
 i

A NEURAL NETWORK RECEIVER FOR EM -MWD COMMUNICATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Timothy P. Whitacre

June 2011

 ii

© 2011

Timothy Paul Whitacre

ALL RIGHTS RESERVED

 iii

Committee Membership

Title: A Neural Network Receiver for EM-MWD Communication

Author: Timothy P. Whitacre

Date Submitted: June 2011

Committee Chair: Xiao-Hua (Helen) Yu

Committee Member: Samuel Agbo

Committee Member: Bryan Mealy

 iv

Abstract

A Neural Network Receiver for EM-MWD Communication

Timothy P. Whitacre

Baseband digital communication in electro-magnetic measurement while drilling

(EM-MWD) systems is often corrupted by non-white surface noise. The inability to reliably

decode the transmitted signals in a noisy environment limits the depth at which EM-MWD

systems can operate. Correlation receivers, which are optimal in the presence of additive

white Gaussian noise, can be sub-optimal in the presence of various types of field noise at

different drilling sites.

This thesis investigates the application of artificial neural networks (ANN) as

communication receivers in EM-MWD baseband digital communication systems. The

performances of various ANN architectures and training algorithms are studied and compared

with conventional correlation receivers via computer simulations. Standard symbol error rate

(SER) test results show that the NN receiver is able to adapt to site-specific noise and thus

outperforms the traditional correlation receiver.

 v

Acknowledgements

 First and foremost I want to acknowledge and thank my amazing wife. You have been

my biggest support on this long journey to finish my degree. There were far too many nights

stolen from you by this endeavor and I am excited to have the freedom to spend more time

with you and our family. I next want to thank my advisor, Helen Yu, who has graciously

helped me over many years with her time and advice. I am grateful for my employer, Applied

Technologies, who hired a young man who didnôt know he had so many years ahead of him

before finishing his degree. I also would like to thank my thesis committee members, who

have taken time out of there busy schedules for my thesis defense. Last and definitely not

least, I want to thank God for blessing me more than I could ever imagine.

 vi

Table of Contents

LIST OF TABLES ... IX

LIST OF FIGURES ... XI

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 BACKGROUND ... 4

2.1 MWD SYSTEMS .. 4

2.1.1 MUD Pulse MWD Systems ... 5

2.1.2 EM MWD Systems .. 5

2.1.3 EM Advantages and Limitations ... 7

2.2 DIGITAL COMMUNICATION .. 7

2.2.1 Performance Evaluation ... 8

2.2.2 Signal to Noise ratio ... 9

2.2.3 Statistical Validity of Estimated SER... 10

2.2.4 Correlation Receivers ... 12

2.3 ARTIFICIAL NEURAL NETWORKS ... 13

2.3.1 Biological Neural Network Fundamentals .. 13

2.3.2 Artificial Neurons ... 18

2.3.3 ANN Structure .. 21

2.3.4 ANN Learning .. 24

2.3.5 ANN Applications and Limitations .. 27

2.3.6 ANN Mathematical Model .. 29

2.3.7 Backpropagation .. 33

2.3.8 Gradient Calculation for Recurrent Networks ... 36

2.4 PREVIOUS WORK ... 38

CHAPTER 3 ARTIFICIAL NEURAL NE TWORK RECEIVER 41

3.1 DIGITAL COMMUNICATION SYSTEM ... 41

3.1.1 Signal Transmission ... 41

3.1.2 Waveform Coding ... 42

3.2 ANN RECEIVER ARCHITECTURE .. 44

3.2.1 Network Inputs ... 46

3.2.2 Neuron Transfer Functions ... 48

3.2.3 Network Layers .. 49

3.2.4 Network Output .. 52

3.2.5 Similarities with Correlation Receivers... 53

3.3 SIMULATION METHODS ... 55

3.3.1 AWGN Generation.. 55

3.3.2 Colored Noise Generation .. 56

3.3.3 Sampled Noise Data ... 57

 vii

3.3.4 EM MWD Digital Communication Simulation .. 58

3.3.5 Network Training ... 62

3.3.6 Receiver Testing ... 67

3.3.7 Correlation Receiver Implementation ... 69

CHAPTER 4 SIMULATIONS AND RESU LTS .. 70

4.1 PRESENTATION FORMAT .. 70

4.2 NOTES ON SIMULATIONS AND RESULTS.. 72

4.3 DEFAULT PARAMETERS FOR TRAINING FUNCTIONS .. 74

4.4 SIMULATIONS USING AWGN AND 4 SYMBOLS ... 76

4.4.1 Single Layer Linear Network Simulations ... 76

4.4.2 Single Layer Linear Recurrent Network Simulations ... 84

4.4.3 Single Layer Non-Linear Network Simulations ... 88

4.4.4 Multi-Layer Non-Linear Network Simulations .. 91

4.5 SIMULATIONS USING AWGN AND 8 SYMBOLS ... 107

4.5.1 Varying Input Size .. 107

4.5.2 Cascade Networks .. 110

4.6 SIMULATIONS USING NON-AWGN AND 4 SYMBOLS .. 112

4.6.1 Varying Training Algorithm.. 116

4.6.2 Varying Noise Color ... 118

4.6.3 Frequency Domain Generated Shaped Noise .. 122

4.7 SIMULATIONS USING NON-AWGN AND 8 SYMBOLS .. 126

4.8 SIMULATIONS USING FIELD FILE #1 ... 131

4.8.1 Training and Testing With The Same Noise Data .. 132

4.8.2 Training and Testing With Separate Noise Data ... 135

4.9 SIMULATIONS USING FIELD FILE #2 ... 136

4.9.1 Training and Testing With The Same Noise Data .. 137

4.9.2 Training and Testing With Separate Noise Data ... 138

4.10 SIMULATIONS USING FIELD FILE #3 ... 139

4.10.1 Training and Testing With The Same Noise Data .. 140

4.10.2 Training and Testing With Separate Noise Data ... 141

4.11 SIMULATIONS USING FIELD FILE #4 ... 142

4.11.1 Training and Testing With The Same Noise Data .. 143

4.11.2 Training and Testing With Separate Noise Data ... 144

4.12 SUMMARY OF SIMULATIONS AND RESULTS .. 146

CHAPTER 5 CONCLUSIONS AND FUTURE WORK ... 148

CHAPTER 6 REFERENCES ... 150

APPENDIX A SOURCE CODE ... 153

A.1 NOISE GENERATION SOURCE CODE ... 153

A.1.1 GenerateNoiseDB2.m ... 153

A.1.2 GenerateNoiseBetaShaped.m .. 153

A.1.3 NoiseFBM3.m ... 154

 viii

A.1.4 getNoiseFromFile3.m ... 155

A.2 CORRELATION RECEIVER SOURCE CODE .. 157

A.2.1 corrReceiver.m ... 157

A.3 SUPPORT FUNCTIONS SOURCE CODE .. 158

A.3.1 GenerateOrthogonalPatterns.m .. 158

A.3.2 genSig.m ... 158

A.3.3 scaleNoiseSNR.m .. 158

A.3.4 tapSampledSignal.m ... 158

A.4 TRAINING SOURCE CODE ... 159

A.4.1 recTrain2.m .. 159

A.5 TEST SOURCE CODE .. 161

A.5.1 recTest2.m .. 161

A.6 EXAMPLE SIMULATION SCRIPTS... 164

A.6.1 evalAWGN_4c_25.m ... 164

A.6.2 evalAWGN_8c_07.m ... 166

A.6.3 evalShaped_4c_18.m .. 169

A.6.4 evalField1_4c_01.m.. 171

A.7 DATA PLOTTING SOURCE CODE ... 175

A.7.1 LoadSerResults2.m ... 175

A.7.2 SemilogyBarPlot2.m ... 176

 ix

List of Tables

Table 2-1 Biological Neural Networks vs. Computers .. 14

Table 3-1 Transfer Function Names ... 49

Table 4-1 Example SER Data Table ... 71

Table 4-2 Default Parameters for Training Function GDX ... 74

Table 4-3 Default Parameters for Training Function LM .. 76

Table 4-4 Training and Test Parameters for Figure 4-3 .. 77

Table 4-5 SER Data for Figure 4-3... 78

Table 4-6 SER Data for Figure 4-8... 84

Table 4-7 Training and Test Parameters for Figure 4-10 .. 85

Table 4-8 SER Data For Figure 4-10 .. 86

Table 4-9 SER Data for Figure 4-11 ... 87

Table 4-10 Training and Test Parameters for Figure 4-15 ... 88

Table 4-11 SER Data for Figure 4-13 ... 89

Table 4-12 Training and Test Parameters for Figure 4-15 ... 90

Table 4-13 SER Data For Figure 4-15 .. 91

Table 4-14 Training and Test Parameters for Figure 4-17 ... 91

Table 4-15 SER Data for Figure 4-17 ... 92

Table 4-16 Training and Test Parameters for Figure 4-19 ... 93

Table 4-17 SER Data for Figure 4-19 ... 94

Table 4-18 Training and Test Parameters for Figure 4-21 ... 95

Table 4-19 SER Data for Figure 4-21 ... 96

Table 4-20 Training and Test Parameters for Figure 4-23 ... 97

Table 4-21 SER Data for Figure 4-23 ... 98

Table 4-22 Training and Test Parameters for Figure 4-25 ... 99

Table 4-23 SER Data for Figure 4-25 ... 100

Table 4-24 SER Data for Figure 4-26 ... 101

Table 4-25 Training and Test Parameters for Figure 4-28, Figure 4-29, Figure 4-33,

and Figure 4-35 .. 102

Table 4-26 SER Data for Figure 4-29 ... 104

Table 4-27 SER Data for Figure 4-30 ... 105

Table 4-28 SER Data for Figure 4-31 ... 106

Table 4-29 Training and test parameters for Figure 4-33 .. 107

Table 4-30 SER Data for Figure 4-33 ... 108

Table 4-31 Training and test parameters for Figure 4-35 .. 109

Table 4-32 SER Data for Figure 4-35 ... 110

Table 4-33 Training and test parameters for Figure 4-37 .. 111

Table 4-34 SER Data for Figure 4-37 ... 112

Table 4-35 Training and test parameters for Figure 4-45 .. 117

Table 4-36 SER Data for Figure 4-45 ... 118

Table 4-37 Training and test parameters for Figure 4-47, Figure 4-48, and Figure 4-49 119

Table 4-38 SER Data for Figure 4-47 ... 120

Table 4-39 SER Data for Figure 4-48 ... 121

Table 4-40 SER Data for Figure 4-49 ... 122

 x

Table 4-41 Training and test parameters for Figure 4-51, Figure 4-52, and Figure 4-53 123

Table 4-42 SER Data for Figure 4-51 ... 124

Table 4-43 SER Data for Figure 4-52 ... 125

Table 4-44 SER Data for Figure 4-53 ... 125

Table 4-45 Training and test parameters for Figure 4-55, Figure 4-56, and Figure 4-57 127

Table 4-46 SER Data for Figure 4-55 ... 128

Table 4-47 SER Data for Figure 4-56 ... 129

Table 4-48 SER Data for Figure 4-57 ... 130

Table 4-49 Training and test parameters for field file simulations. 133

Table 4-50 SER Data for Figure 4-60 ... 134

Table 4-51 SER Data for Figure 4-61 ... 135

Table 4-52 SER Data for Figure 4-63 ... 137

Table 4-53 SER Data for Figure 4-64 ... 138

Table 4-54 SER Data for Figure 4-66 ... 140

Table 4-55 SER Data for Figure 4-67 ... 141

Table 4-56 SER Data for Figure 4-69 ... 143

Table 4-57 SER Data for Figure 4-70 ... 144

 xi

List of Figures

Figure 2-1 Basic Electromagnetic MWD System ... 6
Figure 2-2 EM MWD Digital Communication System ... 8

Figure 2-3 Biological Neuron Components .. 15
Figure 2-4 Temporal Response of Biological Neuron ... 16

Figure 2-5 Neuron Synaptic Connection .. 17
Figure 2-6 Basic Artificial Neuron ... 18

Figure 2-7 Hyperbolic Tangent Function.. 20
Figure 2-8 Simple Artificial Neural Network ... 23

Figure 2-9 Artificial Neural Network Layers .. 24
Figure 2-10 Characteristics of Different Learning Rates ... 26

Figure 2-11 Example Neural Network .. 31
Figure 2-12 Simple Recurrent Network .. 36

Figure 3-1 Flow Chart of a Simple Neural Network Receiver... 44
Figure 3-2 4-bit symbol made up of 8 samples ... 46

Figure 3-3 Input formatting for a 4-input network used to process the symbol of Figure

