Preliminary Research AerodyNamic Design To Land on Mars (PRANDTL-M) is a glider with a two-foot wingspan, weighing less than twelve ounces. This lightweight efficient design gives a higher glide range, and makes it significantly less expensive to launch than conventional aircraft. The PRANDTL-M glider is being tested, redesigned, and is having scientific testing equipment installed. The added weight of the instruments compared to the original design of the vehicle led to a change in its moment of inertia, which caused instability. Several flight tests, in which the glider or its components were launched and analyzed, were conducted with variations on the dihedral and sweep angles to determine the best combination for a stable flight, as well as to ensure the functionality of the scientific equipment installed. The operations engineering position for this project focused on managing flight tests, being responsible for configuration control, and overseeing safety protocols while conducting tests. The success of this aircraft and its mission would greatly improve current knowledge about the Martian environment.

As Operations Engineering Student Lead, I was responsible for scheduling and directing flight tests, compiling all necessary flight documents, and ensuring proper documentation of flight tests and vehicle configurations.

- Multiple drop tests were performed for the PRANDTL-M from 500ft altitude.
- The Carbon Cub was used to drop the PRANDTL-M
- Carbon Cub was also used to test the autonomous flight system that will be installed on PRANDTL-M at a later date
- DROID was flown carrying PRANDTL-M imaging equipment to test the imaging system for functionality.

Drop tests continue to improve, but PRANDTL-M is suffering from inertial coupling issues. The Carbon Cub’s flight was very successful, requiring only one minor adjustment to fly autonomously.

• STAR program for making this internship possible
• Dave Berger, Alec Sim, Yvonne Campos, and Ron Hughes for their aid and guidance in my research and experience

Acknowledgements

Support for CalPoly Star Fellows was provided to CalPoly by CSU and NSF. NASA does not endorse or sponsor any commercial product, service, or activity of CSU and NSF.

This material is based upon work supported by the National Science Foundation through the Robert Noyce Teacher Scholarship Program under grant #1546150. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The research was made possible by the California State University STEM Teacher Researcher Program in partnership with NASA.