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Abstract

A Neural Network Receiver for ENMWD Communication

Timothy P. Whitacre

Baseband digital communication in eleetnagnetic measurement while drilling
(EM-MWD) systems i®ften corrupted by newhite surface noise. The inability to reliably
decode the transmitted signals in a noisy environment limits the depth at whidhEHM
systems can operate. Correlation receivers, which are optimal in the presence of additive
white Gawsian noise, can be swoiptimal in the presence of various types of field noise at
different drilling sites.

This thesis investigates the application of artificial neural networks (ANN) as
communication receivers in EIMWD baseband digital communicatiopstems. The
performances of various ANN architectures and training algorithms are studied and compared
with conventional correlation receivers via computer simulations. Standard symbol error rate
(SER) test results show that the NN receiver is able tat anl&ie specific noise and thus

outperforms the traditional correlation receiver.
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Chapter 1  Introductio n

Modern directional drilling has increased the precision of drilling wells for oil, gas,
and geothermal uses. It utilizes various sensors located near the drill bit as a means of
transferring readings from sensors to drilling operators. Accelerometegaetoaeters, and
gyros are used to determine the location and attitude of the drill bit with respect to gravity,
magnetic north, and true north respectively. This information is necessary to ensure wells are
drilled as planned within lease lines as weltlalled to the desired target locatiomag the
prescribed well profilg1].

Transferring sensor measuremeotshe surface, while drilling;ommonly known as
measurement while drilling (MWD), enables the drilling opematorguide the drill bit with
increased precision. The data from the sensors are transferred to the drilling operators at the
surface in two primary wayg].

The firsttransmissiormethod uses pressure signals communicatedigin a column
of fluid present in the well. This form of communication is knowmasl pulsing. The
pressure signals generated by the tool (sensors and associated electronics) are received by a
pressure sensor near the surface of the well. The presgoadssare then decoded for the
drilling operator. The main sources of noise associated with mud pulsing MWD are from
pumps at the surface and drill motors beneath the sydffce

The second method of communicating sensadinga is through electromagnetic
waves (EM). Either a voltage is modulated across a gap, or a current is induced in the drill
string by the EM MWD tool. The resulting EM waves propagate through the earth and are

detected by equipment at the well surfadee Tajority of noise that the EM MWD systems



must deal with is generated at the well surface. Drill pumps, motors, and even lightning can
generate noise, which degrades EM MWD system perforni8hce

In order for the EM sigridao be reliably detected, a receiver must be able to deal with
the various noise sources near the drill rig. There are a number of methods used to aid in the
filtering and decoding of EM signals in the presence of noise. At least one MWD company
uses a coelation receiver preceded by various analog and digital f{ié¢rd his method
proves to work well when the spectral content of the noise and the transmitted signals do not
overlap significantly. The ability of the cotagion receiver to correctly decode the
transmitted symbols decreases as the noise spectrum encroaches on the signal spectrum, and
as the signal to noise ratio decregd&sThe majority of the power contained et
transmitted signal is in the low frequency band because the earth tends to act-passlow
filter for EM waves. The noise sources on or near the drill rig usually have large power
spectral densities in the same frequency Bdhdrhis explains why there can be much
difficulty associated with the reception of EM signals under certain conditions.

This thesis investigates the application artificial neural networks as communication
receivers to detect EM signals at the vgelkface. Artificial neural networks are the result of
attempts to solve problems by mimicking the manner in which biological neural networks (i.e.
brains) function. Biological neural networks are able to learn, adapt, and process data
nonlinearly. They ge able to extract information in the presence of considerable amounts of
noise[6]. It is expected that the neural network receiver is able to decode signals in the
presence of noise that would normally be difficolt & correlation receiver.

This thesis is organized as follows. Chapter Two provides a more detailed description

of the problem statement. The operation of MWD systems is addressed with emphasis on the
2



communication of sensor data. In addition, relevaakround on communication theory

will also be reviewed, followed by an overview of the fundamental concepts and purposes of
neural networksChapter Twaconcludes with a review of previously published work in the
areas of neural networks, digital reces/eand EM MWD communication. Chapter Three
describes the architecture of neural network receivers. Chapter Four outlines the computer
simulation results and analysis. Finally, conclusions and suggestions for future works are

presented in chapter Five.



Chapter 2 Background

2.1 MWD Systems

Monitoring While Drilling (MWD) systems allow for near retne information on
the orientation of the dowhole drill bit in oil and gas drilling applications. This information
is necessary in order for the actual profile to matctddsred profile of the well.

Additionally, various sensors readings transmitted to the drilling operator can be used to
optimize the location of the finished well for production of oil or gas. Many wells are often
drilled from the same platform, increagithe probability of collisions with previously drilled
wells. This coupled with the need to legally ensure the placement of wells within lease lines
and other constraints makes the timely feedback of drill bit position and orientation extremely
important.

There are difficulties associated with providing reliable transmission of the
information from the dowamole tool to the surface in a timely manner. Noise from location to
location can vary drastically, as well as earth formation, and the depth ofdiiiorder for
MWD companies to competitive they must be able to provide consistent reliable
communication while drilling.

There are two widely used methods for the transmission of sensor readings from
downhole to the drilling operators at the surfakid pulsing is the older of the two and
involves generating pressure waves in the drilling fluid to communicate from the tool to the
surface. The second method creates electromagnetic waves that pass through the earth from
the tool to the surface. This rhed is often referred to as EM. MWD companies continually

strive to improve the performance of these transmission ofdtidns
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2.1.1 MUD Pulse MWD Systems

Mud-pulse systems use a column of fluid, mud, to transmit data encodsdrgres
signals unidirectionally from the tool to the surface. Opening and closing a valve through
which the mud passes create the pressure signals. The pressure pulses are converted to
electrical signals by a pressure transducer located at the surfagee3smge contained in the
series of pulses is then decoded and the information is presented to the drilling operator.
Alternate uses of the mud include powering the drilling motors located near thehdéavn
drill bit, lubricating the mud motors, and remogithe cuttings from the well.

Nearly all of the noise in a mud pulse system comes from pressure fluctuations in the
fluid caused by sources other than the mud pulse tool. Noise introduced after the pressure
signal is converted to an electronic signaleglligible. The attenuation of the pressure signal
over distance is dependent upon the type of drilling fluid used, increasing as the density
decreases. The data rates for rpudse systems asiow, usually in the 1 to 2 bits per second

range.

2.1.2 EM MWD Systems

EM MWD systems communicate by either modulating a voltage source across an
isolated gap, or inducing a current in the drill string. The resulting electromagnetic waves are
sent to the surface where they are detected by an antenna. The data isdded dad

presented to the operatédm example of an EM MWD system is showrHigure2-1.
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Figure 2-1 Basic Electromagnetic MWD System

Numerous poterdl noise sources exist when using electromagnetic wave telemetry.
Motors, power lines, lightning, and more can inject noise into the receiving antenna. The
power spectral density of the noise often has spikes and is usuakyatmmary. The
strength othe EM signal degrades significantly as the distance between the MWD tool and

antenna increases.



2.1.3 EM Advantages and Limitations

EM systems provide higher data rates than-puide systems. However, they are
unable to reach the same depth as their-pulge counterparts due to the attenuation of the
EM signal as it passes through the earth. EM systems are able to communicate in under
balanced drilling situations where the drilling fluid density is too small for-pulde
systems. The EM communication systdoes not use any moving parts, whereas the mud
pulse systems must physically open and close valves. Noise abounds in both systems, but EM

sysems have a much lower sigfiatnoise ratioSNR)as the depth of the tool increases.

2.2 Digital Communication

Analog and digital communication systems transfer information from a transmitter,
through a transmission channel, to a receiver. Both types of systems aim to provide the
receiver with an exact replica of the information sent by the transmitter.

The informatia transferred with an analog communication system has infinite
resolution. The goal of the receiver is to preserve the fidelity of the information.

With digital communication systems, information is first quantized into a sequence of
digital symbols, als&nown as a bit stream. Thus the information sent is not infinite in
resolution, but is represented by a finite set of digital symbols, each madé bpsofThese
digital symbols are converted to digital waveforms that are compatible with the tranamissio
channel through a process known as modulation. A transmitter is used to pass the digital
waveform through the transmission channel to a receiver. The waveform is corrupted by

various noise sources and the channel transfer function as it travels toeiliernel he



receiver demodulates the received waveform into a bit stream, which ideally matches the bit
stream of the transmitt§5].

The digital communication system addressed by this thesis is shdwgune2-2
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Figure 2-2 EM MWD Digital Communication System

2.2.1 Performance Evaluation

Digital communication systems are usually judged by the probability ofrectty
identifying a digital symbol from a transmitted waveform. The probability of bit error,
otherwise known as bit error rate (BER), of a system is the specific way of normally
evaluating this criterion. The BER for a communication system is ofteteglagainst the
signal to noise ratio, and results in a waterfall shape, with the probability of error decreasing

8



as the SNR increases. The probability of bit error is a special case of the probability of symbol
error(SER)where the length of the symbaslone bit. The neural network receivers in this
thesis are trained to identify symbols containing more than one bit, thus the SER is used

exclusively.

2.2.2 Signal to Noise ratio

When dealing with communication systems, the signal to noise ratio is usuatigddef
as the energy per bit to noise spectral density ratio. Most communication systems endeavor to
maximize this ratio, which in turn increases the probability of correctly detecting the signal,
or in the analog case, preserve the transmitted wavefornrafibes usually expressed in

decibels and is shown in equat®, whereE, is the energy per bit, and, is the noise

spectral density.

Qo
m
-0

b

SNR =100og (2-1)

0

O

The noise power spectral density is in units of Watts per Hertz and represents the amount of
power contained at each frequency band in the spectrum. White noise has a constant power
spectral density across all frieggncies and is often used as the corrupting source when
analyzing commungtion systems.