3-2 ... 47

Figure 3-4 Neuron Transfer Functions ... 48
Figure 3-5 Types of Network Layer Interconnections ... 50

Figure 3-6 Example Neuron Connections for Feed Forward Networks 51
Figure 3-7 Example Neuron Connections for Recurrent Networks 51

Figure 3-8 Example Neuron Connections for Cascade Networks .. 52
Figure 3-9 Neural Network Inputs and Outputs .. 53

Figure 3-10 Bipolar 4-Ary Orthogonal Symbol Set Sampled at 200Hz with 50ms pulse

width .. 59

Figure 3-11 Transmission Signal consisting of 2 random permutations of the symbol

set .. 60

Figure 3-12 EM MWD Simulation Signal Stages ... 61
Figure 3-13 Signal Generation for Network Training. .. 64

Figure 3-14 Example of input formatting for net
2
. .. 65

Figure 3-15 Training targets for a symbol set containing 4 symbols 66

Figure 3-16 Neural Network Receiver Training Flow Chart ... 67
Figure 3-17 EM Digital Communication Receiver Performance Evaluation Flow Chart 68

Figure 4-1 Example SER Plot. ... 71
Figure 4-2 Layer Connections for Neural Networks of Figure 4-3 .. 76

Figure 4-3 Single Layer Linear Network Simulation Results for AWGN with 4

Symbols ... 77

Figure 4-4 Input Weights Compared with Correlation Receiver Reference Signals............... 79
Figure 4-5 Input weights for the 4

th
network of Figure 4-3.. 80

Figure 4-6 Input weights for the 7
th
 network of Figure 4-3 ... 81

Figure 4-7 Input Weights for the 10
th
 network of Figure 4-3 .. 82

Figure 4-8 Single Layer Linear Network Simulation Results with Weighted Post

Processing For AWGN with 4 Symbols.. 83

Figure 4-9 Layer Connections for Neural Networks of Figure 4-10 85

 xii

Figure 4-10 Single Layer Linear Recurrent Network Simulation Results for AWGN

with 4 Symbols .. 86

Figure 4-11 Single Layer Linear Recurrent Network Simulation Results with

Weighted Post Processing For AWGN with 4 Symbols .. 87

Figure 4-12 Layer Connections for Neural Networks of Figure 4-15 88
Figure 4-13 Single Layer SIG Network Simulation Results for AWGN with 4

Symbols ... 89
Figure 4-14 Layer Connections for Neural Networks of Figure 4-15 89

Figure 4-15 Single Layer RB Network Simulation Results for AWGN with 4 Symbols 90
Figure 4-16 Layer Connections for Neural Networks of Figure 4-17 91

Figure 4-17 Varying Input Size of 2 layer SIG Networks for AWGN with 4 Symbols 92
Figure 4-18 Layer Connections for Neural Networks of Figure 4-19 93

Figure 4-19 Varying Input Layer Size of 2 Layer SIG Networks for AWGN with 4

Symbols ... 93

Figure 4-20 Layer Connections for Neural Networks of Figure 4-21 95
Figure 4-21 Varying Size of Cascaded Nonlinear Networks with Linear Output Layer

for AWGN with 4 Symbols. ... 96
Figure 4-22 Layer Connections for Neural Networks of Figure 4-23 97

Figure 4-23 Pseudo Cascade Correlation Networks for AWGN with 4 Symbols 98
Figure 4-24 Layer Connections for Neural Networks of Figure 4-25 and Figure 4-26 99

Figure 4-25 Varying the training algorithm of a single linear layer for AWGN with 4

symbols .. 100

Figure 4-26 Same as Figure 4-25 with Reduced Training for the Levenberg-Marquardt

Algorithm. The number of epochs per batch was reduced to 20 from 100. 101

Figure 4-27 Layer connections for neural networks of Figure 4-28, Figure 4-29, Figure

4-30 and Figure 4-35. a) Connections for 2 layer cascade networks. b)

Connections for 2 layer networks. c) Connections for single layer network. 102
Figure 4-28 No Post-Noise Filtering for AWGN with 4 symbols .. 103

Figure 4-29 30Hz 2
nd

 Order Low Pass Post-Noise Filtering for AWGN with 4 symbols 104
Figure 4-30 20 Hz 2nd Order Low Pass Post-Noise Filtering for AWGN with 4

symbols .. 105
Figure 4-31 10 Hz 2nd Order Low Pass Post-Noise Filtering for AWGN with 4

symbols .. 106
Figure 4-32 Layer connections for neural networks of Figure 4-33 107

Figure 4-33 Varying input size of a single layer linear network for AWGN with 8

symbols .. 108

Figure 4-34 Layer connections for neural networks of Figure 4-35 109
Figure 4-35 Varying Input Size of a 2-Layer Non-Linear Network for AWGN with 8

symbols .. 109
Figure 4-36 Layer connections for neural networks of Figure 4-37 110

Figure 4-37 Cascade Networks for AWGN with 8 symbols.. 111
Figure 4-38 PSD for ɓ= 0.5 .. 113

Figure 4-39 PSD for ɓ= 1.0 (1/f or Pink Noise) .. 113
Figure 4-40 PSD for ɓ= 1.5 .. 114

Figure 4-41 PSD For ɓ = 0.5 Centered at 10Hz With a 4Hz Plateau Width 114
Figure 4-42 PSD For ɓ = 1.0 Centered at 10Hz With a 4Hz Plateau Width 115

 xiii

Figure 4-43 PSD For ɓ = 1.5 Centered at 10Hz With a 4Hz Plateau Width 115
Figure 4-44 Layer connections for neural networks of Figure 4-45 116

Figure 4-45 Varying Training Algorithm for Single Layer Linear and Non-Linear

Networks with Pink Noise .. 117

Figure 4-46 Layer connections for neural networks of Figure 4-47, Figure 4-48, and

Figure 4-49 .. 118

Figure 4-47 Networks Tested With Shaped Noise (Beta = 0.5) and 4 Symbols 119
Figure 4-48 Networks Tested With Shaped Noise (Beta = 1.0) and 4 Symbols 120

Figure 4-49 Networks Tested With Shaped Noise (Beta = 1.5) and 4 Symbols 121
Figure 4-50 Layer connections for neural networks of Figure 4-51, Figure 4-52, and

Figure 4-53 .. 122
Figure 4-51 Networks Tested with Shaped Noise of Figure 4-41 (Beta = 0.5, Center =

10 Hz, Width = 4Hz) .. 123
Figure 4-52 Networks Tested with Shaped Noise of Figure 4-42 (Beta = 1.0, Center =

10 Hz, Width = 4Hz) .. 124
Figure 4-53 Networks Tested with Shaped Noise of Figure 4-43 (Beta = 1.5, Center =

10 Hz, Width = 4Hz) .. 125
Figure 4-54 Layer connections for neural networks of Figure 4-55, Figure 4-56, and

Figure 4-57 .. 126
Figure 4-55 Networks Tested With Shaped Noise (Beta = 0.5) and 8 Symbols 127

Figure 4-56 Networks Tested With Shaped Noise (Beta = 1.0) and 8 Symbols 128
Figure 4-57 Networks Tested With Shaped Noise (Beta = 1.5) and 8 Symbols 129

Figure 4-58 Frequency Content of Field File #1 ... 131
Figure 4-59 Layer connections for neural networks used with field file simulations 132

Figure 4-60 Same Training and Test Noise With Field File #1 and 4 Symbols 133
Figure 4-61 Separate Training and Test Noise with Field File #1 and 4 Symbols 135

Figure 4-62 Frequency Content of Field File # ... 136
Figure 4-63 Same Training and Test Noise With Field File #2 and 4 Symbols 137

Figure 4-64 Separate Training and Test Noise with Field File #2 and 4 Symbols 138
Figure 4-65 Frequency Content of Field File #3 ... 139

Figure 4-66 Same Training and Test Noise with Field File #3 and 4 Symbols 140
Figure 4-67 Separate Training and Test Noise with Field File #3 and 4 Symbols 141

Figure 4-68 Frequency Content of Field File #4 ... 142
Figure 4-69 Same Training and Test Noise with Field File #4 and 4 Symbols 143

Figure 4-70 Separate Training and Test Noise with Field File #4 and 4 Symbols 144
Figure 4-71 - Mean squared error performance during training of 3-layer cascade

network .. 145
Figure 4-72 - Mean squared error performance during training of 3-layer feed forward

network .. 145

1

Chapter 1 Introductio n

Modern directional drilling has increased the precision of drilling wells for oil, gas,

and geothermal uses. It utilizes various sensors located near the drill bit as a means of

transferring readings from sensors to drilling operators. Accelerometers, magnetometers, and

gyros are used to determine the location and attitude of the drill bit with respect to gravity,

magnetic north, and true north respectively. This information is necessary to ensure wells are

drilled as planned within lease lines as well as drilled to the desired target location along the

prescribed well profile [1].

Transferring sensor measurements to the surface, while drilling, commonly known as

measurement while drilling (MWD), enables the drilling operators to guide the drill bit with

increased precision. The data from the sensors are transferred to the drilling operators at the

surface in two primary ways [2].

The first transmission method uses pressure signals communicated through a column

of fluid present in the well. This form of communication is known as mud pulsing. The

pressure signals generated by the tool (sensors and associated electronics) are received by a

pressure sensor near the surface of the well. The pressure signals are then decoded for the

drilling operator. The main sources of noise associated with mud pulsing MWD are from

pumps at the surface and drill motors beneath the surface [1].

The second method of communicating sensor readings is through electromagnetic

waves (EM). Either a voltage is modulated across a gap, or a current is induced in the drill

string by the EM MWD tool. The resulting EM waves propagate through the earth and are

detected by equipment at the well surface. The majority of noise that the EM MWD systems

2

must deal with is generated at the well surface. Drill pumps, motors, and even lightning can

generate noise, which degrades EM MWD system performance [3].

In order for the EM signal to be reliably detected, a receiver must be able to deal with

the various noise sources near the drill rig. There are a number of methods used to aid in the

filtering and decoding of EM signals in the presence of noise. At least one MWD company

uses a correlation receiver preceded by various analog and digital filters [4]. This method

proves to work well when the spectral content of the noise and the transmitted signals do not

overlap significantly. The ability of the correlation receiver to correctly decode the

transmitted symbols decreases as the noise spectrum encroaches on the signal spectrum, and

as the signal to noise ratio decreases [5]. The majority of the power contained in the

transmitted signal is in the low frequency band because the earth tends to act as a low-pass

filter for EM waves. The noise sources on or near the drill rig usually have large power

spectral densities in the same frequency band [4]. This explains why there can be much

difficulty associated with the reception of EM signals under certain conditions.

This thesis investigates the application artificial neural networks as communication

receivers to detect EM signals at the well surface. Artificial neural networks are the result of

attempts to solve problems by mimicking the manner in which biological neural networks (i.e.

brains) function. Biological neural networks are able to learn, adapt, and process data

nonlinearly. They are able to extract information in the presence of considerable amounts of

noise [6]. It is expected that the neural network receiver is able to decode signals in the

presence of noise that would normally be difficult for a correlation receiver.

This thesis is organized as follows. Chapter Two provides a more detailed description

of the problem statement. The operation of MWD systems is addressed with emphasis on the

3

communication of sensor data. In addition, relevant background on communication theory

will also be reviewed, followed by an overview of the fundamental concepts and purposes of

neural networks. Chapter Two concludes with a review of previously published work in the

areas of neural networks, digital receivers, and EM MWD communication. Chapter Three

describes the architecture of neural network receivers. Chapter Four outlines the computer

simulation results and analysis. Finally, conclusions and suggestions for future works are

presented in chapter Five.

4

Chapter 2 Background

2.1 MWD Systems

Monitoring While Drilling (MWD) systems allow for near real-time information on

the orientation of the down-hole drill bit in oil and gas drilling applications. This information

is necessary in order for the actual profile to match the desired profile of the well.

Additionally, various sensors readings transmitted to the drilling operator can be used to

optimize the location of the finished well for production of oil or gas. Many wells are often

drilled from the same platform, increasing the probability of collisions with previously drilled

wells. This coupled with the need to legally ensure the placement of wells within lease lines

and other constraints makes the timely feedback of drill bit position and orientation extremely

important.

There are difficulties associated with providing reliable transmission of the

information from the down-hole tool to the surface in a timely manner. Noise from location to

location can vary drastically, as well as earth formation, and the depth of drilling. In order for

MWD companies to competitive they must be able to provide consistent reliable

communication while drilling.

