4 0.54432 0.41509 0.24211 0.07648 0.00833

correlator 0.51465 0.36817 0.17876 0.03289 0.00068

# Symbols Tested 42,600 42,600 42,600 42,600 42,600

SNR

 

Table 4-1 Example SER Data Table 

 

Each of the receivers tested are shown in the first column. Each row contains the symbol error 

rate (SER) for the receiver at different SNR levels, which are shown in the column header. 

The last row shows the total number of symbols transmitted for each SNR level during the 
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testing of the receivers. The SER is the ratio of symbol errors to total symbols transmitted, 

which should not be confused with bit error rate (BER). A SER of 0.1 indicates that 10 

percent of the symbols used during testing were incorrectly decoded.   

 

4.2 Notes on Simulations and Results 

A training epoch is the term used to denote a single training iteration. During each epoch, 

every symbol in the training batch is presented to the network and the error for each output 

neuron is accumulated. After all symbols have been presented, the error is used to determine 

the change to the weights and biases of the network according to the training function. See 

section 2.3.7 for more information about backpropagation.  

The size of the training batch is a multiple of the number of symbols in the codeset 

multiplied by the number of training SNR levels. Typically, there will be 200 or 300 

occurrences of each symbol for every training SNR level, with the symbol order randomly set. 

For example, a training epoch for networks using a codeset of 4 symbols and 3 training SNRs 

would result in a batch size of 3,600 if each combination of symbol and SNR was repeated 

300 times.  

Multiple training epochs make up a training session. In this thesis, the number of epochs 

is normally set to 100. Each of the epochs in a training session uses the exact same training 

batch. Multiple training sessions are used to provide more examples for each network to train 

with while not requiring excessively large batch sizes. The use of multiple training sessions 

should also help the networksô ability to generalize. The number of training sessions is usually 



 

 

73 

set to 2. Using these numbers results in each network having its weights updated 200 times 

before the network is tested to determine its SER. 

The performance metric used in this thesis is the symbol error rate (SER) and not the bit 

error rate (BER). Each symbol transmitted results in either a successful reception or a failure. 

The calculation of the SER is simply the number of symbols that were not correctly identified 

by the receiver, divided by the total number of symbols sent. The format of the SER plots 

used in this thesis is not the same as the standard waterfall plots typically used in digital 

communications. The reason for deviating from this standard is to make it easier to visually 

distinguish the SER of different networks plotted on the same plot. Notice that the SER plots 

contain bars that stem from the point 0.1, and reach down or up to the SER for each network 

tested. The reason for this is that a SER of 0.1 in EM MWD communication is an estimate of 

the upper limit that would allow a drilling operation to successfully continue. The point at 

which the bars change from extending upwards to extending downwards marks the minimum 

operable SNR for that network.  

Multiple networks are simulated for each of the neural network receiver architectures. 

Each of the networks of a given type is initialized with different weights and bias values. The 

average performance of the networks is used as an indication of the performance for that 

specific type of network architecture. The reason for having multiple networks is to show that 

the networks can consistently converge to a good solution from different starting points.  

The exact definitions of all the neuron transfer functions used are given in section 3.2.2. 

They will be referred to as SIG, RB, LIN, and SLINS. 
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4.3 Default Parameters for Training Functions 

There are three different training functions used for the networks in this thesis. To 

simplify the graphs and tables they will be given shorter names. The function GDX 

implements a gradient descent with momentum and adaptive learning rate.  

 kckck gmwmw ÖÖ+DÖ=D - a1  (4-1) 

 kkk www D+=  (4-2) 

This training function is used in the majority of the simulations. The learning rate, a, 

and momentum constant, cm , will be specified for each network that uses GDX. The learning 

rate is increased after every weight adaptation that results in a performance increased. 

Likewise, whenever the performance decreases due to a change in weights, the learning rate is 

decreased and the change to the weights is undone. The default parameters that are used for 

GDX unless otherwise specified are shown in the following table. 

Parameter VALUE  

Ratio to increase learning rate 1.05 

Ratio to decrease learning rate 0.7 

Maximum performance increase allowed 

before learning rate is decreased 
1.04 

Momentum Constant 0.7 

Table 4-2 Default Parameters for Training Function GDX 
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The function CGP implements a conjugate gradient backpropagation with Polak-

Ribiere updates. With all conjugate gradient methods, the direction in which the weights will 

be updated, kwD , is a combination of the current gradient, kg , and the previous update 

direction, 1-D kw . 