The noise power spectral density for ashite noise is notonstant across all

frequenciesEquation2-4 showsthe SNRdefinition used in this thesiswhere E, is the



signal energy, andk, ... is the noise energye. . and E__._.are defined ir2-2 and2-3

noise sig noise

respetively, whereN is the number of samples for each signal.

N
Esig = a Sig(n)2 (2'2)
n=1
N
Enoise: a nOiSE(n)z (2'3)
n=1
. &E. 0
SNR =10dogge—=-§ (2-4)
G “noise~

2.2.3 Statistical Validity of Estimated SER

The SER obtained through simulations is a binomial proportion because each of the
symbols transmitted results in either a success or failure.eAsuimber of transmitted
symbols increases, the percentage of symbols that were received in error approaches the
actual probability of symbol error. I n this t
probability of decoding the wrong symbol. Onayato judge the reliability of an
experimentally derived estimate is with confidence intervals. A confidence interval is usually
stated as a percentage, such as a 95% confidence interval. As it relates to this project, the
percentage represents how likéhat the true probability of symbol error for a given receiver
lies within the calculated confidence interval from a particular experiment. For example, 95%
of identically run experiments will result in the true probability of symbol being within the
calcuated 95% confidence interval for each experiment.

There exist a variety of methods for estimating confidence intervals for binomial

proportions[7] has shown that the AgresEoull confidence interval is mne accurate than
1C



the standard Wald confidence interval, especially as the true probability approaches 0 or 1.
Equation2-5 is the standard Wald confidence interval, wittequal to the total number of

samples, i equal to the number of errors, divided byn, and z taken from the standard

normal distribution for the desired confidence percentile.

Clyap = Eo z Pl B (2-5)

a 7@ z° @
B+ x+—0
& 2w 20
2 a&n+z°0 n+z2°0
RPN [
= + -
Clyc =542 - (2-6)

This equations similar in form to the Wald interval, which can be seen by using the

following variable substitutions.

i=x+%— 2-7)
n=n+2z° (2-8)
- X
P= = (2-9)

Using these substitutions with equati@rb results in the following equation, which is in the

same form as the standaiéald interval.
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Cl=p°z pd- p) (2-10)

~

n

The size of the confidence interval is tlgigen by equatio2-11.

W, =2z |PL-P) (2-11)

n

The confidence intervals obtained by applying equalid@ to the SER test results will be

used to validate the comparisons made.

2.2.4 Correlation Receivers

The correlation receivazontainsM individual correlators, wher& is the number
of symbols contained the code set. Each correlator integrates the product of a received signal,
r(t), with a replica of one of the symbol wavefw, s (t) over a single symbol interval; ,

as is shown in Equatiazr12.

T

2(T)=ft)s@)azi=1..M (2-12)

0

When the received signal ismspled the discrete version of the correlation receiver is used.

N
z(N)=3 r(k)s (k)i =1...M (2-13)
k=0
The decision as to which symbol was most likely transmitted is made by choosing the
correlator with the largst output. This has been shown to be the best possible choice as long

as each of the symbols has the same probability of being transmitted and the received signal is

corrupted by AWGNS5].
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2.3 Artificial Neural Networks

The field of artificial neural networks (ANN) aims to process data in a way similar to
that of biological neural networks, i.e. brains. The brain is amazing; it handles thousands of
nonlinear inputs simultaneously and learns to process them into sognetdamingful. It can
easily pick out important inputs, and disregard others. Think about the very fact that you are
reading this. You are able to process raw image data into intelligible letters, words, phrases,
and thoughts. You are even able to extraeaning out of noisy data. For example, you
porlbably arje wndorenig why | am msislpelnig nurmuruos wrods in a thises peapr. Waht yu
rielaysuhulod ask is how yu can raed and udnretsand tntihs at all. Your brain is able to
analyze data in a way that is ftardentally different from the way computers traditionally
process data. Artificial Neural Networks (ANN
and learning. In order to mimic, one must first observe, thus we first look at a few features of

biologicalneural networks.

2.3.1 Biological Neural Network Fundamentals

First, let us look at a simple comparison between the brain and traditional computers.

Table2-1 shows a few of the fundamental differences between th¢8jwo

13



Processing | Processing | Computation Fault Learning Intelligent,
Elements Speed Style Tolerance ability Conscious
. 10 Parallel,
Brain Synapses 100 Hz Distributed Yes Yes Usually
Computers 10? 10° Hz Serial, No A little Not
Transistors Centalized Currently

Table 2-1 Biological Neural Networks vs. Computers

It is evident from the table that there are major differences between computers and biological
brains. The parallel natucd the brain makes it very effective at processing multiple inputs
efficiently. Classifying and associating the numerous inputs allows humans to learn, think,
and adapt to new types of inputs. Computers process data serially, which makes it more
suitablebr more o6l eft brained6é types of applicat:.
Neurons

The human brain contains approximately 10 billion neurons. Each of these neurons is
afullyselfc ont ai ned processing el ement . |l nput s to
dendrites. The cell body presses these inputs and provides an output through the axon of the
neuron. Axon terminals propagate the output to other ne{@prisigure 2-3 depicts a typical

neuron.
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Figure 2-3 Biological Neuron Components

Processing the inputs consists of comparing the summation of all inputs to a threshold
level. Once the inputs exceed this threshold, the neuron depolarizes, meaning it discharges a
spike. After a neuron depolarizes it is unable to provide an output for a short amount of time,
known as the refractory period. The refractory period consists of aludperiod, followed
by a relative period. For somewhere around a millisecond after the depolarization of a neuron,
the neuron is unable to fire. The neuron becomes progressively easier to stimulate during the
relative refractory period as can be seeRigure 2. Neurons, therefore, do not process data

continuously, but in discrete time stdff)].
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Figure 2-4 Temporal Response of Biological Neuron

Synaptic Connections

Each individual neuron is connected to thousands of other neurons. The network of
neurons within the brain contains an immense amount of connections. This is the key to the
processing power of the brain. Synapses are the conneb&ibmsen neurons. They consist of
the axon terminals, a dendrite of another neuron, and a dsgivireen. Signals passing

through the axon jump across the gap with help from neurotransrters
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Figure 2-5 Neuron Synaptic Connection

Synaptic Learning

Synaptic learning is how the brain is able to work so well. By adding andndgleti
synaptic connections, as well as strengthening and weakening existing ones, the vast network
of neurons within the brain are able to learn. Each input to a neuron thus has a modifiable
weighting factor. It follows that the processing function of eachrarewill change along

with each of the individual input weights.

Mimicking Nature

Biomimicry is a science that studies nature's models and then imitates or takes inspiration
from these designs and processes to solve human problems. For example, \ielcro wa
developed to imitate the way burrs are able to attach to animal fur. Nature is full of
ingeniously elegant designs just waiting to be imitated. The field of artificial neural networks

is devoted entirely to imitating the processing nature of the braimpGters would able to
17



perform in more uncontrolled environments if they could process information in the same
fashion as the brain. The following are a few of the important characteristics and features of

the neural network within the brain that artificreeural networks aim to imita{é].

91 Parallel, distributed information processing

1 High degree of connectivity among basic units

1 Connections are modifiable based on experience

1 Learning is a constant process, andally unsupervised
1 Learning is based only on local information

1 Performance degrades gracefully if some units are removed

2.3.2 Artificial Neurons

Artificial neurons imitate the various features of biological neurbiggire2-6 shows

the structure of a basic artificial neuron.

X

Y;=[(net;)

Figure 2-6 Basic Artificial Neuron
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Weighting Factors
In order to mime the synaptic strengths of biological neurons, weighting factors are
needed for the inputs to the artificial neuron. Each weight signifies the importance of their
respective input in the processing function of the neuron. Inputs with larger weights will
contribute more to the neural response than those with lesser weights. The potential to learn is
incorporated into the artificial neuron (and thus the network), by allowing the input weights to
be adaptive coefficients. The adaptation process is performregdponse to training sets of
data, and depends on both the networkoés speci

applied.

Summation Function

The first step in the operation of an artificial neuron is the summation function. As the
name impliesthis is usually a summation of the weighted inputs to the neuron. The
summation function can be more complex than a simple summation. Other futicéiboan
be usedinclude minimum, maximum, majority, product, or several normalizing algorithms.
The speffic algorithm is chosen by the network architecture and paradigm. A bias factor is

often included and is summed along with the weighted inputs.

Transfer function

After the inputs have passed through the summation function, they are then fed
through a tansfer function. This transfer function is usually not a linear function. One of the
goals of artificial neural networks is to be able to provide nonlinear processing. However, the

ability of a neural network to perform in a nonlinear fashioakeigendentipon the transfer
19



function of the individual neurons. By choosing a linear transfer function, the overall network
would be limited to simple linear combinations of the inputs. Various trafisfetions are
typically used. Acommon transfer function is thyperbolic tangentwhich is shown in

Figure2-7. The hyperbolic tangent is a continuous function and its derivatives are as well.

hyperbolic tangent function
tanh(x)

1.00

0.50

0.00

-0.50

-1.00
-400  -2.00 0.00 2.00 400 X

Figure 2-7 Hyperbolic Tangent Function

Scaling and Limiting

Implementation of this portion of the artificial neuron model is optional. The output of
the transfer function is manipulated in order to lie withinaiarbounds. Scaling is performed
first, followed by some sort of threshold function. A number of transfer functions, such as the
hyperbolic tangent function, have bounded outputs already, and thus additional limiting is not

needed.