There are two widely used methods for the transmission of sensor readings from

down-hole to the drilling operators at the surface. Mud pulsing is the older of the two and

involves generating pressure waves in the drilling fluid to communicate from the tool to the

surface. The second method creates electromagnetic waves that pass through the earth from

the tool to the surface. This method is often referred to as EM. MWD companies continually

strive to improve the performance of these transmission options [1].

5

2.1.1 MUD Pulse MWD Systems

Mud-pulse systems use a column of fluid, mud, to transmit data encoded pressure

signals uni-directionally from the tool to the surface. Opening and closing a valve through

which the mud passes create the pressure signals. The pressure pulses are converted to

electrical signals by a pressure transducer located at the surface. The message contained in the

series of pulses is then decoded and the information is presented to the drilling operator.

Alternate uses of the mud include powering the drilling motors located near the down-hole

drill bit, lubricating the mud motors, and removing the cuttings from the well.

Nearly all of the noise in a mud pulse system comes from pressure fluctuations in the

fluid caused by sources other than the mud pulse tool. Noise introduced after the pressure

signal is converted to an electronic signal is negligible. The attenuation of the pressure signal

over distance is dependent upon the type of drilling fluid used, increasing as the density

decreases. The data rates for mud-pulse systems are slow, usually in the 1 to 2 bits per second

range.

2.1.2 EM MWD Systems

EM MWD systems communicate by either modulating a voltage source across an

isolated gap, or inducing a current in the drill string. The resulting electromagnetic waves are

sent to the surface where they are detected by an antenna. The data is then decoded and

presented to the operator. An example of an EM MWD system is shown in Figure 2-1.

6

Drill Bit

Insulated Gap

EM MWD Tool

Drill Casing

Electromagnetic Field

Cuttings and Drill Fluid

Drilling Rig

Drill String

Antenna

Earth

Surface

Antenna Box

Figure 2-1 Basic Electromagnetic MWD System

Numerous potential noise sources exist when using electromagnetic wave telemetry.

Motors, power lines, lightning, and more can inject noise into the receiving antenna. The

power spectral density of the noise often has spikes and is usually non-stationary. The

strength of the EM signal degrades significantly as the distance between the MWD tool and

antenna increases.

7

2.1.3 EM Advantages and Limitations

EM systems provide higher data rates than mud-pulse systems. However, they are

unable to reach the same depth as their mud-pulse counterparts due to the attenuation of the

EM signal as it passes through the earth. EM systems are able to communicate in under

balanced drilling situations where the drilling fluid density is too small for mud-pulse

systems. The EM communication system does not use any moving parts, whereas the mud-

pulse systems must physically open and close valves. Noise abounds in both systems, but EM

systems have a much lower signal-to-noise ratio (SNR) as the depth of the tool increases.

2.2 Digital Communication

Analog and digital communication systems transfer information from a transmitter,

through a transmission channel, to a receiver. Both types of systems aim to provide the

receiver with an exact replica of the information sent by the transmitter.

The information transferred with an analog communication system has infinite

resolution. The goal of the receiver is to preserve the fidelity of the information.

With digital communication systems, information is first quantized into a sequence of

digital symbols, also known as a bit stream. Thus the information sent is not infinite in

resolution, but is represented by a finite set of digital symbols, each made up of k bits. These

digital symbols are converted to digital waveforms that are compatible with the transmission

channel through a process known as modulation. A transmitter is used to pass the digital

waveform through the transmission channel to a receiver. The waveform is corrupted by

various noise sources and the channel transfer function as it travels to the receiver. The

8

receiver demodulates the received waveform into a bit stream, which ideally matches the bit

stream of the transmitter [5].

The digital communication system addressed by this thesis is shown in Figure 2-2

MWD TOOL

FILTERED BY EARTH

+

+

ANTENNA

FILTERING

DECODING

DOWN-HOLE EQUIPMENT

SURFACE EQUIPMENT

Transmitted Signal

Noise

Noise

Figure 2-2 EM MWD Digital Communication System

2.2.1 Performance Evaluation

 Digital communication systems are usually judged by the probability of incorrectly

identifying a digital symbol from a transmitted waveform. The probability of bit error,

otherwise known as bit error rate (BER), of a system is the specific way of normally

evaluating this criterion. The BER for a communication system is often plotted against the

signal to noise ratio, and results in a waterfall shape, with the probability of error decreasing

9

as the SNR increases. The probability of bit error is a special case of the probability of symbol

error (SER) where the length of the symbol is one bit. The neural network receivers in this

thesis are trained to identify symbols containing more than one bit, thus the SER is used

exclusively.

2.2.2 Signal to Noise ratio

When dealing with communication systems, the signal to noise ratio is usually defined

as the energy per bit to noise spectral density ratio. Most communication systems endeavor to

maximize this ratio, which in turn increases the probability of correctly detecting the signal,

or in the analog case, preserve the transmitted waveform. The ratio is usually expressed in

decibels and is shown in equation 2-1, where bE is the energy per bit, and 0N is the noise

spectral density.

 ö
ö
÷

õ
æ
æ
ç

å
Ö=

0

1 log10
N

E
SNR b (2-1)

The noise power spectral density is in units of Watts per Hertz and represents the amount of

power contained at each frequency band in the spectrum. White noise has a constant power

spectral density across all frequencies and is often used as the corrupting source when

analyzing communication systems.

The noise power spectral density for non-white noise is not constant across all

frequencies. Equation 2-4 shows the SNR definition used in this thesis, where sigE is the

10

signal energy, and noiseE is the noise energy. sigE and noiseE are defined in 2-2 and 2-3

respectively, where N is the number of samples for each signal.

 ä
=

=
N

n

sig nsigE
1

2)((2-2)

 ä
=

=
N

n

noise nnoiseE
1

2)((2-3)

 ö
ö
÷

õ
æ
æ
ç

å
Ö=

noise

sig

E

E
SNR log102

 (2-4)

2.2.3 Statistical Validity of Estimated SER

 The SER obtained through simulations is a binomial proportion because each of the

symbols transmitted results in either a success or failure. As the number of transmitted

symbols increases, the percentage of symbols that were received in error approaches the

actual probability of symbol error. In this thesis, the SER is an estimate of a given receiverôs

probability of decoding the wrong symbol. One way to judge the reliability of an

experimentally derived estimate is with confidence intervals. A confidence interval is usually

stated as a percentage, such as a 95% confidence interval. As it relates to this project, the

percentage represents how likely that the true probability of symbol error for a given receiver

lies within the calculated confidence interval from a particular experiment. For example, 95%

of identically run experiments will result in the true probability of symbol being within the

calculated 95% confidence interval for each experiment.

There exist a variety of methods for estimating confidence intervals for binomial

proportions. [7] has shown that the Agresti-Coull confidence interval is more accurate than

11

the standard Wald confidence interval, especially as the true probability approaches 0 or 1.

Equation 2-5 is the standard Wald confidence interval, with n equal to the total number of

samples, pĔ equal to the number of errors, x , divided by n , and z taken from the standard

normal distribution for the desired confidence percentile.

n

pp
zpCIWALD

)Ĕ1(Ĕ
Ĕ

-
°= (2-5)

Equation 2-6 is the Agresti-Coull confidence interval.

2

2

2

2

2

2

2

212

2

zn

zn

z
x

zn

z
x

z
zn

z
x

CI AC
+

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

+

+

-

ö
ö
ö
ö

÷

õ

æ
æ
æ
æ

ç

å

+

+

+
+

+

= (2-6)

This equation is similar in form to the Wald interval, which can be seen by using the

following variable substitutions.

2

~
2z

xx += (2-7)

 2~ znn += (2-8)

n

x
p ~

~
~= (2-9)

Using these substitutions with equation 2-6 results in the following equation, which is in the

same form as the standard Wald interval.

12

n

pp
zpCI ~

)~1(~
~ -
°= (2-10)

The size of the confidence interval is thus given by equation 2-11.

n

pp
zWCI ~

)~1(~
2

-
= (2-11)

The confidence intervals obtained by applying equation 2-10 to the SER test results will be

used to validate the comparisons made.

2.2.4 Correlation Receivers

The correlation receiver contains M individual correlators, where M is the number

of symbols contained the code set. Each correlator integrates the product of a received signal,

()tr , with a replica of one of the symbol waveforms, ()tsi over a single symbol interval, T ,

as is shown in Equation 2-12.

 () ()() MisrTz

T

ii .,..,1,
0

==ñ dttt (2-12)

When the received signal is sampled, the discrete version of the correlation receiver is used.

 () ()()ä
=

==
N

k

ii MikskrNz
0

,...,1, (2-13)

The decision as to which symbol was most likely transmitted is made by choosing the

correlator with the largest output. This has been shown to be the best possible choice as long

as each of the symbols has the same probability of being transmitted and the received signal is

corrupted by AWGN [5].

13

2.3 Artificial Neural Networks

The field of artificial neural networks (ANN) aims to process data in a way similar to

that of biological neural networks, i.e. brains. The brain is amazing; it handles thousands of

nonlinear inputs simultaneously and learns to process them into something meaningful. It can

easily pick out important inputs, and disregard others. Think about the very fact that you are

reading this. You are able to process raw image data into intelligible letters, words, phrases,

and thoughts. You are even able to extract meaning out of noisy data. For example, you

porlbably arje wndorenig why I am msislpelnig nurmuruos wrods in a thises peapr. Waht yu

rielay suhulod ask is how yu can raed and udnretsand tntihs at all. Your brain is able to

analyze data in a way that is fundamentally different from the way computers traditionally

process data. Artificial Neural Networks (ANN) aim to mimic the brainôs method of thinking

and learning. In order to mimic, one must first observe, thus we first look at a few features of

biological neural networks.

2.3.1 Biological Neural Network Fundamentals

First, let us look at a simple comparison between the brain and traditional computers.

Table 2-1 shows a few of the fundamental differences between the two [8].

14

Processing

Elements
Processing

Speed
Computation

Style
Fault

Tolerance
Learning

ability
Intelligent,

Conscious

Brain
1014

Synapses
100 Hz

Parallel,

Distributed
Yes Yes Usually

Computers
108

Transistors
109 Hz

Serial,

Centralized
No A little

Not

Currently

Table 2-1 Biological Neural Networks vs. Computers

It is evident from the table that there are major differences between computers and biological

brains. The parallel nature of the brain makes it very effective at processing multiple inputs

efficiently. Classifying and associating the numerous inputs allows humans to learn, think,

and adapt to new types of inputs. Computers process data serially, which makes it more

suitable for more óleft brainedô types of applications.

Neurons

The human brain contains approximately 10 billion neurons. Each of these neurons is

a fully self-contained processing element. Inputs to the neuronôs cell body are known as

dendrites. The cell body processes these inputs and provides an output through the axon of the

neuron. Axon terminals propagate the output to other neurons [9]. Figure 2-3 depicts a typical

neuron.

15

Figure 2-3 Biological Neuron Components

Processing the inputs consists of comparing the summation of all inputs to a threshold

level. Once the inputs exceed this threshold, the neuron depolarizes, meaning it discharges a

spike. After a neuron depolarizes it is unable to provide an output for a short amount of time,

known as the refractory period. The refractory period consists of an absolute period, followed

by a relative period. For somewhere around a millisecond after the depolarization of a neuron,

the neuron is unable to fire. The neuron becomes progressively easier to stimulate during the

relative refractory period as can be seen in Figure 2. Neurons, therefore, do not process data

continuously, but in discrete time steps [10].

16

Figure 2-4 Temporal Response of Biological Neuron

Synaptic Connections

Each individual neuron is connected to thousands of other neurons. The network of

neurons within the brain contains an immense amount of connections. This is the key to the

processing power of the brain. Synapses are the connections between neurons. They consist of

the axon terminals, a dendrite of another neuron, and a gap in-between. Signals passing

through the axon jump across the gap with help from neurotransmitters [6].

17

Figure 2-5 Neuron Synaptic Connection

Synaptic Learning

Synaptic learning is how the brain is able to work so well. By adding and deleting

synaptic connections, as well as strengthening and weakening existing ones, the vast network

of neurons within the brain are able to learn. Each input to a neuron thus has a modifiable

weighting factor. It follows that the processing function of each neuron will change along

with each of the individual input weights.

Mimicking Nature

Biomimicry is a science that studies nature's models and then imitates or takes inspiration

from these designs and processes to solve human problems. For example, Velcro was

developed to imitate the way burrs are able to attach to animal fur. Nature is full of

ingeniously elegant designs just waiting to be imitated. The field of artificial neural networks

is devoted entirely to imitating the processing nature of the brain. Computers would able to

18

perform in more uncontrolled environments if they could process information in the same

fashion as the brain. The following are a few of the important characteristics and features of

the neural network within the brain that artificial neural networks aim to imitate [6].