 Zwgw kkk 1-D+-=D  (4-3) 

 kkk www DÖ+=+ a1  (4-4) 

The parameter Z  is updated according to the Polak-Ribiere variation [12]. 
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The reason for using the Polak-Ribiere variation is that it performed the best during initial 

comparisons between a few conjugate gradient methods. The parameter that affects the 

performance of CGP is the line search function used to determine the step size, a, to take 

along the search direction, kwµ .  The line search used is based on Charalambousô method, 

which is a hybrid search using cubic interpolation and a type of sectioning. The step size is set 

by the line search method so that it results in reaching a minimum along the search direction.  

 The last training function used is backpropagation utilizing the Levenberg-Marquardt 

algorithm (LM). The LM algorithm interpolates between the Gauss-Newton algorithm and the 

gradient descent method. A dampening factor, m, is varied to cause the algorithm to act more 

like gradient descent when further away from the minimum and like Gauss-Newton as it 

approaches the minimum. The parameter m is increased whenever the change in weights of 

the network results in a performance increase. Likewise, it is decreased whenever the 
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performance decreases. The algorithm uses an approximation to the Hessian as is shown 

below. Note that J  is the Jacobian in the following equations. 

 JJH T=  (4-6) 
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The default parameters for the LM algorithm are shown below. 

Parameter VALUE  

Ratio to increase m 10 

Ratio to decrease m 0.1 

Initial m 0.001 

Table 4-3 Default Parameters for Training Function LM 

 

4.4 Simulations Using AWGN and 4 Symbols 

4.4.1 Single Layer Linear Network Simulations 

Each neural network simulated in this section contains a single layer. The number of 

neurons contained in the layer is equal to the number of symbols. The output of each neuron 

is an output of the network.  

Layer 1Inputs

 

Figure 4-2 Layer Connections for Neural Networks of Figure 4-3 

 



 

 

77 

Parameter Value Value Value Value 

Network Identifier (40)-4 (20)-4 (8)-4 (4)-4 

Number if Inputs 40 20 8 4 

Layer 1 Neurons 4 4 4 4 

Layer 1 Transfer Function LIN LIN LIN LIN 

Training Function GDX GDX GDX GDX 

Initial Learning Rate 0.05 0.05 0.05 0.05 

Number of Networks  3 3 3 3 

Training Batch Size 3,600 Symbols 3,600 Symbols 3,600 Symbols 3,600 Symbols 

Training SNR(s) -11, -7, -3 dB -11, -7, -3 dB -11, -7, -3 dB -11, -7, -3 dB 

Training Epochs per 

Training Session 
100 100 100 100 

# of Training Sessions 2 2 2 2 

Table 4-4 Training and Test Parameters for Figure 4-3 

 

 

Figure 4-3 Single Layer Linear Network Simulation Results for AWGN with 4 Symbols 
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Receiver -19dB -15dB -11dB -7dB -3dB

(40)-4 0.51719 0.37085 0.18211 0.03498 0.00080

(20)-4 0.51638 0.37110 0.18383 0.03542 0.00075

(8)-4 0.53249 0.39596 0.21138 0.05178 0.00268

(4)-4 0.54432 0.41509 0.24211 0.07648 0.00833

correlator 0.51465 0.36817 0.17876 0.03289 0.00068

# Symbols Tested 42,600 42,600 42,600 42,600 42,600

SNR

 

Table 4-5 SER Data for Figure 4-3 

 

It is clear that the correlation receiver outperforms all the simulated networks. 

However, as the input size increases, the performances of the networks approach that of the 

correlation receiver. Figure 4-4 shows the connection weights of the first trained network 

containing 40 inputs. Notice how the connection weights of the trained network relate to the 

ideal reference signals used by the correlation receiver. The network weights have gravitated 

towards the best possible configuration of weights for the AWGN noise source, which is 

known to be a correlation receiver [5]. 
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Figure 4-4 Input Weights Compared with Correlation Receiver Reference Signals.  

The input weights are from the 1
st
 network of Figure 4-3 to each of the 4 neurons. 
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Figure 4-5 Input weights for the 4
th 

network of Figure 4-3 
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Figure 4-6 Input weights for the 7
th

 network of Figure 4-3 
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Figure 4-7 Input Weights for the 10
th
 network of Figure 4-3 

 

The degraded performance of the single layer linear networks with smaller input sizes 

can be attributed to the reduction in information available to the network at each decision 

point. The network must use the same connection weight for all sampled data points that are 

fed through a particular input. The sampled points for a single transmitted symbol must be 

presented N points at a time where N is the number of inputs to the network. When the 

number of inputs is less than the total number of samples that make up a symbol, which is 40 

in this case, then each input will receive multiple data points from a single sampled symbol. 

