Synthesis of MS-Labile Crosslinker to Determine Protein-Protein Interaction Networks in Various Biological Systems Using Crosslinking Mass Spectrometry

Authors: Parisa Tavakoli\(^1,2\), Isil Hamdemir\(^1\), Jie Luo\(^1\), Jeff Ranish\(^1\)

\(^1\)Institute for Systems Biology, \(^1,2\)Tennessee Technological University

Introduction:
- Crosslinkers are used to serve many purposes such as:
 - Determining domains of protein interactions
 - 3-D structures of proteins
 - What are crosslinkers?
 - Molecules that have two or more reactive ends that are particularly reactive towards specific functional groups
 - bind to proteins via these functional groups

Objective:
- We want to synthesize a crosslinker that is MS-labile and that produces fragments under MS conditions that allows masses of the peptides determined by the name of LXR-SEB (Labile Crosslinker Reagent-Succinic Ethanolamine Biotin)
- This crosslinker will ultimately assist in the future of healthcare by allowing scientists to not only understand more about PPIs (protein-protein interactions) but also about what occurs inside a cell when it becomes diseased

Methods:
- Our hypothesis is that the crosslinker fragments, SEB and LXR-Amine, can be synthesized by using the chemical synthesis approach:
 - Synthesis of SEB
 - Synthesis of LXR-Amine

Results:
- Biotin and TBEA reacts in DMF solvent at room temperature to form TEB and side products
- Pure TEB is required for deprotection step
- FPLC (Fast Protein Liquid Chromatography) successfully separates TEB from the rest of the side products.
- TEB produces MS peak at 688 m/z

Conclusion and Future Studies:
- We designed a new synthetic strategy for the in-solution synthesis of LXR-SEB and the results show that the suggested route produces intermediate complexes
- Further experiments will include fine-tuning the amount of acid for deprotection
- This project will continue on to combine the eventual formation of SEB and the successfully produced LXR-Amine to form the complete crosslinker of LXR-SEB

Acknowledgments:
This material is based upon work supported by the National Science Foundation through the Robert Noyce Teacher Scholarship Program under Grant #1340110. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The research was also made possible by the California State University STEM Teacher and Researcher Program in partnership with Chevron and Cal Poly Noyce. The National Marine Sanctuary Foundation also made this research possible. The Space Needle, Seattle, WA was also made possible by the California State University STEM Teacher and Researcher Program in partnership with Chevron and Cal Poly Noyce. I would also like to thank all the members of the Ranish Lab at ISB and the STAR Program for giving me this wonderful learning experience.