¶ Parallel, distributed information processing

¶ High degree of connectivity among basic units

¶ Connections are modifiable based on experience

¶ Learning is a constant process, and usually unsupervised

¶ Learning is based only on local information

¶ Performance degrades gracefully if some units are removed

2.3.2 Artificial Neurons

Artificial neurons imitate the various features of biological neurons. Figure 2-6 shows

the structure of a basic artificial neuron.

Figure 2-6 Basic Artificial Neuron

19

Weighting Factors

In order to mimic the synaptic strengths of biological neurons, weighting factors are

needed for the inputs to the artificial neuron. Each weight signifies the importance of their

respective input in the processing function of the neuron. Inputs with larger weights will

contribute more to the neural response than those with lesser weights. The potential to learn is

incorporated into the artificial neuron (and thus the network), by allowing the input weights to

be adaptive coefficients. The adaptation process is performed in response to training sets of

data, and depends on both the networkôs specific topology as well as the learning rule being

applied.

Summation Function

The first step in the operation of an artificial neuron is the summation function. As the

name implies, this is usually a summation of the weighted inputs to the neuron. The

summation function can be more complex than a simple summation. Other functions that can

be used include minimum, maximum, majority, product, or several normalizing algorithms.

The specific algorithm is chosen by the network architecture and paradigm. A bias factor is

often included and is summed along with the weighted inputs.

Transfer function

After the inputs have passed through the summation function, they are then fed

through a transfer function. This transfer function is usually not a linear function. One of the

goals of artificial neural networks is to be able to provide nonlinear processing. However, the

ability of a neural network to perform in a nonlinear fashion is dependent upon the transfer

20

function of the individual neurons. By choosing a linear transfer function, the overall network

would be limited to simple linear combinations of the inputs. Various transfer functions are

typically used. A common transfer function is the hyperbolic tangent, which is shown in

Figure 2-7. The hyperbolic tangent is a continuous function and its derivatives are as well.

Figure 2-7 Hyperbolic Tangent Function

Scaling and Limiting

Implementation of this portion of the artificial neuron model is optional. The output of

the transfer function is manipulated in order to lie within certain bounds. Scaling is performed

first, followed by some sort of threshold function. A number of transfer functions, such as the

hyperbolic tangent function, have bounded outputs already, and thus additional limiting is not

needed.

Output Function

This portion of the model is also optional. Normally the output of the neuron is equal

to the output of the transfer function. When implemented, the output function allows for

competition between the outputs of various neurons. Within a small óneighborhoodô of

21

neurons, a large output by one neuron will cause the output of a different neuron to diminish.

In other words, the loudest neuron causes the other neurons to be quieter.

Error function

The raw error of a network is the difference between the desired output and the actual

output. The error function transforms this raw error to match the particular network

architecture in use. Propagation direction of this error is usually backwards through the

network. The back-propagated value serves as the input to other neuronsô learning functions.

Learning Function

The learning function modifies the input weights of the neuron. Other names given to

this function are the adaptation function, or learning mode. There are two main types of

learning when dealing with neurons and neural networks. The first type, supervised learning,

is a form of reinforcement learning and requires a teacher, usually in the form of training sets

or an observer. Unsupervised learning is the other type, and is based upon internal criteria

built into the network. The majority of neural networks utilize the supervised learning

method, as unsupervised learning is currently undergoing research.

2.3.3 ANN Structure

Artificial neural networks function as parallel distributed computing networks. Each

node in the network is an artificial neuron. These neurons are connected together in various

architectures for specific types of problems. It is important to note that the most basic function

22

of any ANN is its architecture. The architecture, along with the algorithm for updating the

input weights of the individual neurons, determines the behavior of the ANN. Neurons are

typically organized into layers, with connections between neurons existing across layers, but

not within. Each neuron within each layer is fully connected to all neurons in the associated

layer. This obviously leads to a vast amount of connections existing within the network, even

with relatively few neurons per layer.

Input Layer

Individual neurons are used for each input of an ANN. These inputs could be collected

data, or real world inputs from physical sensors. Pre-processing of the inputs can be done to

speed up the learning process of the network. If the inputs are simply raw data, then the

network will need to learn to process the data itself, as well as analyze it. This would require

more time, and possibly even a larger network than with processed inputs.

Hidden Layers

The input layer is typically connected to a hidden layer. Multiple hidden layers may

exist, with the inputs of each hidden layerôs neurons being fully connected to the outputs of

the previously layerôs neurons. Hidden layers were given their names due to the fact that they

do not see any real world inputs nor do they give any real world outputs. They are fed by the

input layerôs outputs, and feed the output layerôs inputs. The number of neurons within each

of the hidden layers, as well as the number of hidden layers themselves, determines the

complexity of the system [8]. Choosing the right number for each is a major part of designing

a working neural network for a given application.

23

Figure 2-8 Simple Artificial Neural Network

Output Layer

Each neuron within the output layer receives the output of each neuron within the last

hidden layer. The output layer provides real world outputs. These outputs could go to another

computer process, a mechanical control system, or even dumped into a file for analyzing. Like

the output function of an individual neuron, the output layer may perform some sort of

competition between outputs. This lateral inhibition can be seen in Figure 2-8 above.

24

Figure 2-9 Artificial Neural Network Layers

2.3.4 ANN Learning

A variety of different learning modes exists for determining how and when the input

weights of the individual neurons are updated within a network. The types of learning are

either supervised or unsupervised. The choice of learning method for a network drastically

affects its resulting performance.

Supervised

Learning in a supervised mode starts with a comparison of the networks generated

outputs and the desired outputs. Input weights of each neuron are adjusted to minimize any

differences found. This process is repeated until the network is deemed to be accurate enough.

After the training phase, the neuronsô weights are typically frozen, which allows the network

to be used reliably. Another option is to let the network still learn online, but simply lower the

rate at which the network will learn. The second option allows the network to adapt to any

slight variations that it may come across. One of the most important things to do when

25

training a network is to carefully choose the data used for training. Typically data is separated

into a training set and a much smaller test set. The training set is used to train the network to

perform a task. The test set is used to verify that the network is able to generalize what it has

learned to slight variations. Without this separation of data sets, it would not be known if the

network simply memorized the data set without being able to generalize.

Unsupervised

Unsupervised learning is performed without any form of external reinforcement. The

network contains within itself a method of determining when its outputs are not what they

should be. This method of learning is not nearly as well understood as the supervised method.

It requires that the network learn online. Current work has been limited to networks such as

self-organizing maps, which learn to classify incoming data. Further developments with this

type of learning would have uses in many situations where adaptation to new inputs is

required regularly.

Learning Rates

The learning rate of a network is determined by many factors. Network architecture,

size and complexity play a big role in the speed at which the network learns. Another factor

that affects the learning rate is the learning rule or rules employed. Slow and fast learning

rates each have their pros and cons. A lower rate will obviously take longer to arrive at a

minimum error at the output. A faster rate will arrive more quickly, but has a tendency to

overshoot the minimum. Both of these characteristics are shown in Figure 2-10. Some

26

learning rules use the best of both worlds, and start off with a high learning rate, and lower it

gradually until a minimum is reached.

Figure 2-10 Characteristics of Different Learning Rates

Common Learning Laws

Learning laws govern how the input weights of neurons within the network are

modified. Typically, the error at the output is propagated back through the various layers of

the network. The resulting error gradient is used in calculating the adjustment to each weight

of the network to reduce the error. The exact direction the weights are adjusted and the

magnitude of adjustment vary between the different learning laws. A few common learning

laws include Hebbôs, Hopfieldôs, Delta, and Kohonen.

27

The three learning laws used in this thesis are gradient descent with momentum and

adaptive learning rate, Levenberg-Marquardt [11], and conjugate gradient backpropagation

with Polak-Ribiere updates [12].

2.3.5 ANN Applications and Limitations

Applications for artificial neural networks generally fall into one of five categories:

prediction, classification, data association, data conceptualization, and data filtering. Each of

these categories uses slightly different types of network architectures and learning laws.

Prediction

Artificial neural networks have successfully been created to perform various types of

prediction. In general, the networks employed for prediction use input values to predict some

output. An example of a financially desirable application is prediction of the best stocks in the

market. Other applications include weather prediction and identification of people with risks

for certain diseases.

Classification

A successful application of classification networks is with optical character

recognition. Visual data is presented to the network and the network outputs what character

the data most resembles. This thesis focuses on the classification of noisy transmission

signals.

28

Data Association

Data association is similar to classification, but the network also recognizes data that

contain errors. With optical character recognition, the network might not only identify the

characters that were scanned but also identify when the scanner is not working properly.

Data Conceptualization

The networks used for data conceptualization analyze the inputs to infer grouping

relationships. Advertising would possibly utilize a data conceptualization network to extract

from a database the names of those people most likely to buy a particular product.

Data Filtering

One of the first applications of neural networks dealt with data filtering. A network

was developed that could filter out the echo in phone lines.

Limitations

A number of limitations currently exist which prevent neural networks from being

more widespread. One of the major hurdles is the limited knowledge of how the brain truly

learns. It is difficult to accurately model something that is not known well. The most

significant limitation is the lack of highly parallel hardware available. Computers are

normally serial in nature, which doesnôt correlate well with the parallel nature of neural

networks. Specialized very large-scale integrated chips have been fabricated for artificial

neural networks, but they are not widespread, and have seen limited success.

29

2.3.6 ANN Mathematical Model

The following ANN model conforms to the representation used in the Matlab Neural

Network Toolbox version 4.0.1 as well as in [13].

Neuron Model

The input vector P to a neuron is comprised of R elements. The elements of the input

vector are Rppp ...,, 21 . The input elements are multiplied by weighting factors Rwww ...,, 21 .

The neuron transfer function f takes as its input the weighted sum of the input vector and a

neuron bias constant b . The weighted sum is equivalent to the dot product of the row vector

w and column vector p . Equations 2-14 and 2-15 define the output a of the neuron:

 ö
ö
÷

õ
æ
æ
ç

å
+ö
÷

õ
æ
ç

å
= ä

=

bpwfa
R

n

nn

1

 (2-14)

 ()bwpfa += (2-15)

30

Layer Model

A layer of an artificial neural network containing S neurons, and having R inputs is

considered. Each of the S neurons contains R weighting factors to the R inputs. This results

in a weight matrix jiW , , connecting the thj input to the thi neuron. The vector p , of length

R , is the input vector to the layer. A bias vector b , of length S , represents the bias

connections to each of the neurons. The output of the neuron layer, labeled a , is a vector of

length S . It is given by equation 2-16.

 ()bWpfa += (2-16)

Generic Network Model

Superscripted integers are used to distinguish between elements of different layers.

Two integers are used for elements connecting two different layers, such as a layer weight

matrix. Note that jiIW , designates a weight matrix connecting the thj input vector to the thi

layer, whereas jiLW , is a weight matrix connecting the thj layer to the thi layer. This

notation allows for the possibility of multiple input vectors, but usually only one input vector

is specified. The output of the thi neuron layer is described by equation 2-17, where L is the

number of layers and I is the number of inputs:

 () () ö
÷

õ
æ
ç

å
++= ä ä

= =

i
L

m

I

n

nnimmiii bpIWaLWfa
1 1

,, (2-17)

31

Any combination of layer outputs can be considered the output of the neural network, where

normally the last layer in the network is chosen. An example artificial neural network is

shown in Figure 2-11.

+

+

+

f1

f1

f1

b1,1

b1,2

b1,2

p1

p2

pR

a1,1

a1,2

a1,R

+

+

+

f2

f2

f2

b2,1

b2,2

b2,R

a2,1

a2,2

a2,R

+

+

+

f3

f3

f3

b3,1

b3,2

b3,R

a3,1

a3,2

a3,R

Layer 1 Layer 2 Layer 3Input

. . .

. . .

. . .

. . .

Figure 2-11 Example Neural Network

The mathematical model of the example network in Figure 2-11 above is depicted in

equation 2-18.

 ()()()32111,111,222,333 bbbpIWfLWfLWfa +++= (2-18)

Also relevant to the discussion, is the limit on the connections allowable within a network. A

delay must exist in the connection path between any neuronôs output and its input. It is only

possible for the current output of any processing element to be dependent upon past outputs of

32

that same processing element. Some of the networks contained in this thesis contain recurrent

connections. This means that one or more delayed outputs of one or more layers are

connected to one or more layers whose output feeds the input of that layer. The difference

between a recurrent and non-recurrent neural network is similar to the difference between

finite impulse response (FIR) filters and infinite impulse response (IIR) filters. Like an IIR

filter, the present output of a recurrent neural network is dependent upon past outputs of one

or more layers. A third weighting matrix, designated ji

DLW , , connects delayed outputs of thj

layer to the thi layer. The delayed outputs of the thj layer are given the designator i

Da . Given

n delayed versions of the output of a layer results in i

Da as shown in equation 2-19.