Output Function
This portion of the model is also optional. Normally the output of the neuron is equal
to the output of the transfer function. When implemented, the output function allows for

competition between the outputs of various
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neurons, a large output by one neuron will cause the output of a different neuron to diminish.

In other words, the loudest neuron causes the other neurons to be quieter.

Error function

The raw error of a network is the difference between the desired amghtihe actual
output. The error function transforms this raw error to match the particular network
architecture in use. Propagation direction of this error is usually backwards through the

network. The backropagated value serves as the inputtootteum ons 6 | earni ng f

Learning Function

The learning function modifies the input weights of the neuron. Other names given to
this function are the adaptation function, or learning mode. There are two main types of
learning when dealing with neuroaad neural networks. The first type, supervised learning,
is a form of reinforcement learning and requires a teacher, usually in the form of training sets
or an observer. Unsupervised learning is the other type, and is based upon internal criteria
built into the network. The majority of neural networks utilize the supervised learning

method, as unsupervised learning is currently undergoing research.

2.3.3 ANN Structure

Artificial neural networks function as parallel distributed computing networks. Each
node in he network is an artificial neuron. These neurons are connected together in various

architectures for specific types of problems. It is important to note that the most basic function
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of any ANN is its architecture. The architecture, along with the algoritin updating the

input weights of the individual neurons, determines the behavior of the ANN. Neurons are
typically organized into layers, with connections between neurons existing across layers, but
not within. Each neuron within each layer is fully nented to all neurons in the associated
layer. This obviously leads to a vast amount of connections existing within the network, even

with relatively few neurons per layer.

Input Layer

Individual neurons are used for each input of an ANN. These inpul lbewollected
data, or real world inputs from physical sensors:groeessing of the inputs can be done to
speed up the learning process of the network. If the inputs are simply raw data, then the
network will need to learn to process the data itsslfiyall as analyze it. This would require

more time, and possibly even a larger network than with processed inputs.

Hidden Layers

The input layer is typically connected to a hidden layer. Multiple hidden layers may
exist, with the inputs of each hiddenéay 6 s neur ons being fully conn
the previously | ayer6s neurons. Hi dden | ayer s
do not see any real world inputs nor do they give any real world outputs. They are fed by the
i nput oluayeartéds and feed the output | ayer s i n|
of the hidden layers, as well as the number of hidden layers themselves, determines the
complexity of the systeli8]. Choosing theight numberfor each is a major part of designing

a working neural networfor a given application
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Figure 2-8 Simple Artificial Neural Network
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Feedback

Output Layer

Each neuron within the output layer receives the output of each neuron within the last
hidden layer. The output layer provides real world outputs. These outputs could go to another
computer process, a mechanicahtrol system, or even dumped into a file for analyzing. Like
the output function of an individual neuron, the output layer may perform some sort of

competition between outputs. This lateral inhibition can be seEigume2-8 above
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Figure 2-9 Artificial Neural Network Layers

2.3.4 ANN Learning

A variety of different learning modes exists for determining how and when the input
weights of the individual neans are updated within a network. The types of learning are
either supervised or unsupervised. The choice of learning method for a network drastically

affects its resulting performance.

Supervised

Learning in a supervised mode starts with a comparistimeaietworks generated
outputs and the desired outputs. Input weights of each neuron are adjusted to minimize any
differences found. This process is repeated until the network is deemed to be accurate enough.
After the training apehypicaky frozénhwhichrallowsrthe neswork we i g h't
to be used reliably. Another option is to let the network still learn online, but simply lower the
rate at which the network will learn. The second option allows the network to adapt to any

slight variationghat it may come across. One of the most important things to do when
24



training a network is to carefully choose the data used for training. Typically data is separated
into a training set and a much smaller test set. The training set is used to tratwtré tee
perform a task. The test set is used to verify that the network is able to generalize what it has
learned to slight variations. Without this separation of dataisetsuld not @ knownif the

network simply memorized the data set without baiblp to generalize.

Unsupervised

Unsupervised learning is performed without any form of external reinforcement. The
network contains within itself a method of determining when its outputs are not what they
should be. This method of learning is not neadywell understood as the supervised method.
It requires that the network learn online. Current work has been limited to networks such as
selforganizing maps, which learn to classify incoming data. Further developments with this
type of learning would havuses in many situations where adaptation to new inputs is

required regularly.

Learning Rates

The learning rate of a network is determined by many factors. Network architecture,
size and complexity play a big role in the speed at which the networlk.|@arather factor
that affects the learning rate is the learning rule or rules employed. Slow and fast learning
rates each have their pros and cons. A lower rate will obviously take longer to arrive at a
minimum error at the output. A faster rate will @&rimore quickly, but has a tendency to

overshoot the minimunBoth of these characteristics are showfigure2-10. Some
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learning rules use the best of both worlds, and start off with a high learning rate, and lower it

graduallyuntil a minimum is reached.

SmallLearning Rate
Slow Convergence

Y

Large Learning Rate
Divergence!

Figure 2-10 Characteristics of Different Learning Rates

Common Learning Laws

Learning laws govern how the input weightsiefirons within the network are
modified. Typically, the error at the output is propagated back through the various layers of
the network. The resulting error gradient is used in calculating the adjustment to each weight
of the network to reduce the errdhe exact direction the weights are adjusted and the
magnitude of adjustment vary between the different learning laws. A few common learning

|l aws include Hebbds, Hopfiel dos, Delta, and
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The three learning laws used in this thesis are gradieo¢iesith momentum and
adaptive learning rate, Levenbdwgarquardt[11], and conjugate gradient backpropagation

with PolakRibiere updatefl2].

2.3.5 ANN Applications and Limitations

Applications for artificial neural networks generally fall into one of five categories:
prediction, classification, data association, data conceptualization, and data filtering. Each of

these categories uses slightly different types of netauohkitectures and learning laws.

Prediction

Artificial neural networks have successfully been created to perform various types of
prediction. In general, the networks employed for prediction use input values to predict some
output. An example of a finaraily desirable application is prediction of the best stocks in the
market. Other applications include weather prediction and identification of people with risks

for certain diseases.

Classification

A successful application of classification networkeith optical character
recognition. Visual data is presented to the network and the network outputs what character
the data most resembles. This thesis focuses on the classification of noisy transmission

signals.
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Data Association
Data association is sifar to classification, but the network also recognizes data that
contain errors. With optical character recognition, the network might not only identify the

characters that were scanned &igbidentify when the scanner et working properly.

Data Conceptualization
The networks used for data conceptualization analyze the inputs to infer grouping
relationships. Advertising would possibly utilize a data conceptualization network to extract

from a database the names of thpseplemost likely to buy a paicular product.

Data Filtering
One of the first applications of neural networks dealt with data filtering. A network

was developed that could filter out the echo in phone lines.

Limitations
A number of limitations currently exist which prevent neuetivorks from being
more widespread. One of the major hurdles is the limited knowledge of how the brain truly
learns. It is difficult to accurately model something that is not known well. The most
significant limitation is the lack of highly parallel hardwaavailable. Computers are
normally serial in nature, which doesnét <corr
networks. Specialized very largeale integrated chips have been fabricated for artificial

neural networks, but they are not widespream] have seen limited success.

28



2.3.6 ANN Mathematical Model

The following ANN model conforms to the representation used in the Matlab Neural

Network Toolbox version 4.0.1 as well ag113].

Neuron Model

The inputvector P to a neuron is comprised & elements. The elements of the input
vector arep,, p,,..-Pg- The input elements are multiplied by weighting factarsw,,.. wj .
The neuron transfdunction f takes as its input the weighted sum of the input vector and a

neuron bias constatit. The weighted sum is equivalent to the dot product of the row vector

w and column vectomp . Equation®-14 and2-15 define the output of the neuron:

~

0 o R ~
a=f g8 w,p,0+bg (2-14)
(;(;n:l - =
a= f(wp+b) (2-15)
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Layer Model
A layer of an artificial neural network containir§ neurons, and havin® inputs is

considered. Each dlie S neurons contain® weighting factors to th&R inputs. This results

in a weight matriX\/ ., connecting thej™ input to thei™ neuron. The vectop, of length

i,j?
R, is the input vector to the layer. #as vectorb, of length S, represents the bias
connections to each of the neurons. The dutpthe neuron layer, labeleal, is a vector of

length S. It is given by equatio-16.

a=f(Wp+bh) (2-16)

Generic Network Model

Superscripted integers are used to distinguish between elements of different layers.

Two integers are used for elements connecting two different layers, such as a layer weight

matrix. Note thatlW"! designates weight matrix connecting th¢™ input vector to the™

layer, wheread W"'! is a weight matrix connecting thg" layer to thei™ layer. This
notation allavs for the possibility of multiple input vectors, but usuallyyooheinput vector

is specified. The output of th& neuron layer is described by equat®t7, wherel is the

number of layers andl is the number of inputs:

~

ol = 1138 (Lwmam)+ & (w'npt)+b' 8 (2-17)
Cm=1 n=1 +
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Any combination of layer outputs can be considered the output of the neural network, where
normdly the last layer in the network is chosen. An example artificial neural network is

shown inFigure2-11.

