Comparative Analysis of Polyhedral Oligomeric Silsesquioxane (POSS) Using ToF-SIMS

Danielle Baur,1 Fei Zhang,2 and Dr. Xiao-Ying Yu2

1 California State University San Marcos
2 Pacific Northwest National Laboratory

Introduction

- Polyhedral Oligomeric Silsesquioxane (POSS) is an important type of nanostructured chemical compound; 1
- Applications as an additive, a plastic, and a preceramic;
- Valuable features of POSS including large molecule building block and the intermediate composition between SiO2 and R2SiO; 2,3
- Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is used to study POSS to provide more insight in its molecular structure and functioning group.

Experimental Design

- Time-of-flight secondary ion mass spectrometer (ToF-SIMS)
 - Interface/surface technique
 - Bismuth liquid metal ion beam
 - Monitors positive and negative emitted ions

POSS Structures Analyzed

Sample 1: Octaviynl
Sample 2: Trisilanol
Sample 3: Disilanol
Sample 4: Tetrasilanol

Results

SIMS Negative Spectral Comparison

These plots display the a comparison of four different samples run in the negative mode, these samples show different molecular fragment ions, indicating distinct molecular structure.

SIMS Positive Spectral Comparison

These plots display the a comparison of four different samples run in the positive mode, these samples also show different molecular ions, in agreement with the negative spectral analysis.

Spectral Reproducibility

The SIMS analysis has shown good reproducibility as illustrated below.

Discussion

- Four POSS powder samples with different Si-O bond and functioning groups were analyzed.
- Both positive ion and negative ion spectral plots were analyzed to obtain a more thorough understanding of characteristic peaks of the POSS samples.
- Peaks were then identified by searching for compounds masses and the intensity of these peaks reconfirms the existence of that compound in the examined sample.
- Our results show that each POSS sample had unique molecular fragments indicative of its structure and building block.
- Our initial SIMS analysis demonstrates that useful structural information can be gained using SIMS.

Acknowledgments

Rachel Komorek, Abhi Karkamkar, James De Yoreo, LaVon Conlin, Zihua Zhu, and the ToF-SIMS research team at PNNL.
Funding from NSF, MSJ LDRD, TIC LDRD, DOE BES, and the DOE BER EML5 user facility.

Contact

For more information on the science you see here, please contact: Dr. Xiao-Ying Yu, xiaoying.yu@pnnl.gov, (509) 372-4524
Pacific Northwest National Laboratory

References