 [])()2()1(nkakakaa iiii

D ---= 3 (2-19)

ji

DIW , is the weighting matrix connecting the delayed inputs, j

Dp , to the thi layer. Equation

2-20 shows j

Dp with n delayed versions of the input vector.

 [])()2()1(nkpkpkpp iiii

D ---= 3 (2-20)

Equation 2-21 is the resulting generic model for the output of the thi layer of a recurrent

network. L is the number of layers, and I the number of input vectors.

 () () ö
÷

õ
æ
ç

å
++++= ä ä

= =

i
L

m

I

n

n

D

ni

D

nnim

D

mi

D

mmiii bpIWpIWaLWaLWfa
1 1

,,,, (2-21)

An Elman network is a recurrent network that contains a feedback from the first layer output

to the first layer input. This feedback connection allows it to learn both temporal and spatial

33

patterns. The Elman network is one of the network architectures evaluated in this thesis for

use as a digital communication receiver.

2.3.7 Backpropagation

Backpropagation is the method by which the gradient of a neural networkôs output

error is calculated with respect to each of the weights of the network. The term

backpropagation is often used to refer to a combination of the calculation of the gradient and

the gradient descent algorithm. It is a supervised learning method that updates the weights of

the network according to the delta rule, along the negative of the performance function

gradient. The following is the derivation of the error gradient taken from [14] is reproduced

here for the sake of completeness. iA represents the set of neurons that are anterior to i

meaning that their outputs serve as inputs to i . iP represents the set of neurons that are

posterior to i , to which i is an input. First start with the output error of the network

accumulated over every training point p , where 0t is an output target and 0y is an output

unit.

 ()ä ää ö
÷

õ
æ
ç

å
-==

p o

p

o

p

o

p

p ytEE
2

2

1
 (2-22)

The gradient is simply the derivative of this error with respect to each weight, ijw , of the

network.

 ää
µ

µ
=

µ

µ
=

µ

µ
=D=

p ij

p

p

p

ijij

ij
w

E
E

ww

E
wG (2-23)

The gradient can be expanded into two terms.

34

ij

i

i

ij
w

net

net

E
w

µ

µ

µ

µ
=D (2-24)

The first term is the error of unit i , denoted iD. The second is

j

Ak

kik

ijij

i yyw
ww

net

i

=
µ

µ
=

µ

µ
ä
Í

 (2-25)

The gradient thus becomes

 jiij yw D=D (2-26)

The second term is simply the forward activation of unit j .

 ()
ö
ö

÷

õ

æ
æ

ç

å
== ä

Í iAk

kjkjjjj ywfnetfy (2-27)

The first term is the error of unit i , which can be expanded using the chain rule.

 ä
Í µ

µ

µ

µ

µ

µ
=D

jPh i

i

i

h

h

i
net

y

y

net

net

E
 (2-28)

The first term of this is the error of unit h . The second term is the weight that connects unit i

to unit h .

 ä
Í

=
µ

µ
=

µ

µ

iAk

hikhk

ii

h wyw
yy

net
 (2-29)

The third term is the derivative of the transfer function for unit i evaluated at inet .

()

()ii

i

ii

i

i netf
net

netdf

net

y '==
µ

µ
 (2-30)

The resulting expression for the error of unit i is

 ()ä
Í

D=D
jPh

hihiii wnetf ' (2-31)

The error of output unit o is the difference between the target and the actual output.

35

 ooo yt -=D (2-32)

Note that the error is the derivative of the performance function, which in this case is the sum-

squared error.

 ()ä -=
o

oo ytE
2

2

1
 (2-33)

Substituting all of these terms back into the gradient equation results in

 () ()
jj

Ph

hihiijiij netfwnetfyw
i

ö
ö

÷

õ

æ
æ

ç

å
D=D=D ä

Í

' (2-34)

The backpropagation of the error starts by using equation 2-32 to calculate the output error,

and then uses equation 2-34 to determine the error gradient at each unit. The most basic

algorithm updates the weights to follow along the negative error gradient, which is why it is

often referred to as steepest descent. The weight update for this algorithm is shown in

equation 2-35, with kw as the vector of connection weights, kg as the current gradient for all

network weights, and ka as the learning rate.

 kkkk gww a-=+1 (2-35)

Other variations of the algorithm include gradient descent with momentum, variable learning

rate, resilient backpropagation, Levenberg-Marquardt, and various conjugate gradient

methods. Each of these variations attempts to improve the speed of convergence and/or

reduce the susceptibility of the network to home in on a local shallow minimum [11][12].

36

2.3.8 Gradient Calculation for Recurrent Networks

Figure 2-12 shows a simple recurrent network (SRN) consisting of a single neuron and

a delayed recurrent connection.

Figure 2-12 Simple Recurrent Network

The output for this SRN is:

 () ()() () ()()
iiiijjiiii wtywtyftnetfty 1-+== (2-36)

The gradient for this SRN is now derived in order to highlight the differences of applying

backpropagation to non-dynamic networks as opposed to those with dynamic connections.

We start by expanding the second term of 2-24 with the specifics of the example SRN.

ij

i

i

ij
w

net

net

E
w

µ

µ

µ

µ
=D (2-37)

()

() ()()
iiiijj

ijij

i wtywty
ww

tnet
1-+

µ

µ
=

µ

µ
 (2-38)

()

()()iii

ij

j

ij

i wty
w

y
w

tnet
1-

µ

µ
+=

µ

µ
 (2-39)

Note that the delayed recurrent connection has introduced a second term that is not present in

equation 2-25. This result is expanded out further in the following equations.

37

 ()()
()
()

()

ij

i

i

i

iiiii

ij w

tnet

tnet

ty
wwty

w µ

-µ

-µ

-µ
=-

µ

µ 1

1

1
1 (2-40)

()()
()

()

ij

i

i

ii

ii
w

tnet

tnet

tnetf
w

µ

-µ

-µ

-µ
=

1

1

1
 (2-41)

 ()() () ()()
ö
ö

÷

õ

æ
æ

ç

å
-

µ

µ
+--¡= iii

ij

jiiii wty
w

tytnetfw 211 (2-42)

The last term in 2-41 is the same as the last term in 2-24 with the exception that it is one step

back in time. The difficulty of calculation the gradient for recurrent networks quickly

becomes apparent as equation 2-41 is expanded further. Not only is the error gradient with

respect to a given weight dependent on the source feeding the weight but also upon all past

outputs and weights contained in the recurrent loop. These dependencies result in relatively

large performance and storage requirements for learning algorithms that use the true gradient

during training such as RTRL and BPPT [13][14][15]. A common way of calculating an

approximation to the gradient is to ignore the effects of a given weight on all past neuron

outputs.

 ()() 01 =-
µ

µ
iii

ij

wty
w

 (2-43)

 ()ty
w

net

net

E
w j

ij

i

i

ij =
µ

µ

µ

µ
=D (2-44)

 ()1-=
µ

µ

µ

µ
=D ty

w

net

net

E
w i

ii

i

i

ii (2-45)

This is often referred to as the Elman Gradient, and can be calculated by treating the previous

outputs of neurons as inputs to the network. The differences between the Elman Gradient and

38

the true gradient decrease as the absolute values of the delayed and recurrent connection

weights approach zero.

 () ()() ()tywtywty
w

jiiiijj

ij
wii

=
ù
ù
ú

ø

é
é
ê

è
-+

µ

µ

1lim

0
 (2-46)

There are two main ways to minimize undesirable side effects of using the Elman

Gradient to train recurrent networks. The first is to ensure that all recurrent connections are

initialized to small non-zero values. The second is to use a relatively small learning rate

during training. Both methods are used in this thesis to train recurrent and dynamic networks.

2.4 Previous Work

The oil and gas industry is highly competitive which tends to limit the amount of

detailed research that is published. That being said, there have been a number of papers

published on the use of neural networks in the digital communication field as well as a few

papers on methods to improve MWD digital communication. There are also similarities

between the type of networks used in this thesis and those used for pattern recognition.

Gorodnichy [16] introduced a neuro-associative approach to recognition, which can

both learn and identify an object from low-resolution low-quality video sequences. The

network was able to incrementally learn via the pseudo-inverse learning rule. Face recognition

tests were performed in which the network recognized faces from low-resolution video. The

detection of objects through multiple frames of low-resolution video requires a single decision

to be made given multiple sequential inputs. Similarly, some of the neural network receivers

in this thesis process one portion of a received symbol at a time and must decide a single

39

decision from multiple sequential inputs. Two different post-processing techniques suggested

by [8] are tested for the neural network receivers in this thesis.

An artificial neural network approach to the signal decision problem of a digital

communication receiver was presented by Fernandes [17]. The type of modulation scheme

was limited to those with signal elements that belonged to a finite bidimensional constellation

such as multilevel ASK, PSK and QAM. The neural network used was a multilayer

perceptron and was trained using backpropagation with gradient-descent. The network

effectively models a maximum-likelihood receiver.

White [1] addressed the problem of EM detection in the presence of non-stationary

noise by adaptively changing the transmission frequency of the BPSK coded signals. The

algorithm uses estimates of the noise power spectral density to find spectral nulls at which to

concentrate the power spectral density of the transmitted signal. Results showed a marked

improvement in detection of transmitted EM signals using BPSK. The portion of the EM

MWD system addressed by White [1] differs from that of this thesis, focusing primarily on

the adapting characteristics of the transmitted signal to improve the bit error rate. This thesis,

on the other hand, addresses the receiver filtering and decoding portions of the

communication system shown in Figure 2-2.

The method of spectral subtraction was applied to the EM MWD noise problem by

Suh [3]. During gaps in communication, the power spectral density of the noise is calculated.

It is then subtracted from the power spectral density of the noise corrupted transmission

signal. The resulting power spectral density is used with the phase information from the noise-

corrupted signal to reconstruct the transmitted signal. Test results show a significant

40

improvement in the signal to noise ratio in the presence of typical rig surface noise. This

addresses the receiver-filtering portion of Figure 2-2, but not the decoder.

41

Chapter 3 Artificial Neural Network Receiver

This chapter presents the candidate artificial neural networks for use as receivers in low

frequency baseband digital communication. The communication system in which the ANN

acts as the receiver is described first. Details of the various types of ANNôs that are used as

the receiver are then discussed. The chapter concludes with a detailed look at the methods

used for training and performance evaluation of the ANN digital communication receivers.

3.1 Digital Communication System

The EM MWD digital communication system addressed in this thesis is the same as in

Figure 2-2.

3.1.1 Signal Transmission

The signal generated by the EM MWD system down-hole travels through the earth

and drill string to the antennas on the surface. Noise is added to the transmitted signal by two

different paths. The first location of added noise is during the generation of the EM signal.

Noise from the electronics of the MWD tool finds its way onto the transmitted signal. This

noise is filtered out as the signal travels through the earth, which acts as a low pass filter. The

second source of noise is the largest. The antennas on the surface pick up surface noise

generated by machinery, lightning, other EM MWD tools, and other EM sources.

Quantization noise and other receiver electronic also play a part, but are minimal compared

with the other noise sources [1]. The first noise source is ignored in this thesis, as its

contribution is miniscule with respect to the noise generated at the surface.

42

The transmitted signal and corrupting noise are then presented to the neural network

receiver after optionally being filtered. The ANN receiver decides what symbol from the set

of possible symbols was transmitted by the down-hole EM MWD tool. The weights of the

ANN are then adapted to the characteristics of the incoming signal. The design of the neural

network receiver does not address synchronization of the transmitter and receiver;

synchronization is assumed.

3.1.2 Waveform Coding

The mapping of data to transmitted waveforms has a great effect on the performance

of any communication system. Selection of the symbol set must take into account the

expected noise, the bandwidth of the channel, available power, amidst many other application

specific criteria. The artificial neural network receiver of this thesis attempts to correctly

identify the transmitted waveforms in the presence of colored noise. The initial characteristics

of the noise are unknown a-priori and therefore the type of waveform coding cannot be based

upon the expected noise. The combination of a low bandwidth baseband channel with the

requirement of low power communication with EM MWD systems limits the waveform

coding possibilities. The optimal set of symbols for transmission in this case is out of the

scope of this thesis.