Figure 2-11 Example Neural Network

The mathenatical model of the example networkRigure2-11 aboveis depicted in

equation2-18.

a® = £3(LwA? £ 2 (LW £ (1w pt +bt)+b?)+b°) (2-18)

Also relevant to the discussion, is the limit on the connections allowable within a network. A
delay must exist in the connection path bet we

possible for the current output of any processing element degendentipon past outputs of
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that same processing element. Some of the networks contained in this thesis contain recurrent
connections. This means that one or more delayed outputs of one or more layers are
connected to one or more layers whose outpusféeel input of that layer. The difference

between a recurrent and nogcurrent neural network is similar to the difference between

finite impulse response (FIR) filters and infinite impulse response (IIR) filters. Like an IIR

filter, the present output @f recurrent neural networkdgpendentipon past outputs of one

or more layers. A third weighting matrix, designated/,’ , connects delayed outputs pf
layer to thei™ layer. The delayed outps of the j" layer are given the designata; . Given

n delayed versions of the output of a layer resultajjras shown in equatic2:19.

ab=la(k-1) a(k-2 3 a'(k-n)| (2-19)

IW.' is the weighting matrix connecting the delayed inpyts, to thei™ layer. Equation

2-20 shows p/, with n delayed versions of the input vector.

pb=lp k-0 p'k-2 3 p'(k-n) (2-20)

Equation2-21is the resulting generic model for the output of tHidayer of a recurrent

network. L is the number of layers, arid the number of input vectors.

T | L | &
a = 85 (Lwma™ +Lwimal)+ & (W' p" + Wi pp )+b 8 (2-21)
Cm=1 n=1 -

An Elman network is a recurrent network that contains a feedback from the first layer output

to the first layer input. This feedback connection allows it to learn both temporal and spatial
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pattens. The Elman network is one of the network architectures evaluated in this thesis for

use as a digital communication receiver.

2.3.7 Backpropagation

Backpropagation is the method by which t he
error is calculated with respt to each of the weights of the network. The term
backpropagation is often used to refer to a combination of the calculation of the gradient and
the gradient descent algorithm. It is a supervised learning method that updates the weights of
the network agording to the delta rule, along the negative of the performance function
gradient. The following is the derivation of the error gradient taken [ftdinis reproduced

here for the sake of completenegs.represents the set of neurons that are anterior to
meaning that their outputs serve as inputs.t® represents the set of neurons that are

posterior toi , to whichi is an input. First start with the output error of the network

accumulated over every training poipt wheret, is an output target anyg, is an output

unit.
(2-22

The gradient is simply the derivative of this error with respect to each weighaf the

network.

G = Dw. :E:La EP :a“E_p (2-23)
wvij H\Nij p p u\Nij

The gradientan be expandedto two terms.
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Dw; = _HE pnet (2-24)
Hnet  pw;

The first term is the error of unit, denotedD, . Thesecond is

et .
- B 5wy, =y, (2-25)
MW W wia
The gradient thus becomes
DNij = Di yj (2-26)

The second term is simply the forward activation of yni

(o/e;o)]

a,.
Yi = fj(netj): fj%. Wi Yk
CK A

(2-27)

The first term is the error of unit, which can be expanded using the chain rule.

D =5 FE Heh W,

| (2-28)
hinunett1 Hy; Hnet

The first term of this is the error of urit. The second term is the weight that connectsiunit

to unit h.

e .
pnet, =K A WYk = W, (2-29)
MY MY« A

The third term is the derivative of the transfer function for urgvaluated anet

W, _dfi(net) _ . ]
et~ net S (net) (2-30)

Theresulting expression for the error of units

D, = fi'(neﬁ)é. Dy Wy (2-3))

h P,

The error of output unib is the difference between the target and the actual output
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D, =t,- v, (2-32)

(o]
Note that the error is the derivative of fherformance function, which in this case is the sum

squared error.

1..
E= Sa t, - v, ) (2-33)

o]

Substituting all of these terms back into the gradient equation results in

. . Q
i (nep )a D, W Sf (netj ) (2-34)

hi R =

Dw;, =Dy, =

WO ?daiﬁ)o

The backpropagation of the error starts by using equatitito cdculate the output error,

and then uses equati@mB4 to determine the error gradient at each unit. The most basic
algorithm updates the weights to follow along the negative error gradient, which is why it is
often referred to asteepest descent. The weight update for this algorithm is simown

equation2-35, with w, as the vector of connection weightg, as the current gradient for all
network weightsanda, as the learning rate.

Wisg =W - 8,0y (2-35)

Other variations of the algorithm include gradient descent with momentum, variable learning
rate, resilient backpropagati, LevenbergMarquardt, and various conjugate gradient
methods. Each of these variations attempts to improve the speed of convergence and/or

reduce the susceptibility of the network to home in on a local shallow min[diljfi2].
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2.3.8 Gradient Calculation for Recurrent Networks

Figure 2-12 shows a simple recurrent network (SRN) consisting of a single neuron and

« P —
Wii
v

Figure 2-12 Simple Recurrent Network

a delayed recurrent connection.

The output for this SRN is:

Yi (t) = fi (neﬁ (t)) = fi (yJ' (t)\Nij Y (t - 1)Wii ) (2'36)

The gradient for this SRN is now derived in order to hidtilitpe differences of applying
backpropagation to nediynamic networks as opposed to those with dynamic connections.

We start by expanding the second tern2-@4 with the specifics of the example SRN.

Dw, :—ME Hnet (2-37)
Hnet  pw;

M:L (w + v (- Dw 2-38
" (y, E)w, +yi(t- Dw,) (2-39)
ettty 4 By - ) (239
MW HW;

Note that the delayed recurramtnnection has introduced a second term that is not present in

equation2-25. This result is expanded out further in the following equations.
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' (v (- Dw ) =w Wy, (t- 1) pnet (- 1) (2-40)

bW, "wet(t-1)
=W, ufi (neri (t - 1)) Unetl (t - 1) (2_41)
unet (t- 1) O

(2-42

w, f{net t- 1)%, (- 2w )8

ij

|-O:00O

The last term ir2-41is the same as the lastrtein 2-24 with the exception that it is one step
back in time. The difficulty of calculation the gradient for recurrent networks quickly
becomes apparent as equat4l is expanded further. Not only is the error gradient with
respect to a given weight dependent on the source feeding the weight but also upon all past
outputs and weights contained in the recurrent loop. These dependencies result in relatively
large performancera storage requirements for learning algorithms that use the true gradient
during training such as RTRL and BPHB][14][15]. A comnon way of calculating an

approximation to the gradient is to ignore #dffectsof a given weight on all past neuron

outputs.
Hov-1w)=0 2-43
m (v (t- w; ) (2-43)
Dw, = = P8y ) (244
unet pw,
Dw, _ HE pnet _ y(t-1) (2-49)
Hnet  pw;

This is often referred to as the Elman Gradient, and can be calculated by treating the previous

outputs of neurons as inputs to the netwaitke differences between the Elman Gradient and
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the true gradient decrease as the absolute values of the delayed and recurrent connection

weights approach zero.

€ @
vlvlr_noéi (yj (t)Wij Ty, (t } 1)Wii )U =Y (t) (2-46)
N o
There are twaonain ways to minimize undesirable side effects of using the Elman
Gradient to train recurrent networks. The first is to ensure that all recurrent connections are

initialized to small norzero values. The second is to use a relatively small learning rate

during training. Both methods are used in this thesis to train recurrent and dynamic networks.

2.4 Previous Work

The oil and gas industry is highly competitive which tends to limit the amount of
detailed research that is published. That being said, therdobawea number of papers
published on the use of neural networks in the digital communication field as well as a few
papers on methods to improve MWD digital communication. There are also similarities
between the type of networks used in this thesis amskthsed for pattern recognition.

Gorodnichy{16] introduced a neurassociative approach to recognition, which can
both learn and identify an object from lewsolution lowquality video sequences. The
network was ala to incrementally learn via the psetidoerse learning rule. Face recognition
tests were performed in which the network recognized faces frofrelsolution video. The
detection of objects through multiple frames of {oagolution video requires a singlecision
to be made given multiple sequential inputs. Similarly, some of the neural network receivers

in this thesis process one portion of a received symbol at a time and must decide a single
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decision from multiple sequential inputs. Two different gasicessing techniques suggested
by [8] are tested for the neural network receivers in this thesis.
An artificial neural network approach to the signal decision problem of a digital

communication receiver was presented by Fernafid@sThe type of modulation scheme
was limited to those with signal elements that belonged to a finite bidimensional constellation
such as multilevel ASK, PSK and QAM. The neural network used was a multilayer
perceptron and was trained ngibackpropagation with gradiedéescent. The network
effectively models a maximuwiikelihood receiver.

White [1] addressed the problem of EM detection in the presence estationary
noise by adaptively changing the tramssion frequency of the BPSK coded signals. The
algorithm uses estimates of the noise power spectral density to find spectral nulls at which to
concentrate the power spectral density of the transmitted signal. Results showed a marked
improvement in deteain of transmitted EM signals using BPSK. The portion of the EM
MWD system addressed by Whitg differs from that of this thesis, focusing primarily on
the adapting characteristics of the transmitted signal to improvetteedni rate. This thesis,
on the other hand, addresses the receiver filtering and decoding portions of the
communication system shown kiigure 2-2.

The method of spectral subtraction was applied to the EM MWD noise problem by
Suh [3]. During gaps in communication, the power spectral density of the noise is calculated.
It is then subtracted from the power spectral density of the noise corrupted transmission
signal. The resulting power spectral depstused with the phase information from the noise

corrupted signal to reconstruct the transmitted signal. Test results show a significant
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improvement in the signal to noise ratio in the presence of typical rig surface noise. This

addresses the receiviitering portion ofFigure2-2, but not the decoder.
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Chapter 3  Artificial Neural Network Receiver

This chapter presents the candidate artificial neural networks for use as receivers in low
frequency baseband digital communication. The camoation system in which the ANN
acts as the receiver is described first. Det
the receiver are then discussed. The chapter concludes with a detailed look at the methods

used for training and performanceaduiation of the ANN digital communication receivers.

3.1 Digital Communication System

The EM MWD digital communication system addressed in this thesis is the same as in

Figure2-2.