 For the case with an input size of four, each input will receive the sampled data points 

for a single bit of the sampled symbol. Each of these sampled data points are fed to the 

network one at a time, and the output of the network is averaged over the entire time it takes 
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for a symbol to be presented to the network. Figure 4-4 above shows that the ideal weights are 

not uniform over an entire sampled bit from the code set. The architecture of the single layer 

linear networks used in this simulation prevents the networks from weighting a single input 

differently over time. 

One way to address this is to change the post-processing method from a flat average to 

a weighted average. Performance would be expected to improve the greatest for networks that 

have the same number of inputs as bits contained in each symbol. The same trained networks 

simulated in Figure 4-3 were re-simulated with a weighted post-processing and the results are 

shown in Figure 4-8. 

 

 

Figure 4-8 Single Layer Linear Network Simulation Results with Weighted Post Processing For AWGN 

with 4 Symbols. The exact same parameters were used as in Figure 4-3 
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Receiver -19dB -15dB -11dB -7dB -3dB

(40)-4 0.52174 0.37005 0.17997 0.03498 0.00067

(20)-4 0.52244 0.37619 0.18741 0.03922 0.00098

(8)-4 0.54756 0.40134 0.22097 0.05732 0.00295

(4)-4 0.53750 0.40248 0.22352 0.05801 0.00317

correlator 0.51756 0.36649 0.17379 0.03379 0.00070

# Symbols Tested 17,200 20,200 29,000 42,200 60,000

SNR

 

Table 4-6 SER Data for Figure 4-8 

 

The network with four inputs saw a reduction in symbol error rate whereas the rest of 

the networks slightly increased. The ideal weighting of the outputs over time should be related 

to the channel characteristics that the transmission signal passes through on the way to the 

receiver. For practical applications, an estimation of the channelôs transfer function may result 

in a good tradeoff between the performance of a correlation receiver, and the reduced 

computation afforded by a network with an equal number of inputs as bits in each symbol.  

 

4.4.2 Single Layer Linear Recurrent Network Simulations 

The results of adding a recurrent connection to the single layer linear network are 

shown in Figure 4-10. The gradient calculation for the simulations shown was not the true 

gradient, but rather an approximation. Simulations of recurrent networks in the Matlab 

environment took considerably more time than much larger non-recurrent networks. In 

simulations not included in this thesis, using the true gradient did not result in considerable 

performance benefits, but did require a much larger amount of computing time. Thus, an 

approximation to the true gradient, as described in section 2.3.8, is used in all recurrent 

simulations in this thesis. 
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Layer 1Inputs

 

Figure 4-9 Layer Connections for Neural Networks of Figure 4-10 

 

Parameter Value Value Value Value 

Network Identifier (40)-4R (20)-4R (8)-4R (4)-4R 

Number if Inputs 40 20 8 4 

Layer 1 Neurons 4 4 4 4 

Layer 1 Transfer Function SLINS SLINS SLINS SLINS 

Training Function GDX GDX GDX GDX 

Initial Learning Rate 0.05 0.05 0.05 0.05 

Number of Networks  3 3 3 3 

Training Batch Size 1,200 Symbols 1,200 Symbols 1,200 Symbols 1,200 Symbols 

Training SNR(s) -11, -7, -3 dB -11, -7, -3 dB -11, -7, -3 dB -11, -7, -3 dB 

Training Epochs per 

Training Session 
150 150 150 150 

# of Training Sessions 2 2 2 2 

Table 4-7 Training and Test Parameters for Figure 4-10 
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Figure 4-10 Single Layer Linear Recurrent Network Simulation Results for AWGN with 4 Symbols 

 

Receiver -19dB -15dB -11dB -7dB -3dB

(40)-4R 0.56841 0.43130 0.23423 0.06250 0.00520

(20)-4R 0.54749 0.40832 0.22091 0.05699 0.00282

(8)-4R 0.55703 0.43478 0.26909 0.10844 0.02245

(4)-4R 0.57170 0.46236 0.32227 0.17176 0.07346

correlator 0.51419 0.36672 0.17807 0.03338 0.00055

# Symbols Tested 102,600 102,600 102,600 102,600 102,600

SNR

 

Table 4-8 SER Data For Figure 4-10 

 

The recurrent networksô performance is worse than the results of the single layer linear 

networks. A modification to the post-processing of the recurrent networkôs outputs results in 

improved performance for the networks that are fed a single symbol portions at a time. The 

post-processing method used in Figure 4-10 was a simple flat average of the networkôs output 

for a single symbol. Note the reduced symbol error rate in Figure 4-11. The exact same 

trained networks of the previous figure were used, but the post-processing method more 






















































































































































