An orthogonal symbol set has the benefit that the bit distance between any two

symbols in the set is the same. The bit distance between two symbols is the minimum number

of bits that must be changed to convert one symbol to the other. Equal bit distances make the

probability of correctly detecting any of the symbols in the presence of a given SNR the same,

43

when using a correlation receiver in the presence of AWGN. This uniformity aids in

analyzing the performance of the neural network receiver, as will be seen in the simulation

results later on.

Bipolar Baseband M-ary orthogonal signaling is used in this thesis. Every k bits of the

data to be transmitted is converted into one of M waveforms.

 kM 2= (3-1)

Equation 3-2 below shows an example of an orthogonal symbol set containing two symbols,

with each symbol containing two digits [5].

ù
ú

ø
é
ê

è
=

Ú

10

00

1

0
1H

SetCodewordOrthogonalSetData
 (3-2)

Orthogonal symbol sets with k = N can be generated from the orthogonal codeword set for k

= N-1. Equation 3-3 shows the case for k = 2, and equation 3-4 is the case for k>1.

ù
ú

ø
é
ê

è
=

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

=

Ú

11

11

2

0110

1100

1010

0000

11

01

10

00

HH

HH
H

SetCodewordOrthogonalSetData
 (3-3)

 ù
ú

ø
é
ê

è
=

--

--

11

11

kk

kk

k
HH

HH
H (3-4)

44

The optimal number of neurons in the ANN receiver increases as the number of different

symbols it must identify increases. The number of bits, k, is thus limited in order to reduce the

computation requirements of the neural network simulations. The actual sets of symbols used

are shown in equations 3-5 and 3-6.

()

ù
ú

ø
é
ê

è
=

ù
ù
ù
ù

ú

ø

é
é
é
é

ê

è

-++

++-

+-+

=

=-
Ú

11

11

2

1110

1110

1110

1110

24

11

01

10

00

HH

HH
H

kSetCodewordOrthogonalBipolarARYSetData
 (3-5)

()

ù
ú

ø
é
ê

è
=

ù
ù
ù
ù
ù
ù
ù
ù
ù
ù

ú

ø

é
é
é
é
é
é
é
é
é
é

ê

è

+--+

--++

-+-+

++++

-++

++-

+-+

-++-

++--

+-+-

-++

++-

+-+

=

=-
Ú

11

11

2

1111

1111

1111

1111

1110

1110

1110

1110

1111

1111

1111

1111

1110

1110

1110

1110

38

111

011

101

001

110

010

100

000

HH

HH
H

kSetCodewordOrthogonalBipolarARYSetData

 (3-6)

The initial zero of each of the codes is used to help reduce any possible inter-symbol

interference.

3.2 ANN Receiver Architecture

Figure 3-1 Flow Chart of a Simple Neural Network Receiver

45

This thesis evaluates a number of neural network architectures for use as EM MWD

digital communication receivers. A neural network has an input layer, an output layer, and

optional hidden layer(s). Some of the networks tested in this thesis have a single layer that

serves as both the input layer and the output layer. Figure 3-1 shows an example of a neural

network receiver. The following sections explain the details of the neural network receiversô

architecture.

46

3.2.1 Network Inputs

The received signal is digitized and then formatted to match the neural network

receiver. The number of inputs of the network dictates how many sampled data points are fed

to the network at a time. A neural network receiver having only a single input will process a

received symbol one sample at a time in order to output a single decision. When the length of

the sampled symbol is equal to the number of inputs, the entire symbol is presented to the

network at the same time. In this case, the neural network receiver will output a single

decision for every slice of data presented to it. Equation 3-7 gives the relationship between the

number of samples per symbol N , the number of inputs I , and the number of data samples,

K , processed per symbol by each input.

K

N
I = (3-7)

Note that equation 3-7 does not specify which of the N samples are fed to each input.

In this thesis, the first input processes the first K samples and the second input processes the

next K samples. For a simple example, consider a 4-bit symbol made up of 8 samples.

,+*,+*,+*,+* 1

12

2

34

3

56

4

78

BitBitBitBit

xxxxxxxx

Figure 3-2 4-bit symbol made up of 8 samples

47

A network with four inputs used to process this symbol, would result in the first input

processing the first two samples. The second input would process the 3
rd
 and 4

th
 samples.

Since each bit of the symbol is made up of two samples, each of the four inputs would have

processed a single bit.

[]
[]
[]
[] 478

356

234

112

Inputxx

Inputxx

Inputxx

Inputxx

Ý

Ý

Ý

Ý

Figure 3-3 Input formatting for a 4 -input network used to process the symbol of Figure 3-2

The neural network receivers will produce an output for each set of inputs presented to

it. Some of the networks evaluated in this thesis had their input sizes matched to the bit length

of the symbols. This results in each of the inputs of the network receiving data points from

only one of the transmitted bits, similar to the example above. The choice of input size, as

well as the number of recurrent connections, determines the balance between the spatial and

temporal information that the neural network is attempting to learn. A completely spatial

neural network will have the same number of inputs as samples per symbol, and will only

receive one input vector per symbol during training and simulation. This type of detection is

the exact same as image detection. As the number of inputs decreases, the number of input

vectors presented to the network per symbol increases. The sampled symbol now is fed to the

network as a sequence of vectors instead of one single large vector. The outputs of the

network must also be post-processed over the multiple outputs per symbol in order to

determine a single decision per symbol. This is similar to image detection using multiple

frames of low-resolution video [16].

48

3.2.2 Neuron Transfer Functions

Non-linear transfer functions are utilized by the neurons in each layer for most of the

neural network receivers. A linear transfer function of slope equal to one was also used with

some of the single layer networks. The network outputs in this case, each reduce to a simple

weighted sum of the inputs. Figure 3-4 shows the plots of the different transfer functions used.

Neuron Transfer Functions

-1.5

-1

-0.5

0

0.5

1

1.5

-3 -2 -1 0 1 2 3

Input

O
u

tp
u

t

Hyperbolic Tangent Approximation

Radial Basis

Linear

Saturated Linear

Figure 3-4 Neuron Transfer Functions

49

The equations used for each of the transfer functions in this thesis are shown below. Note that

Table 3-1 gives the Matlab function names that implement each transfer function as well as

the names that will be used for the remainder of this thesis.

Transfer Function Matlab Function Name Used In Thesis

Hyperbolic Tangent

Approximation
tansig SIG

Radial Basis Function radbas RB

Linear purelin LIN

Saturated Linear satlins SLINS

Table 3-1 Transfer Function Names

 1
1

2
)(

2
-

+
=

- ne
nSIG (3-8)

 ()2

)(nenRB -= (3-9)

 nnLIN =)((3-10)

î
í

î
ì

ë

>

¢¢-

--<

=

1,1

,11

1,1

)(

n

nn

n

nSLINS (3-11)

3.2.3 Network Layers

Each layer of a network behaves similarly to each other. Every neuron in a layer takes

a weighted sum of its inputs, and passes it through a transfer function to produce a single

valued output. There are three different types of layer interconnections used in the neural

network receivers. The first type is a basic feed forward network as shown in Figure 2-11.

The second is recurrent network in which the output of each layer is connected to its input. A

50

delay is introduced in this connection so the current output of each layer is dependant upon

both the current inputs and the previous output of the layer. The final type uses cascaded

connections, meaning that the inputs to each layer are made up of the inputs to the network as

well as the outputs of each previous layer. A basic diagram of each type of layer interconnect

used is shown in Figure 3-5.

Layer 1 Layer 2Input Output

Layer 1 Layer 2Input Output

Layer 1 Layer 2Input Output

Delay Delay

Feed Forward

Recurrent

Cascade

Figure 3-5 Types of Network Layer Interconnections

Figure 3-6, Figure 3-7, and Figure 3-8 show the details of the connections between the

neurons of the different layers for each of the types of networks used. Note that the circles

containing a ñBò represent the bias weights for each neuron.

51

Figure 3-6 Example Neuron Connections for Feed Forward Networks

Figure 3-7 Example Neuron Connections for Recurrent Networks

52

Figure 3-8 Example Neuron Connections for Cascade Networks

3.2.4 Network Output

Each neuron in the output layer of the networks represents one of the symbols of the

code set. The neuron with the largest output is determined to be the correctly decoded symbol

for a given input. When the sampled data points of a single received symbol are not presented

to the network at a single time instance, then post processing of the outputs must be

performed to arrive at a single decision for a symbol.

The network of Figure 3-3 is a simple example of this. If the code set used for the

example contained two symbols then the network would have two output neurons. Each of the

neurons would output a distinct value for each of the inputs it was presented. This means that

there would be two output values for each neuron. Post processing is required to combine the

two output values of each neuron into a single metric that can then be used to determine

which neuron has the highest value.

53

y1(1)

y2(1)y2(2)

y1(2)

x1

x3x4

x2

Formatted Input
Single Layer

Neural Network Outputsi1

i2

y2

y1

x5

x7x8

x6 i3

i4

O1

O2

Processed

Outputs

Figure 3-9 Neural Network Inputs and Outputs

The post processing method used is a simple weighted sum of the outputs. Equation

3-12 shows how the multiple outputs,()1Ny and ()2Ny for each neuron N of Figure 3-9, are

weighted and summed to arrive at a single metric, NO .

() ()

() () 21222

11121

12

12

Owywy

Owywy

=+

=+
 (3-12)

When each of the weights is identical then the post processing is simply an averaging, or sum,

of the individual outputs. Another weighting scheme used in this thesis has the weight

assigned to each output increasing over the time it takes for a complete symbol to be

presented to the network.

3.2.5 Similarities with Correlation Receivers

The simplest neural network receiver evaluated in this thesis is virtually identical to the

architecture of a correlation receiver. A neural network that uses linear transfer functions,

54

consisting of a single layer, and having an equal number of inputs as samples per symbol, is

essentially a bank of linear filters, which is the same architecture as a correlation receiver. In

this application, they both have the exact same inputs, same outputs, and same number of

filter weights. The difference between the two is the values of the weights and how they are

determined. The weights of the neural network are trained whereas the correlation receiversô

weights are set to be equal to stored prototypes of each symbol in the symbol set. In digital

communication systems, the correlation receiver is the decision stage that follows any

preprocessing, such as anti-aliasing filters.

The stored prototypes used in the correlation receiver are ideally modified to account

for the transmission channel being used. This makes the correlation receiver identical in

function to that of a bank of matched filters, which is optimal in the presence of AWGN [5].

What about situations when the noise is band-limited AWGN, or contains distinct spectral

peaks? If the statistical characteristics of the noise are known a priori then it is still possible to

use a bank of matched filters, which means a correlation receiver can still be optimum. It is

expected that the simple linear neural network will adapt its weights towards that of the

optimal correlation receiver. When the statistics of the noise is not known a priori then a

linear neural network may be able to perform better than a correlation receiver. The more

complex neural network architectures are expected to behave similarly and possibly even

better due to the added non-linear processing capability.

55

3.3 Simulation Methods

Simulations of the EM MWD digital communication system and the neural network

receivers were performed with the Matlab Neural Network Toolbox. Scripts and functions

were written to test the ability of a static neural network to recognize transmitted symbols in

the midst of a wide range of signal to noise ratios for different types of noise.

3.3.1 AWGN Generation

The signal to noise ratio definition used in this thesis is the ratio of signal power to

noise power.

öö
÷

õ
ææ
ç

å

== 1010

dbSNR

noise

signal

P

P
SNR (3-13)

The first step in generating AWGN for a specific SNR is to calculate the average

power of the signal. With N equal to the number of samples in the signal ()ks , the average

power of the signal is given by equation 3-14.

 ()ä
=

=
N

k

s ks
N

P
1

21
 (3-14)

56

The next step is to generate an initial random noise signal ()kn¡ of length N with a

normal distribution. The function randn is used to generate such a signal with Matlab. The

average power of the noisy signal is then calculated.

 () ()Nrandnkn ,1=¡ (3-15)

 ()()ä
=

¡=¡
N

k

n kn
N

P
1

21
 (3-16)

The desired average noise power nP is determined by combining equations 3-13 and

3-14.