3.1.1 Signal Transmission

The signal generated by the ENAVD system dowshole travels through the earth
and drill string to the antennas on the surface. Noise is added to the transmitted signal by two
different paths. The first location of added noise is during the generation of the EM signal.
Noise from the @ctronics of the MWD tool finds its way onto the transmitted signal. This
noise is filtered out as the signal travels through the earth, which acts as a low pass filter. The
second source of noise is the largest. The antennas on the surface pick umeigéace
generated by machinery, lightning, other EM MWD tools, and other EM sources.
Quantization noise and other receiver electronic also play a part, but are minimal compared
with the other noise sourcgl. The first noisesource is ignored in this thesis, as its
contribution is miniscule with respect to the noise generated at the surface.
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The transmitted signal and corrupting noise are then presented to the neural network
receiver after optionally being filtered. The ANBceiver decides what symbol from the set
of possible symbols was transmitted by the ddéwie EM MWD tool. The weights of the
ANN are then adapted to the characteristics of the incoming signal. The design of the neural
network receiver does not addresscyonization dthe transmitter and receiver;

synchronization is assumed.

3.1.2 Waveform Coding

The mapping of data to transmitted waveforms has a great effect on the performance
of any communication system. Selection of the symbol set must take into ac@unt th
expected noise, the bandwidth of the channel, available power, amidst many other application
specific criteria. Thartificial neural networkeceiverof this thesisattempts taorrectly
identify the transmitted waveforms in the presence of colore@.ndi® initial characteristics
of the noise are unknowngiori and therefore the type of waveform coding cannot be based
upon the expected noise. The combination of a low bandwidth baseband channel with the
requirement of low power communication with BEWAVD systems limits the waveform
coding possibilities. The optimal set of symbols for transmission in this case is out of the
scope of this thesis.

An orthogonal symbol set has the benefit that the bit distance between any two
symbols in the set is the saniéhe bit distance between two symbols is the minimum number
of bits that must be changed to convert one symbol to the &beal bit distances makbe

probability of correctly detecting any of the symbols in the presence of a given SNR the same,
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when sing a correlation receiver in the presence of AWGN. This uniformity aids in
analyzing the performance of the neural network receiver, as will be seen in the simulation
results later on.

Bipolar Baseband Miry orthogonal signaling is used in this theBigery k bits of the

data to be transmitted is converted into one of M waveforms.

M =2¢ (3-1)

Equation3-2 below shows an example of an orthogonal symbot®etaining two symbols,
with each symbol containing two digts].

DataSetU OrthogonalCodewordSet

0 =0 0o
1 CO 1

(3-2)

Orthogonal symbol sets with k = N can be generated from thegmhal codeword set for k
= N-1. Equatior8-3 shows the case for k = 2, and equaBesis the case for k>1.

DataSet 0 OrthogonalCodewordSet

0 0 &0 0 0 Op

, 7
0 L& Hio
1 10 @H, Hy
1 04

(3-3)

01
10
11

19
0 (3-4)
u

43



The optimal number of neurons in the ANN receiver increases as the number of different
symbols it must identify increases. The number of bits, k, is thus limited in order te rtdeauc
computation requirements of the neural network simulations. The actual sets of symbols used
are shownn equations3-5 and3-6.

DataSet . 4- ARY Bipolar OrthogonalCodewordSet (k = 2)

U 35
0 0 0 -1 -1 -1g (39)
: 2
o1 =@ *L 1l Sy Hig
10 @ -1 +1 +10 &, H,y
11 © +1 +1 -1y
DataSet ;, 8- ARY Bipolar OrthogonalCodewordSet (k = 3)
000 @ -1-1-1-1-1-1-1g
001 O +1 -1 +1 -1 +1 -1 +1
010 €0 -1 +1 +1 -1 -1 +1 +1u
011 | _ D +1+1-1-1+1 +1 -1y_¢Hy Hip
100 27 -1 -1 -1 +1 +1 +1 +1) §H, H,g
1 0 1 go+1-1+1+1-1+1-13
110 €0 -1 +1 +1 +1 +1 -1 -1
111 @ +1 +1 -1 +1 -1 -1 +1 (3-6)

The initial zero of each of the codes is used to help reduce any possibkeymtssl

interference.

3.2 ANN Receiver Architecture

»/ Bittb /»/ Bit1a /»

/~ Code Code | Code

, »/ Bitzb /»/ Bit2a jas; » b » i »  Post 1 >
SmeEl Input b ' ‘ Processing Decision /" Received
(4 bits, 8 V. 3 i ANN Weighted M » Code /
samples) / ormatiing Code / / Code / ( eighte: / Code ( ax) ‘
! »’ Bit3ab / »/ Bit3a > 2 P 2a P Sum) » 2 Fw

»/ Bitdb »/ Bit4a >

Figure 3-1 Flow Chart of a Simple Neural Network Receiver
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This thesis evaluates a number of neural network architectures for use as EM MWD
digital communication receivers. A neural network has an input layer, an output layer, and
optional hidden layer(s). Some of the networks tested in this thesis have a single layer that
serves as both the input layer and the output l&ygure 3-1 shows an example of a neural
network receiverThe following sections expilathe details of the neuraént wor k r ecei ver

architecture.
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3.2.1 Network Inputs

The received signal is digitized and then formatted to match the neural network
receiver. The number of inputs of the network dictates how many sampled data points are fed
to thenetwork at a time. A neural network receiver having only a single input will process a
received symbol one sample at a time in order to output a single decision. When the length of
the sampled symbol is equal to the number of inputs, the entire symbesénped to the
network at the same time. In this case, the neural network receiver will output a single
decision for every slice of data presented to it. Equati@mgives the relationship between the
number of samples per symbN , the number of input$ , and the number of data samples,

K, processed per symbol by each input.

| =— (3-7)

Note that equatior8-7 does not specify which of thel samples are fed to each input.
In this thesis, the first input processes the fitssamples and the second input processes the
next K samples. For a simple example, consideté 4ymbol made up of 8 samples.

% B4 % Bit3 * Bt 2 % Bitl
X8 X7 X6 X5 X4 X3 X2 Xl

Figure 3-2 4-bit symbol made up of 8 samples
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A network with fourinputs used to procesisis symbol, would result in therét input
processing the first twsamples. The second input would process thar@l 4" samples.
Since each bit of the symbol is made upvad samples, each of the fomputs would have
processed a single bit.

[Xz Xl]Y Input,
[x, %]Y Input,
[x; x]Y Input,
[x, % ]Y Input,

Figure 3-3 Input formatting for a 4 -input network used to process the symbol dfigure 3-2

The neural network receivers will produce an outpuefich set of inputs presented to
it. Some of the networks evaluated in this thesis had their input sizes matched to the bit length
of the symbols. This results in each of the inputs of the network receiving data points from
only one of the transmitted bjtsimilar tothe example above. The choice of input size, as
well as the number of recurrent connections, determines the balance between the spatial and
temporal information that the neural network is attempting to learn. A completely spatial
neural netwdk will have the same number of inputs as samples per symbol, and will only
receive one input vector per symbol during training and simulation. This type of detection is
the exact same as image detection. As the number of inputs decreases, the numpber of in
vectors presented to the network per symbol increases. The sampled symbol now is fed to the
network as a sequence of vectors instead of one single large vector. The outputs of the
network must also be peptocessed over the multiple outputs per synibolkrder to
determine a single decision per symbol. This is similar to image detection using multiple

frames of lowresolution vide [16].
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3.2.2 Neuron Transfer Functions

Nonlinear transfer functions are utilized by the neurons in each layer for most of the
neural network receivers. A linear transfer function of slope equal to one was also used with
some of the single layer networks. The network outputs in #isis,cach reduce to a simple

weighted sum of the inputBigure3-4 shows theplotsof the different transfer functions used.

15 Neuron Transfer Functions
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Figure 3-4 Neuron Transfer Functions
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The equations used for each of the transfer functions in this thesis are shown below. Note that
Table3-1 gives the Matlab function names that implement each transfer function as well as

the names that will be used five remainder of this thesis.

Transfer Function Matlab Function Name Used In Thesis
Hyperboll_c Ta_ngent tansig SIG
Approximation
Radial Basis Function radbas RB
Linear purelin LIN
Saturated Linear satlins SLINS
Table 3-1 Transfer Function Names
2
SIG(n) = —--1 (3-8)
1+e "
RB(n) = &) (39
LIN(n) =n (3-10)
é n<- 1 -1
SLINgn)={-1¢n¢1 ,n (3-11)
b n>1 1

3.2.3 Network Layers

Each layer of a network behaves similarly to each other. Every neuron in a layer takes
a weighted sum of its inputs, and pas&ehrough a transfer function to produce a single
valued output. There are three different types of layer interconnections used in the neural
network receivers. The first type is a basic feed forward network as shdwgune2-11.

The second is recurrent network in which the output of each layer is connected to its input. A
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delay is introduced in this connection so the current output of each layer is dependant upon
both the current inputs and the previous output of the |ayer final type uses cascaded
connections, meaning that the inputs to each layer are made up of the inputs to the network as
well as the outputs of each previous layer. A basic diagram of each type of layer interconnect

used is shown ifigure3-5.

Layer 1 » Layer 2

Feed Forward

Delay f Delay
Layer 1 Layer 2

Input > Layer 1 » Layer 2

Recurrent

Cascade

i

Figure 3-5 Types of Network Layer Interconnections

Figure3-6, Figure3-7, andFigure3-8 show the details of the connections between the
neurons of the different layers for each of the types of networks used. Note that the circles

containngp ABO represent the bias weights for eac
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Input Nodes Layer 1 Layer2  Output Nodes

N e N e T e

. .