SNR

P
P s

n = (3-17)

The following equations show the derivation of the required noise-scaling factor that

results in the desired average noise power.

 nn PP ¡=a (3-18)

 ()()ä
=

¡=
N

k

n kn
N

P
1

2a
 (3-19)

 ()()()ä
=

¡=
N

k

n kn
N

P
1

21
a (3-20)

 ()()()knkn ¡= a (3-21)

3.3.2 Colored Noise Generation

White noise has a power spectral density that contains an equal amount of energy in

every frequency band, for a given bandwidth. This means that there is as much energy in the

57

0Hz to 100Hz band as in the 1000Hz to 1100Hz band for white noise. The PSD of pink noise

has an equal amount of energy contained in every octave. It has just as much energy in the

50Hz to 100Hz band as in the 1kHz to 2kHz band. The PSD of pink noise is equal to 1/f,

where f is the frequency. Equation 3-22 shows the method used to generate the PSD for the

non-white noise used during simulations. This method allows for generation of noise

containing spectral peaks or plateaus with the power spectral density decreasing at various

rates as the frequency moves farther away from the peak or plateau. BW is the bandwidth of

the plateau, CF is the center frequency of the plateau or peak, and b determines the rate at

which the PSD decreases as the frequency deviates from the center frequency. Pink noise is

generated by setting b to 1, BW to 0, and CF to 0.

î
î
î

í

îî
î

ì

ë

¢-

ö
÷

õ
æ
ç

å

>-
-

=

2
,

2

1

2
,

1

)(BW
Ff

BW

BW
Ff

Ff

dBPSD
Cɓ

C

C

b

 (3-22)

3.3.3 Sampled Noise Data

Noise sampled at various rig sites was used to corrupt simulated transmission signals

for training and evaluating the neural network receivers. The data acquired was separated into

sections; one for training, and one for testing. This ensures that the inputs to the networks

during testing are not identical to the inputs that the networks were trained on. Dividing the

noise sources in this manner helps test each networkôs ability to generalize. The noise data is

scaled as described in section 3.3.1 before being added to the transmission signals. Some tests

58

were also performed where the noise used for testing was taken from the same section used

for training. The point in doing so is to observe the performance of the networks in an ideal

case.

3.3.4 EM MWD Digital Communication Simulation

The first step in simulating an EM MWD digital communication system is generating

a transmission signal from a known symbol set using a given pulse width and sampling

frequency. In order to mimic typical EM MWD communication characteristics, a 200 Hz

sampling frequency (5ms sampling period) and a 50ms pulse width is used. Using these

values, with the each symbol in the set shown in equation 3-5, results in 40 samples per

symbol. The resulting sampled symbol set is shown in Figure 3-10

59

Figure 3-10 Bipolar 4-Ary Orthogonal Symbol Set Sampled at 200Hz with 50ms pulse width

Combining multiple random permutations of the symbol set results in a transmission

signal that contains equal occurrences of each symbol.

60

Figure 3-11 Transmission Signal consisting of 2 random permutations of the symbol set

A multiple pole low pass filter chain is used to mimic the filtering that occurs as an

EM signal passes through the earth. The simulated transmission signal is passed through this

filter chain before noise is added.

The noise used for corrupting the transmission signal is either generated or taken from

real world samples. Varying amounts of signal to noise ratios are generated by scaling the

corrupting noise as detailed in sections 3.3.1. The noise added to the transmission signal

represents the noise picked up by the antenna in an EM MWD system.

More filtering is performed after the noise is added, which corresponds to the various

analog and digital filters used in a typical receiver. Some of the simulations in this thesis use

61

no post-noise filtering whereas others use a second order low pass filter with varying cutoff

frequencies and Q values.

The final step is to pass the resulting signal to both the neural network receiver and the

correlation receiver. Figure 3-12 shows an example of a transmitted signal at the different

stages of simulation.

Figure 3-12 EM MWD Simulation Signal Stages

62

3.3.5 Network Training

The ANNôs used in this thesis are trained offline in batch mode. Online training was

not attempted. The term batch refers to the method of calculating the error gradient over

multiple input vectors, which constitutes a batch, as opposed to online training, which uses a

single input vector. Each batch is generated by the method shown in section 3.3.4 and

contains multiple sets of symbols. Each set consists of a random permutation of all the

symbols of the symbol code set. This results in each symbol in the code set occurring an equal

number of times in the training batch. Each set of symbols within the transmitted signal can

be corrupted by different signal to noise ratios as well as different filters. There is a constraint

on the number of symbol sets present in the training batch in order to give the same amount of

training time for each possible combination of SNR and filter type. The number of symbol

sets must be a multiple of the number of possible combinations of SNR and filter type. Using

multiple SNRôs and multiple filters with batch mode allows the gradient to be calculated over

a wide operating range. The resulting trained network should perform well over the entire

range of SNRôs and filters used during training. Multiple ANNôs are trained with the exact

same inputs and targets during a training session. The training signal is formatted to match the

input size of each network. A simple example will now be given using the symbol code set

shown in Figure 3-10.

Let us begin with two ANNôs, net
1
 and net

2
, having input sizes of 4 and 8

respectively. We desire to train these networks to function as digital communication receivers

in the presence of AWGN with SNRôs in the 5dB to 15dB range. We will train the networks

using signals with SNRôs of 5dB, 10dB, and 15dB in order to accomplish this. Second order

low pass filters will approximate the filtering due to the earth. Two different filters will be

63

used during training to represent the range of possible filtering expected. The first filter will

have a corner frequency of 80Hz, and a Q value of 0.3. The second filter will have a corner

frequency of 10Hz, and a Q value of 0.5. The selection of corner frequencies and Q values for

this example is meant to include the wide possible range of transmission channels

encountered from drill site to drill site [22]. The number of symbol sets contained in the batch

size must be a multiple of the number of combinations possible by choosing one SNR and one

filter. The number of combinations is six in this case. Using six symbol sets in the training

batch, with each symbol set containing four symbols, and each symbol containing 40 samples,

results in a total of 960 samples. In this case, each symbol set will be modified by a unique

combination of SNR and filtering. If 12 symbol sets had been chosen, then two symbol sets

would be modified by every unique combination of SNR and filtering. Each unique

combination of SNR and filtering will be used to simulate an EM MWD transmission, as

described in section 3.3.4. Figure 3-13 shows one possible training signal of minimum length

for this setup.

64

Figure 3-13 Signal Generation for Network Training a) Transmitted symbol idôs consisting of 6 random

permutations of the symbol set. b) Corresponding Digital Signal. c) 1
st
 half is filtered by 80Hz LPF, 2

nd

half is filtered by 10Hz LPF. d) 3 different levels of noise added to the filtered signal. e) SNR levels of

resulting signals.

Once every portion of the training batch has been simulated, then the resulting

corrupted transmission signal is formatted to match the input size of each network. The input

to net
1
 must be a sequence of vectors of length 4, whereas input vectors of size 8 are required

for net
2
. See 3.2.1 for information on the relationship between input size and number of input

vectors per symbol. The training batch will therefore be formed into 240 vectors of length 4

for net
1
, and 120 vectors of length 8 for net

2
. Figure 3-14 below shows an example of filtered

65

input signal, as it would be formatted for net
2
. The figure shows the settling time due to the

filtering.

Figure 3-14 Example of input formatting for net
2
. The training input signal of plot i is divided up for the 8

input neurons as shown in plots a through h. Plot j shows the symbols used for training.

Each output neuron of a network represents one of the symbols in the code symbol set.

The corresponding output neuron for a transmitted code must be trained to output a 1 when

that code is presented to the network. Therefore, when a network is being trained to identify

the 1
st
 symbol of a symbol set, than the target value for the 1

st
 output neuron would be a 1. For

66

the 2
nd

 symbol the target value for the 2
nd

 neuron would be set to 1. The target values for all

neurons that do not correspond to the symbol being identified are set to 0 or ï1 depending on

the output neurons transfer function. Figure 3-15 shows training targets for a typical training

batch.

Figure 3-15 Training targets for a symbol set containing 4 symbols

 The overall training algorithm is shown in Figure 3-16.

67

Generate Transmission

Signal From Random

Permutations of Symbol

Set Order

Network

Training

Add Noise

Optionally Filter

Noisy Signal

(Receiver Filtering)

Format Received

Signal For Each

Network

Last Training

Iteration?

NO

YES

Simulate

Earthôs Low

Pass Filter

START
Scale Noise for

Training SNR

Format

Targets For

Each Network

Train

Networks
DONE

Figure 3-16 Neural Network Receiver Training Flow Chart

3.3.6 Receiver Testing

Testing of the simulated digital communication receivers of this thesis involves

generating symbol error rate (SER) plots. These plots are used to compare the performance of

various types of receivers. Figure 3-17 shows the process flow for testing of the neural

network receivers, as well as the correlation receivers.

68

Generate Transmission

Signal From Random

Permutations of Symbol

Set Order

Receiver

Performance

Evaluation

Add Noise

Optionally Filter

Noisy Signal

(Receiver Filtering)

Format Received

Signal For Each

Network

All SNRôs

Evaluated?

NO

YES

Simulate

Earthôs Low

Pass Filter

START

Scale Noise for

Evaluation SNR

Simulate

Receivers

Count Errors

For Each

Receiver

DONE

Select Next

Evaluation SNR

Min. Errors

Reached?

NO

YES

Figure 3-17 EM Di gital Communication Receiver Performance Evaluation Flow Chart

The method for generating an input to the receivers for testing is almost identical to

what is done for training the neural networks. The main difference is that only one SNR value

is used at a time during testing, whereas training involves using multiple values in a single

batch. The SNR values used during testing does not always match the values used during

training in order to test the various networksô ability to generalize.

 In order to obtain tight confidence intervals around the SER, as was discussed in

section 2.2.3, it is necessary to simulate a large number of transmitted symbols. As was done

in the first phase, random orders of symbols are put together to create a transmission signal.

All the networks are then simulated with this signal after it has been filtered and corrupted

with noise. A tally of the total number of errors for each receiver is kept. The receivers are

repeatedly simulated until a minimum number of errors occur or a maximum number of

symbols are transmitted. All of this is repeated with varying signal to noise ratios to obtain the

data needed for the SER plots.

69

3.3.7 Correlation Receiver Implementation

Correlation receivers match a sampled signal with the most likely symbol in the symbol

set. In order to do this the correlator must store copies of the symbols contained in the set. The

earth and any preprocessing the receiver implements distort the signal that is seen by the

correlator. For this thesis, the stored copies of the symbols are ideal in the sense that they are

distorted by the exact filters that the transmitted signals pass through. If no noise corrupts the

transmitted signals, than the received signal will exactly match one of the stored symbols [5].

In the real world, the transfer function of the earth is unknown and must be estimated.

Correlation receiver performance improves as the accuracy of the estimation increases.

70

Chapter 4 Simulations and Results

This chapter contains the results of numerous ANN digital communication receiver

simulations. Each simulation contains a few different neural network architectures and/or

training parameters that are trained and tested with exactly the same inputs. The variations in

architectures include the number of layers, layer sizes, input sizes, transfer functions, as well

as the inclusion or exclusion of recurrent connections. Variations in training parameters

include number of epochs, batch size, learning rate, and training algorithms. Multiple ANNs

were simulated for each variation, each of which was initialized with different connection

weights. A single correlation receiver is also included in each simulation for performance

comparison.

M-ary bipolar orthogonal signaling was used with k set to 2 and 3, corresponding to 4

and 8 symbols per set respectively. Six different noise sources were used during simulations.

The first noise source is AWGN, which is the typical corrupting noise source for measuring

the performance of a digital communication receiver. The second type of noise has a non-flat

power spectral density. Various PSD shapes were used during simulations. The last four noise

sources are actual sampled noise data taken from drilling sites.

4.1 Presentation Format

Each test variation will be presented by two figures and two tables. First, a figure

depicting the connections between the different layers for each type of network is given. This

is followed by a table that details the network architecture as well as the training and test

parameters used. The symbol error rate (SER) results from each test are then shown

graphically in a modified waterfall plot.

71

Figure 4-1 Example SER Plot. The circled bars correspond to the SER for the receivers at a SNR of ï7dB.

The values used in generating the SER plot are finally tabulated along with the total number

of symbols transmitted for each network. An example of the tabulated SER data is shown

below.

Receiver -19dB -15dB -11dB -7dB -3dB

(40)-4 0.51719 0.37085 0.18211 0.03498 0.00080

(20)-4 0.51638 0.37110 0.18383 0.03542 0.00075

(8)-4 0.53249 0.39596 0.21138 0.05178 0.00268

(4)-4 0.54432 0.41509 0.24211 0.07648 0.00833

correlator 0.51465 0.36817 0.17876 0.03289 0.00068

Symbols Tested 42,600 42,600 42,600 42,600 42,600

SNR

Table 4-1 Example SER Data Table

Each of the receivers tested are shown in the first column. Each row contains the symbol error

rate (SER) for the receiver at different SNR levels, which are shown in the column header.

The last row shows the total number of symbols transmitted for each SNR level during the

72

testing of the receivers. The SER is the ratio of symbol errors to total symbols transmitted,

which should not be confused with bit error rate (BER). A SER of 0.1 indicates that 10

percent of the symbols used during testing were incorrectly decoded.

4.2 Notes on Simulations and Results

A training epoch is the term used to denote a single training iteration. During each epoch,

every symbol in the training batch is presented to the network and the error for each output

neuron is accumulated. After all symbols have been presented, the error is used to determine

the change to the weights and biases of the network according to the training function. See

section 2.3.7 for more information about backpropagation.

The size of the training batch is a multiple of the number of symbols in the codeset

multiplied by the number of training SNR levels. Typically, there will be 200 or 300

occurrences of each symbol for every training SNR level, with the symbol order randomly set.

For example, a training epoch for networks using a codeset of 4 symbols and 3 training SNRs

would result in a batch size of 3,600 if each combination of symbol and SNR was repeated

300 times.

Multiple training epochs make up a training session. In this thesis, the number of epochs

is normally set to 100. Each of the epochs in a training session uses the exact same training

batch. Multiple training sessions are used to provide more examples for each network to train

with while not requiring excessively large batch sizes. The use of multiple training sessions

should also help the networksô ability to generalize. The number of training sessions is usually

73

set to 2. Using these numbers results in each network having its weights updated 200 times

before the network is tested to determine its SER.

The performance metric used in this thesis is the symbol error rate (SER) and not the bit

error rate (BER). Each symbol transmitted results in either a successful reception or a failure.

The calculation of the SER is simply the number of symbols that were not correctly identified

by the receiver, divided by the total number of symbols sent. The format of the SER plots

used in this thesis is not the same as the standard waterfall plots typically used in digital

communications. The reason for deviating from this standard is to make it easier to visually

distinguish the SER of different networks plotted on the same plot. Notice that the SER plots

contain bars that stem from the point 0.1, and reach down or up to the SER for each network

tested. The reason for this is that a SER of 0.1 in EM MWD communication is an estimate of

the upper limit that would allow a drilling operation to successfully continue. The point at

which the bars change from extending upwards to extending downwards marks the minimum

operable SNR for that network.

Multiple networks are simulated for each of the neural network receiver architectures.

Each of the networks of a given type is initialized with different weights and bias values. The

average performance of the networks is used as an indication of the performance for that

specific type of network architecture. The reason for having multiple networks is to show that

the networks can consistently converge to a good solution from different starting points.

The exact definitions of all the neuron transfer functions used are given in section 3.2.2.

They will be referred to as SIG, RB, LIN, and SLINS.

74

4.3 Default Parameters for Training Functions

There are three different training functions used for the networks in this thesis. To

simplify the graphs and tables they will be given shorter names. The function GDX

implements a gradient descent with momentum and adaptive learning rate.

 kckck gmwmw ÖÖ+DÖ=D - a1 (4-1)

 kkk www D+= (4-2)

This training function is used in the majority of the simulations. The learning rate, a,

and momentum constant, cm , will be specified for each network that uses GDX. The learning

rate is increased after every weight adaptation that results in a performance increased.

Likewise, whenever the performance decreases due to a change in weights, the learning rate is

decreased and the change to the weights is undone. The default parameters that are used for

GDX unless otherwise specified are shown in the following table.

Parameter VALUE

Ratio to increase learning rate 1.05

Ratio to decrease learning rate 0.7

Maximum performance increase allowed

before learning rate is decreased
1.04

Momentum Constant 0.7

Table 4-2 Default Parameters for Training Function GDX

75

The function CGP implements a conjugate gradient backpropagation with Polak-

Ribiere updates. With all conjugate gradient methods, the direction in which the weights will

be updated, kwD , is a combination of the current gradient, kg , and the previous update

direction, 1-D kw .

 Zwgw kkk 1-D+-=D (4-3)

 kkk www DÖ+=+ a1 (4-4)

The parameter Z is updated according to the Polak-Ribiere variation [12].

()

1

1

-

- ö
÷
õæ

ç
å ¡
-

=
k

kkk

g

ggg

Z (4-5)

The reason for using the Polak-Ribiere variation is that it performed the best during initial

comparisons between a few conjugate gradient methods. The parameter that affects the

performance of CGP is the line search function used to determine the step size, a, to take

along the search direction, kwµ . The line search used is based on Charalambousô method,

which is a hybrid search using cubic interpolation and a type of sectioning. The step size is set

by the line search method so that it results in reaching a minimum along the search direction.

 The last training function used is backpropagation utilizing the Levenberg-Marquardt

algorithm (LM). The LM algorithm interpolates between the Gauss-Newton algorithm and the

gradient descent method. A dampening factor, m, is varied to cause the algorithm to act more

like gradient descent when further away from the minimum and like Gauss-Newton as it

approaches the minimum. The parameter m is increased whenever the change in weights of

the network results in a performance increase. Likewise, it is decreased whenever the

76

performance decreases. The algorithm uses an approximation to the Hessian as is shown

below. Note that J is the Jacobian in the following equations.

 JJH T= (4-6)

IH

g
ww k

kk
m+

-=+1 (4-7)

The default parameters for the LM algorithm are shown below.

Parameter VALUE

Ratio to increase m 10

Ratio to decrease m 0.1

Initial m 0.001

Table 4-3 Default Parameters for Training Function LM

4.4 Simulations Using AWGN and 4 Symbols

4.4.1 Single Layer Linear Network Simulations

Each neural network simulated in this section contains a single layer. The number of

neurons contained in the layer is equal to the number of symbols. The output of each neuron

is an output of the network.

Layer 1Inputs

Figure 4-2 Layer Connections for Neural Networks of Figure 4-3

77

Parameter Value Value Value Value

Network Identifier (40)-4 (20)-4 (8)-4 (4)-4

Number if Inputs 40 20 8 4

Layer 1 Neurons 4 4 4 4

Layer 1 Transfer Function LIN LIN LIN LIN

Training Function GDX GDX GDX GDX

Initial Learning Rate 0.05 0.05 0.05 0.05

Number of Networks 3 3 3 3

Training Batch Size 3,600 Symbols 3,600 Symbols 3,600 Symbols 3,600 Symbols

Training SNR(s) -11, -7, -3 dB -11, -7, -3 dB -11, -7, -3 dB -11, -7, -3 dB

Training Epochs per

Training Session
100 100 100 100

of Training Sessions 2 2 2 2

Table 4-4 Training and Test Parameters for Figure 4-3

Figure 4-3 Single Layer Linear Network Simulation Results for AWGN with 4 Symbols

78

Receiver -19dB -15dB -11dB -7dB -3dB

(40)-4 0.51719 0.37085 0.18211 0.03498 0.00080

(20)-4 0.51638 0.37110 0.18383 0.03542 0.00075

(8)-4 0.53249 0.39596 0.21138 0.05178 0.00268

(4)-4 0.54432 0.41509 0.24211 0.07648 0.00833

correlator 0.51465 0.36817 0.17876 0.03289 0.00068

Symbols Tested 42,600 42,600 42,600 42,600 42,600

SNR

Table 4-5 SER Data for Figure 4-3

It is clear that the correlation receiver outperforms all the simulated networks.

However, as the input size increases, the performances of the networks approach that of the

correlation receiver. Figure 4-4 shows the connection weights of the first trained network

containing 40 inputs. Notice how the connection weights of the trained network relate to the

ideal reference signals used by the correlation receiver. The network weights have gravitated

towards the best possible configuration of weights for the AWGN noise source, which is

known to be a correlation receiver [5].

79

Figure 4-4 Input Weights Compared with Correlation Receiver Reference Signals.

The input weights are from the 1
st
 network of Figure 4-3 to each of the 4 neurons.

80

Figure 4-5 Input weights for the 4
th

network of Figure 4-3

81

Figure 4-6 Input weights for the 7
th

 network of Figure 4-3

82

Figure 4-7 Input Weights for the 10
th
 network of Figure 4-3

The degraded performance of the single layer linear networks with smaller input sizes

can be attributed to the reduction in information available to the network at each decision

point. The network must use the same connection weight for all sampled data points that are

fed through a particular input. The sampled points for a single transmitted symbol must be

presented N points at a time where N is the number of inputs to the network. When the

number of inputs is less than the total number of samples that make up a symbol, which is 40

in this case, then each input will receive multiple data points from a single sampled symbol.

 For the case with an input size of four, each input will receive the sampled data points

for a single bit of the sampled symbol. Each of these sampled data points are fed to the

network one at a time, and the output of the network is averaged over the entire time it takes

83

for a symbol to be presented to the network. Figure 4-4 above shows that the ideal weights are

not uniform over an entire sampled bit from the code set. The architecture of the single layer

linear networks used in this simulation prevents the networks from weighting a single input

differently over time.

One way to address this is to change the post-processing method from a flat average to

a weighted average. Performance would be expected to improve the greatest for networks that

have the same number of inputs as bits contained in each symbol. The same trained networks

simulated in Figure 4-3 were re-simulated with a weighted post-processing and the results are

shown in Figure 4-8.

Figure 4-8 Single Layer Linear Network Simulation Results with Weighted Post Processing For AWGN

with 4 Symbols. The exact same parameters were used as in Figure 4-3

84

Receiver -19dB -15dB -11dB -7dB -3dB

(40)-4 0.52174 0.37005 0.17997 0.03498 0.00067

(20)-4 0.52244 0.37619 0.18741 0.03922 0.00098

(8)-4 0.54756 0.40134 0.22097 0.05732 0.00295

(4)-4 0.53750 0.40248 0.22352 0.05801 0.00317

correlator 0.51756 0.36649 0.17379 0.03379 0.00070

Symbols Tested 17,200 20,200 29,000 42,200 60,000

SNR

Table 4-6 SER Data for Figure 4-8

The network with four inputs saw a reduction in symbol error rate whereas the rest of

the networks slightly increased. The ideal weighting of the outputs over time should be related

to the channel characteristics that the transmission signal passes through on the way to the

receiver. For practical applications, an estimation of the channelôs transfer function may result

in a good tradeoff between the performance of a correlation receiver, and the reduced

computation afforded by a network with an equal number of inputs as bits in each symbol.

4.4.2 Single Layer Linear Recurrent Network Simulations

The results of adding a recurrent connection to the single layer linear network are

shown in Figure 4-10. The gradient calculation for the simulations shown was not the true

gradient, but rather an approximation. Simulations of recurrent networks in the Matlab

environment took considerably more time than much larger non-recurrent networks. In

simulations not included in this thesis, using the true gradient did not result in considerable

performance benefits, but did require a much larger amount of computing time. Thus, an

approximation to the true gradient, as described in section 2.3.8, is used in all recurrent

simulations in this thesis.

85

Layer 1Inputs

Figure 4-9 Layer Connections for Neural Networks of Figure 4-10

Parameter Value Value Value Value

Network Identifier (40)-4R (20)-4R (8)-4R (4)-4R

Number if Inputs 40 20 8 4

Layer 1 Neurons 4 4 4 4

Layer 1 Transfer Function SLINS SLINS SLINS SLINS

Training Function GDX GDX GDX GDX

Initial Learning Rate 0.05 0.05 0.05 0.05

Number of Networks 3 3 3 3

Training Batch Size 1,200 Symbols 1,200 Symbols 1,200 Symbols 1,200 Symbols

Training SNR(s) -11, -7, -3 dB -11, -7, -3 dB -11, -7, -3 dB -11, -7, -3 dB

Training Epochs per

Training Session
150 150 150 150

of Training Sessions 2 2 2 2

Table 4-7 Training and Test Parameters for Figure 4-10

86

Figure 4-10 Single Layer Linear Recurrent Network Simulation Results for AWGN with 4 Symbols

Receiver -19dB -15dB -11dB -7dB -3dB

(40)-4R 0.56841 0.43130 0.23423 0.06250 0.00520

(20)-4R 0.54749 0.40832 0.22091 0.05699 0.00282

(8)-4R 0.55703 0.43478 0.26909 0.10844 0.02245

(4)-4R 0.57170 0.46236 0.32227 0.17176 0.07346

correlator 0.51419 0.36672 0.17807 0.03338 0.00055

Symbols Tested 102,600 102,600 102,600 102,600 102,600

SNR

Table 4-8 SER Data For Figure 4-10

The recurrent networksô performance is worse than the results of the single layer linear

networks. A modification to the post-processing of the recurrent networkôs outputs results in

improved performance for the networks that are fed a single symbol portions at a time. The

post-processing method used in Figure 4-10 was a simple flat average of the networkôs output

for a single symbol. Note the reduced symbol error rate in Figure 4-11. The exact same

trained networks of the previous figure were used, but the post-processing method more