Figure 3-6 Example Neuron Connections for Feed Forward Networks

Input Nodes Layer 1 Layer2  Output Nodes

Figure 3-7 Example Neuron Connections for Recurrent Networks
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Input Nodes Layer 1 Layer2  Output Nodes

N e N W A

Figure 3-8 Example Neuon Connections for Cascade Networks

3.2.4 Network Output

Each neuron in the output layer of the networks represents one of the symbols of the
code set. The neuron with the largest output is determined to be the correctly decoded symbol
for a given input. Whethe sampled data points of a single received symbol are not presented
to the network at a single time instance, then post processing of the outputs must be
performed to arrive at a single decision for a symbol.

The network ofFigure3-3 is a simple example of this. If the code gsed for the
example contained tweymbols hen the network would have tveatput neurons. Each of the
neurons would output a distinct value for each of the inputs it was pres€higdieans that
therewould be twooutput values for each neuron. Post proiogss required to combine the
two output values of each neuron into a single metric that can then be used to determine

which neuron has the highest value.
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Figure 3-9 Neural Network Inputs and Outputs

The post processing method used is a simple weighted sum of the outputs. Equation

3-12 shows how the multiple outputg, (1) and y,,(2) for each neurorN of Figure3-9, are

weighted and summed to arrive at a single me@jg,

yl (2) W2 + yl (1) Wl = Ol
Y, (2) W, +Y, (1) w, =0,

(3-12

When each of the weights is identical then the post processing is simply an averaging, or sum,
of the individual outputs. Another weighting scheme usdtiis thesidhas the weight

assigned to each output increasing over the tiakés for a complete symbol to be

presented to the network.

3.2.5 Similarities with Correlation Receivers

The simplest neural network receiver evaluated in this thesis is virtually identical to the

architecture of a correlation receiver. A neural network teas linear transfer functions,
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consisting of a single layer, and having an equal number of inputs as samples per symbol, is
essentially a bank of linear filters, whichtle same architecture as a correlation recelver
this application, they both havke exact same inputs, same outputs, and same number of
filter weights. The difference between the two is the values of the weights and how they are
determined The weights of the neur al net work ar e
weights are g€0 be equal to stored prototypes of each symbol in the symbol set. In digital
communication systems, the correlation receiver is the decision stage that follows any
preprocessing, such as aatiasing filters.

The stored prototypes used in the correfatieceiver are ideally modified to account
for the transmission channel being used. This makes the correlation receiver identical in
function to that of a bank of matched filters, whiclojgimal in the presence of AWG|S].
What about situations when the noise is bimited AWGN, or contains distinct spectral
peaks? If thestatisticalcharacteristics of the noise d&mown a priori then it is still @ssible to
use a bank of matched filters, which means a correlation receiver can still be optimum. It is
expected that the simple linear neural network will adapt its weights towards that of the
optimal correlation receiver. When the statistics of theensisiot known a priori then a
linear neural network may be able to perform bdtiana correlation receiver. The more
complex neural network architectures are expected to behave similarly and possibly even

better due to the added nbinear processingapability.
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3.3 Simulation Methods

Simulations of the EM MWD digital communication system and the neural network
receivers were performed with the Matlab Neural Network Toolbox. Scripts and functions
were written to test the ability of a static neural networkecognize transmitted symbols in

the midst of a wide range of signal to noise ratios for different types of noise.

3.3.1 AWGN Generation

The signal to noise ratio definition used in this thesis is the ratio of signal power to

noise power.

P- 4SNR, 6
SNR= 202! = 10F 20 © (3-13)

noise

The first step in generating AWGN for a specific SNR is to calculate the average
power of the signal. WitN equal to the number of samples in the sigs(k), the average

power of the signal is given by equati®i4.

P =14 (K (3-14)
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The next step is to generate an initial random noise s'ny(le) of length N with a

normal distribution. The functiorandnis used to generate such a signal with Matlab. The

average power of the noisy signal is then calculated.

ni(k) = randr(z, N) (3-15

A (ni(k))? (3-16)

1

Q:=

1
Pj=t
TN

=
!

The desired average noise povieris determined by combining equatiok4.3 and

314
P

P == 31

"~ SNR (3-17)

The following equations show the derivation of the required rexisding factor that

results in the desired average noise power.

P, =aP; (3-18)

P, =28 (k) 319
P, =ﬁa (v ki) (3-20)
n(k) = (Va Jni(k) (3-22)

3.3.2 Colored Noise Generation

White noise has a power spectral density that contains an equal amount of energy in

every frequency band, for a given bandwidth. This means that there is as much energy in the
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OHz to 100Hz band as in the 1000tdz1100Hz band for white noise. The PSD of pink noise
has an equal amount of energy contained in every octave. It has just as much energy in the
50Hz to 100Hz band as in the 1kHz to 2kHz band. The PSD of pink noise is equal to 1/,
where fis the frequenc Equation3-22 shows the method used to generate the PSD for the
nonwhite noise used during simulations. This method allows for generation of noise
containing spectral peaks or plateaus with the power spectral déesigasing at various

rates as the frequency moves farther away from the peak or pl&eais the bandwidth of

the plateauf. is the center frequency of the plateau or peak, ardktermires the rate at

which the PSD decreases as the frequency deviates from the center frequency. Pink noise is

generated by setting to 1, BW to 0, andF. to O.

e 1 BW
e RS
PSDAB) =] 1 |f-F|¢BW (3-22)
T apu® cl ¥ 5
. ABW§ 2
1l ae—0
¢ 2 +

3.3.3 Sampled Noise Data

Noise sampled at various rig sites was used to corrupt simulated transmission signals
for training and evaluating the neural network receivers. The data acquired was separated into
sectiors; one for training, and one for testing. This ensures that the inputs to the networks
during testing are not identical to the inputs that the networks were trained on. Dividing the
noise sources in this manner heeThemisetdasis each

scaled as described in sectiB.1before being added to the transmission signals. Some tests
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were also performed where the noise used for testing was taken from the same section used
for training. The pint in doing so is to observe the performance of the networks in an ideal

case.

3.3.4 EM MWD Digital Communication Simulation

The first step in simulating an EM MWD digital communication system is generating
a transmission signal from a known symbol set uaiggven pulse width and sampling
frequency. In order to mimic typical EM MWD communication characteristics, a 200 Hz
sampling frequency (5ms sampling period) and a 50ms pulse width is used. Using these
values, with the each symbol in the set shown in ggua-5, results in 40 samples per

symbol. The resulting sampled symbol set is showFigare3-10
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Figure 3-10Bipolar 4-Ary Orthogonal Symbol Set Sanpled at 200Hz with 50ms pulse width

Combining multiple random permutations of the symbol set results in a transmission

signal that contains equal occurrences of each symbol.
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Figure 3-11 Transmission Sigral consisting of 2 random permutations of the symbol set

A multiple pole low pass filter chain is used to mimic the filtering that occurs as an
EM signal passes through the earth. The simulated transmission signal is passed through this
filter chain befoe noise is added.

The noise used for corrupting the transmission signal is either generated or taken from
real world samples. Varying amounts of signal to noise ratios are generated by scaling the
corrupting noise as detailed in secti@?3.1 The noise added to the transmission signal
represents the noise picked up by the antenna in an EM MWD system.

More filtering is performed after the noise is added, which corresponds to the various
analog and digital filters used in a tyal receiver. Some of the simulations in this thesis use
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no postnoise filtering whereas others use a second order low pass filter with varying cutoff
frequencies and Q values.

The final step is to pass the resulting signal to both the neural netwerkereand the
correlation receiverfFigure3-12 shows an example of a transmitted signal at the different

stages of simulation.

Transmitted Symbaols

Figure 3-12EM MWD Simulation Signal Stages
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3.3.5 Network Training

The ANNOs used in this thesis are trained
not attempted. The term batch refers to the method of calculating the error gradient over
multiple input vectors, which constitutes a batch, as opposed to tnainmg, which uses a
single input vector. Each batch is generated by the method shown in Se8tiéand
contains multiple sets of symbols. Each set consists of a random permutation of all the
symbols of the symbol codets&his results in each symbol in the code set occurring an equal
number of times in the training batch. Each set of symbols within the transmitted signal can
be corrupted by different signal to noise ratios as well as different filters. There is aiobnstra
on the number of symbol sets present in the training batch in order to give the same amount of
training time for each possible combination of SNR and filter type. The number of symbol
sets must be a multiple of the number of possible combinationsR &8N filter type. Using
multiple SNR6s and multiple filters with batoc
a wide operating range. The resulting trained network should perform well over the entire
range of SNRG6s and fiMultrispluseANNMS i agettrm@ainm
same inputs and targets during a training session. The training signal is formatted to match the
input size of each network. A simple example will now be given using the symbol code set
shown inFigure3-10.

Let us begi n nefiandhet, haviog inpullizésof 4 and 8
respectively. We desire to train these networks to function as digital communication receivers
in the presence of AWGN wi t hwilBrddiRthesnetwonks t he 5 deE
using signals with SNRés of 5dB, 10dB, and 1E¢

low pass filters will approximate the filtering due to the earth. Two different filters will be
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used during training to represent the rangpassible filtering expected. The first filter will
have a corner frequency of 80Hz, and a Q value of 0.3. The second filter will have a corner
frequency of 10Hz, and a Q value of 0.5. The selection of corner frequencies and Q values for
this example is nant to include the wide possible range of transmission channels
encountered from drill site to drill sif@2]. The number of symbol sets contained in the batch
size must be a multiple of the number of dmmatons possible by choosing one SNR and one
filter. The number of combinations is sixthis case. Usingix symbol sets in the training

batch, wth each symbol set containing fosymbols, and each symbol containing 40 samples,
results in a total of 960 s#les. In this case, each symbol set will be modified by a unique
combination of SNR and filtering. If 12 syl sets had been chosen, then symbol sets
would be modified by every unique combination of SNR and filtering. Each unique
combination of SNRrd filtering will be used to simulate an EM MWD transmission, as
described in sectio8.3.4 Figure3-13 shows one possible training signal of minimum length

for this setup.
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Transmitted Symbaols
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Figure 3-13Si gnal Generation for Network Training a) Transrt

permutations of the symbol set. b) Corresponding Digital Signal. cf'half is filtered by 80Hz LPF, 2
half is filtered by 10Hz LPF. d) 3 different levels of noise added to the filtered signal. e) SNR levels of
resulting signals.

Once every portion of the training batch has been simulated, then the resulting
corrupted transmission signal is formatted to match the inpubsaach network. The input
to net' must be a sequence of vectors of length 4, whereas input vectors of size 8 are required
for nef’. See3.2.1for information on the relationship between input size and number of input
vectorsper symbol. The training batch will therefore be formed into 240 vectors of length 4

for net', and 120 vectors of length 8 foef’. Figure3-14 below shows an example of filtered
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input signal, as it would be formatted foef. The figure shows the settling time due to the

filtering.

Training Input for Input Meuron #1 Starting =t Bit 1 Training Input for Input Meuron #2 Starting ot Bit 1.5

1 T P
bjD

1

1

Training Input for Input Meuron #3 Starting &t Bit 2

........... T

djn

1

Training Input for Input Meuron #6 Starting at Bit 3.5
.1 T

ij

T

== R
...........................................

- AT U !

Swymbolz

Symbolz

Figure 3-14 Example of input formatting for nef. The training input signal of plot i is divided up for the 8
input neurons as shown in plots a thragh h. Plot j shows the symbols used for training.

Each output neuron of a network represents one of the symbols in the code symbol set.
The corresponding output neuron for a transmitted code must be trained to output a 1 when
that code is presented taethetwork. Therefore, when a network is being trained to identify
the £'symbol of a symbol set, than the target value for theutput neuron would be a 1. For
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the 2% symbol the target value for th&heuron would be set to 1. The target valuesafor
neurons that do not correspond to the symbol being identified are set td depending on

the output neurons transfer functidiigure3-15 shows training targets for a typical training

batch.

Symbol #= of Output Training Target

PP IR B P

0123458678 91011121314151617 18192021 222324
Symbols

Figure 3-15Training targets for a symbol set containing 4 symbols

The overall training algorithm is shown kigure 3-16.
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Figure 3-16 Neural Network Receiver Training Flow Chart

3.3.6 Receiver Testing

Testing of the simulated digital communication receivers of this thesis involves
generating symbol error rate (SER) plots. These plots are used to compare the performance of
various type®f receiversFigure3-17 shows the process flow for testing of the neural

network receivers, as well as the correlation receivers.
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Figure 3-17 EM Di gital Communication Receiver Performance Evaluation Flow Chart

The method for generating an input to the receivers for testing is almost identical to

what is done for training the neural networks. The main difference is that only one SNR value

is used at time during testing, whereas training involves using multiple values in a single

batch. The SNR values used during testing does not always match the values used during

training in order to test the

var i

ous

net wor k

In order to ohain tight confidence intervals around the SER, as was discussed in

section2.2.3 it is necessary to simulate a large number of transmitted symbols. As was done

in the first phase, random orders of symbols are put togetloegdite a transmission signal.

All the networks are then simulated with this signal after it has been filtered and corrupted

with noise. A tally of the total number of errors for each receiver is kept. The receivers are

repeatedly simulated until a minimummber of errors occur or a maximum number of

symbols are transmitted. All of this is repeated with varying signal to noise ratios to obtain the

data needed for the SER plots.
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3.3.7 Correlation Receiver Implementation

Correlation receivers match a sampled sigvith the most likely symbol in the symbol
set. In order to do this the correlator must store copies of the symbols contained in the set. The
earth and any preprocessing the receiver implements distort the signal that is seen by the
correlator. For thishesis, the stored copies of the symbols are ideal in the sense that they are
distorted by the exact filters that the transmitted signals pass through. If no noise corrupts the
transmitted signals, than the received signal will exactly match one of tked stonbolg5].
In the real world, the transfer function of the earth is unknown and must be estimated.

Correlation receiver performance improves asait@iracy of thestimationincreases.
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Chapter 4 Simulations and Results

This chapter contains the results of numerous ANN digital communication receiver
simulations. Each simulation contains a few different neural network architectures and/or
training parameterdat are trained and tested with exactly the same inputs. The variations in
architectures include the number of layers, layer sizes, input sizes, transfer functions, as well
as the inclusion or exclusion of recurrent connections. Variations in trainingne@ns
include number of epochs, batch size, learning rate, and training algorithms. Multiple ANNs
were simulated for each variation, each of which was initialized with different connection
weights. A single correlation receiver is also included in eanhblation for performance
comparison.

M-ary bipolar orthogonal signaling was useith k set to Zand 3, corresponding to 4
and 8 symbols per set respectively. Six different noise sources were used during simulations.
The first noise source is AWGN, whick the typical corrupting noise source for measuring
the performance of a digital communication receiver. The second type of noise haliaa non
power spectral density. Various PSD shapes were used during simulations. The last four noise

sources are actusampled noise data taken from drilling sites.

4.1 Presentation Format

Each test vaation will be presented by two figures and ttables. First, a figure
depicting the connections between the different layers for each type of network is given. This
is followed by a table that details the network architecture as well as the training and test
parameters used. The symbol error rate (SER) results from each test are then shown

graphically in a modified waterfall plot.
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Figure 4-1 Example SER Plot. The circled bars correspond to the SER for the receivers at a SNRiGidB.

The values used in generating the SER plot are finally tabulated along with the total number

of symbols transmitted faxzach network. An example of the tabulated SER data is shown

below.
SNR
[ Receiver -19dB -15dB -11dB -7dB -3dB |
(40)-4 0.51719 0.37085 0.18211 0.03498 0.00080
(20)-4 0.51638 0.37110 0.18383 0.03542 0.00075
(8)-4 0.53249 0.39596 0.21138 0.05178 0.00268
(4)-4 0.54432 0.41509 0.24211 0.07648 0.00833
correlator 0.51465 0.36817 0.17876 0.03289 0.00068
| # Symbols Tested 42,600 42,600 42,600 42,600 42,600|

Table 4-1 Example SER Data Table

Each of the receivers tested are shown in the first column. Each row contagysnibol error
rate (SER) for the receiver at different SNR levels, which are shown in the column header.

The last row shows the total number of symbols transmitted for each SNR level during the
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testing of the receivers. The SER is the ratio of symbot®tomtotal symbols transmitted,
which should not be confused with bit error rate (BER). A SER of 0.1 indicates that 10

percent of the symbols used during testing were incorrectly decoded.

4.2 Notes on Simulations and Results

A training epoch is the term &g to denote a single training iteration. During each epoch,

every symbol in the training batch is presented to the network and the error for each output
neuron is accumulated. After all symbols have been presented, the error is used to determine
the chang to the weights and biases of the network according to the training function. See
section2.3.7for more information about backpropagation.

The size of the training batch is a multiple of the number of symbols in the codeset
multiplied by the number of training SNR levels. Typically, there will be 200 or 300
occurrences of each symbol for every training SNR level, with the symbol order randomly set.
For example, a training epoch for networks using a codeset of 4 symboldramdng) SNRs
would result in a batch size of 3,600 if each combination of symbol and SNR was repeated
300 times.

Multiple training epochs make up a training session. In this thesis, the number of epochs
is normally set to 100. Each of the epochs in iaitrg session uses the exact same training
batch. Multiple training sessions are used to provide more examples for each network to train
with while not requiring excessively large batch sizes. The use of multiple training sessions

should also helpthenebmr ks é abi |l ity to generalize. The
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set to 2. Using these numbers results in each network having its weights updated 200 times
before the network is tested to determine its SER.

The performance metric used in this thésige symbol error rate (SER) and not the bit
error rate (BER). Each symbol transmitted results in either a successful reception or a failure.
The calculation of the SER is simply the number of symbols that were not correctly identified
by the receiverdivided by the total number of symbols sent. The format of the SER plots
used in this thesis is not the same as the standard waterfaliyplctdly used in digital
communications. The reason for deviating from this standard is to make it easier g visua
distinguish the SER of different networks plotted on the same plot. Notice that the SER plots
contain bars that stem from the point 0.1, and reach down or up to the SER for each network
tested. The reason for this is that a SER of 0.1 in EM MWD conwation is an estimate of
the upper limit that would allow a drilling operationgoccessfullycontinue. The point at
which the bars change from extending upwards to extending downwards marks the minimum
operable SNR for that network.

Multiple networks ae simulated for each of the neural network receiver architectures.
Each of the networks of a given type is initialized with different weights and bias values. The
average performance of the networks is used as an indication of the performance for that
spedfic type of network architecture. The reason for having multiple networks is to show that
the networks can consistently converge to a good solution from different starting points.

The exact definitions of all the neuron tramdtenctions used@re givenn section3.2.2

They will be referred to as SIG, RB, LIN, and SLINS.
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4.3 Default Parameters for Training Functions

There are three different training functions used for the networks in this thesis. To
simplify the graphs and tadd they will be given shorter names. The function GDX

implements a gradient descent with momentum and adaptive learning rate.
Dw, =m, Mw,_, +a 0On, @, (4-1)
W, =w, +Dw, (4-2)
This training function is used in the majority of the simulations. The learningaate,
and momentum constant. , will be specified for each network that uses GDX. The learning
rate is increased after every weight adaptation that results in a performance increased.
Likewise, whenever the performance decreases due to a change in weights, the learning rate is

decreased and the change to the weights is undone. The default pardraetesused for

GDX unless otherwise specified are shown in the following table.

Parameter VALUE
Ratio to increase learning rate 1.05
Ratio to decrease learning rate 0.7
Maximum performance increase allowe
: . 1.04
before learning rate is decreased
Momentum Constant 0.7

Table 4-2 Default Parameters for Training Function GDX
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The function CGAmplements a conjugate gradient backpropagation with Polak
Ribiere updates. With all conjugate gradient methodsjiteetion in which the weights will
be updatedDw, , is a combination of the current gradiegf,, and the previous update
direction, Dw,_, .

Dw, =-g, +Dw,_,Z (4-3)
W, =W, +a @dw, (4-4)
The parameteZ is updated according to the PolRkbierevariation[12].
%o 9., o8

Z= (4-5)
|9

The reason for using the Pol&kbiere variation is that it performed the best during initial
comparisons between a few conjugate gradient methods. The parameter that affects th
performance of CGP is the line search function used to determine the step,dad¢ake
along the search directigmy, . The |ine search used i s based
which is a hybrid search usingla interpolation and a type of sectioning. The step size is set
by the line search method so that it results in reaching a minimum along the search direction.
The last training function used is backpropagation utilizing the Leverarguardt
algorithm(LM). The LM algorithm interpolates between the GaNgston algorithm and the
gradient descent method. A dampening faatprs varied to cause the algorithm to act more
like gradient descent when further away from the minimum and like @¥eiston as it
approaches the minimum. The parametés increased whenever the change in weights of

the network results in a performarioerease. Likewise, it is decreased whenever the
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performance decreases. The algorithm uses an approximation to the Hessian as is shown

below. Note thatl is the Jacobian in the following equations.

H=J"J (4-6)

Wi = Wee - Hngm (4-7)

The default parameters for the LM algorithm are shown below.

Parameter VALUE
Ratio to increasen 10
Ratio to decreasm 0.1
Initial m 0.001

Table 4-3 Default Parameters for Training Function LM

4.4 Simulations Using AWGN and 4 Symbols

4.4.1 Single Layer Linear Network Simulations

Each neural network simulat@dthis section contains a single layer. The number of
neurons contained in the layer is equal to the number of symbols. The output of each neuron

is an output of the network.

Inputs E— Layer 1

Figure 4-2 Layer Connections for Neural Networks ofFigure 4-3
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Parameter Value Value Value Value
Network Identifier (4034 (2034 (8)-4 (4)-4
Number if Inputs 40 20 8 4
Layer 1 Neurons 4 4 4 4
Layer 1 Transfer Functior LIN LIN LIN LIN
Training Function GDX GDX GDX GDX
Initial Learning Rate 0.05 0.05 0.05 0.05
Number of Networks 3 3 3 3
Training Batch Size 3,600 Symbols 3,600 Symbols 3,600 Symbols 3,600 Symbols
Training SNR(s) -11,-7,-3dB -11,-7,-3dB -11,-7,-3dB -11,-7,-3dB
Train_in_g Epoch_s per 100 100 100 100
Training Session
# of Training Sessions 2 2 2 2
Table 4-4 Training and Test Parameters forFigure 4-3
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Figure 4-3 Single Layer Linear Network Simulation Results for AWGN with 4 Symbols
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SNR

[ Receiver -19dB -15dB -11dB -7dB -3dB |
(40)-4 0.51719 0.37085 0.18211 0.03498 0.00080

(20)-4 0.51638 0.37110 0.18383 0.03542 0.00075

(8)-4 0.53249 0.39596 0.21138 0.05178 0.00268

(4)-4 0.54432 0.41509 0.24211 0.07648 0.00833
correlator 0.51465 0.36817 0.17876 0.03289 0.00068

| # Symbols Tested 42,600 42,600 42,600 42,600 42,600|

Table 4-5 SER Datafor Figure 4-3

It is clear that the correlation receiver outperforms all the simulated networks.
However, as the input size increases, the performances of the networks approach that of the
correlation receiver-igure4-4 shows the connectiomeights of the first trained network
containing 40 inputs. Notice how the connection weights of the trained network relate to the
ideal reference signals used by the correlation receiver. The network weights have gravitated
towards the best possible configtion of weights for the AWGN noise source, which is

known to be a correlation receivi&.
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Figure 4-4 Input Weights Compared with Correlation Receiver Reference Signals.

The input weights are from the1® network of Figure 4-3to each of the 4 neurons.

79



Neuron3 Neuron2 Neuron 1

Neuron 4

0.06

-0.06
0.08

-0.08
0.08

-0.08
0.08

-0.08

Network Input Weights (left)
Correlation Receiver Reference Signals (right)

|
2 4 6 8 10 12 14 16 18
Input

Figure 4-5 Input weights for the 4" network of Figure 4-3
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Figure 4-6 Input weights for the 7" network of Figure 4-3
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Figure 4-7 Input Weights for the 10" network of Figure 4-3

The degraded performance of the single layer linear networks with smaller input sizes
can be attributed to the reduction in information available to the nietat@ach decision
point. The network must use the same connection weight for all sampled data points that are
fed through a particular input. The sampled points for a single transmitted symbol must be
presentedN points at a time wherd is the number oihputs to the network. When the
number of inputs is less than the total number of samples that make up a symbol, which is 40
in this case, then each input will receive multiple data points from a single sampled symbol.
Forthe case with an input size @fuf, each input will receive the sampled data points
for a single bit of the sampled symbol. Each of these sampled data points are fed to the
network one at a time, and the output of the network is averaged over the entire time it takes
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for a symbol to bgresented to the networkigure4-4 above shows that the ideal weights are
not uniform over an entire sampled bit from the code set. The architecture of the single layer
linear networks used in this simulation prevents the ndtsvioom weighting a single input
differently over time.

One way to address this is to change the-postessing method from a flat average to
a weighted average. Performance would be expected to improve the greatest for networks that
have the same numbef inputs as bits contained in each symbol. The same trained networks
simulated inFigure4-3 were resimulated with a weighted peptocessing and the results are

shown inFigure4-8.
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Figure 4-8 Single Layer Linear Network Simulation Results with Weighted Post Processing For AWGN
with 4 Symbols. The exact same parameters were used ag-igure 4-3
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SNR

[ Receiver -19dB -15dB -11dB -7dB -3dB |
(40)-4 0.52174 0.37005 0.17997 0.03498 0.00067

(20)-4 0.52244 0.37619 0.18741 0.03922 0.00098

(8)-4 0.54756 0.40134 0.22097 0.05732 0.00295

(4)-4 0.53750 0.40248 0.22352 0.05801 0.00317
correlator 0.51756 0.36649 0.17379 0.03379 0.00070

| # Symbols Tested 17,200 20,200 29,000 42,200 60,000|

The network with foumnputs saw a reduction in symbol error rate whereas the rest of

Table 4-6 SER Data for Figure 4-8

the networks slightly increased. The ideal weighting of the ositpeger time should be related

to the channel characteristics that the transmission signal passes through on the way to the

receiver. For

practical

applications,

in a goodradeoffbetween the pesfmance of a correlation receiver, and the reduced

an

computation afforded by a network with an equal number of inputs as bits in each symbol.

4.4.2 Single Layer Linear Recurrent Network Simulations

The results of adding a recurrent connection to the single liagar network are

shown inFigure4-10. The gradient calculation for the simulations shown was not the true

gradient, but rather an approximation. Simulations of recurrent networks in the Matlab

environment took considerably neotime than much larger naacurrent networks. In

simulations not included in thikesis using the true gradient did not result in considerable

performance benefits, but did require a much larger amount of computing time. Thus, an

approximation to thertie gradient, adescribedn section2.3.8 is used in all recurrent

simulations in this thesis.
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Figure 4-9 Layer Connections for Neural Networks & Figure 4-10

Parameter Value Value Value Value
Network Identifier (40}4R (20}4R (8)-4R (4)-4R
Number if Inputs 40 20 8 4
Layer 1 Neurons 4 4 4 4
Layer 1 Transfer Functior SLINS SLINS SLINS SLINS
Training Function GDX GDX GDX GDX
Initial Learning Rate 0.05 0.05 0.05 0.05
Number of Networks 3 3 3 3
Training Batch Size 1,200 Symbols 1,200 Symbols 1,200 Symbols 1,200 Symbols
Training SNR(s) -11,-7,-3dB -11,-7,-3dB -11,-7,-3dB -11,-7,-3dB
Training Epochs per 150 150 150 150
Training Session
# of Training Sessions 2 2 2 2

Table 4-7 Training and Test Parameters forFigure 4-10
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Figure 4-10 Single Layer Linear Recurrent Network Simulation Results for AWGN with 4 Symbols

SNR

[ Receiver -19dB -15dB -11dB -7dB -3dB |
(40)-4R 0.56841 0.43130 0.23423 0.06250 0.00520
(20)-4R 0.54749 0.40832 0.22091 0.05699 0.00282

(8)-4R 0.55703 0.43478 0.26909 0.10844 0.02245

(4)-4R 0.57170 0.46236 0.32227 0.17176 0.07346
correlator 0.51419 0.36672 0.17807 0.03338 0.00055

| # Symbols Tested 102,600 102,600 102,600 102,600 102,600]

Table 4-8 SER Data ForFigure 4-10

The recurrent

n estwovse th&nghesuttseof tfiesingla tayeclineari

networks. A modification to the peptr oces si ng

of

t he

recurrent

improved performance for the networks that are fed a single symbol portions at a time. The

postprocessing mébd used irFigure4-10w a s

a

simple f

at

aver age

for a single symbol. Note the reduced symbol error rakégare4-11. The exact same

trained networks of the previous figure wersed, but the pegrocessing method more
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