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Consequences of a Genetic 

Bottleneck in California Condors: 

A Mitochondrial DNA Perspective
 

Mary S. Adams and Francis X. Villablanca1 

Abstract.—The California Condor (Gymnogyps californianus) has recently survived a 
severe population bottleneck. The entire population was reduced to 27 individuals in 1982. 
The number of genetic founders was even smaller. We obtained 482 base pairs of DNA 
sequence from the mitochondrial control region (CR) of all founder individuals that poten­
tially represented unique maternal haplotypes. Four unique haplotypes were present in the 
genetic founders. One of these haplotypes is unique to Topatopa, a male brought into captivity 
in 1967, whose haplotype will not persist in the future population. Haplotype diversity (h) 
was reduced by 25% between the founder population and our census of the 2002 popula­
tion. Nucleotide diversity (θ) did not vary significantly between the founders and the current 
population. Our results provide insights into condor genetics. First, where recessive deleteri­
ous alleles have been expressed in progeny (e.g., chondrodystrophy) the breeding pair shares 
the same mitochondrial haplotype. Second, we identified the presence of a nuclear copy of the 
mitochondrial control region and provide condor specific primer sequences to preferentially 
amplify DNA of mitochondrial origin. Third, we confirm low levels of genetic diversity in the 
captive population as suggested by previous research. Forth, we question whether the low 
level of diversity is a consequence of the 20th century bottleneck, or if diversity has been 
historically low over a much longer time scale. 

California Condors (Gymnogyps californianus) are North America’s 
largest soaring birds. Condors inhabited much of the continental United 
States prior to European settlement (Simons 1983, Steadman and Miller 
1986, Wilbur 1978). However, the range of the species had contracted to 
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36 ADAMS AND VILLABLANCA 

its final remnant distribution by at least the 1970s (Fig. 1). By 1987 the 
entire species was represented by only 27 individuals and that year the last 
wild Condor was brought into captivity (Snyder and Snyder 2000). All liv­
ing California Condors are descended from that single population, which 
occupied southern California prior to its captivity. 

The rapid decline of the California Condor population during the 
second half of the 20th century raised concerns about genetic inbreed­
ing. Population genetics theory predicts that severe population bottlenecks 
result in a loss of genetic variation (Nei et al. 1975, Lacy 1997, Frankham 
1995). This loss of genetic variation increases the likelihood of inbreeding, 
reducing individual fitness and overall population viability (Lande 1988). 
Inbreeding can reduce fitness through the production of homozygotes. 
Homozygotes result in reduced fitness when (1) heterozygotes for rare lethal 
or nearly lethal alleles interbreed (Lande 1988), or (2) when  homozygotes 

Fig. 1. Range of the recent historical California Condor population, as sum­
marized by Snyder and Snyder (2000). The 1940s distribution (gray plus black) as 
proposed by Koford (1953) and Robinson (1940). The 1980 distribution (black) is 
based on intensive observations of marked and unmarked but individually identifi­
able birds (Snyder and Johnson 1985, Meretsky and Snyder 1992). County names 
and delineations are included. 



 

 

 

 

 

  

 

 

 

CALIFORNIA CONDOR GENETIC DIVERSITY 37 

are produced at loci where overdominace (heterozygote advantage) is act­
ing. In addition to these well known inbreeding effects, theory also predicts 
that smaller populations are more likely to respond to genetic drift than 
to selection even when selection is acting (Barton and Charlesworth 1984, 
Ohta 1995). Overall, a loss of genetic diversity reduces individual fi tness 
and mean population fitness, and results in less evolution through natural 
selection and more evolution via genetic drift. 

The empirical effects of a genetic bottleneck include a loss of hetero­
zygosity (Nei 1987, Frankham et al. 1999), a decrease in allele frequency, 
a loss of alleles (Bouzat et al. 1998, Glenn et al. 1999), and an increase in 
frequency or fixation of alleles that may be deleterious (Lacy 1997, Ralls et 
al. 2000). However since these measures are only meaningful if they can be 
used to demonstrate a loss or change, they are best interpreted through com­
parisons with a pre-bottleneck sample from the same population (Bouzat 
et al. 1998, Matocq and Villablanca 2000). Otherwise, we may erroneously 
attribute low genetic diversity to a demographic bottleneck (change) when 
in fact it refl ects historically low levels of diversity (no change). 

Review of condor genetics.—Of the 169 fertile California Condor eggs 
laid in captivity through 1998, five resulted in severely deformed embryos. 
These birth defects were diagnosed as chondrodystrophy, a lethal form of 
dwarfism (Ralls et al. 2000). On review of the expression of chondrodys­
trophy in condors, Ralls et al. (2000) concluded that chondrodystrophy is 
likely inherited as an autosomal recessive allele, which is the same mode 
of inheritance as in chickens, turkeys and quail. Ralls et al. estimated the 
frequency of the chondrodystrophy allele at 0.09 based on the observed 
expression of lethality and attributed this high frequency to a founder 
event. Since a founder event, or more specifically, the associated increase in 
inbreeding, is a requisite of the Ralls et al. hypothesis, their hypothesis is 
testable. One could determine if the demographic founders are more inbred 
relative to a pre-bottleneck population of California Condors. If there is no 
increase in inbreeding, then the chondrodystrophy allele would have been 
present at roughly the same frequency over the last 100+ years. In other 
words, there is an untested null hypothesis: the frequency of chondrodys­
trophy alleles may not have changed from the historic frequency. 

Several studies have been conducted to evaluate relatedness and 
genetic diversity in California Condors. Corbin and Nice (1988) assessed 
genetic diversity using blood enzymes and found the population to be 
monomorphic or invariant at 24 of 31 loci surveyed. This is a relatively low 
level of polymorphism in comparison to other avian species (Corbin and 
Nice 1988). Geyer et al. (1993) employed minisatellite DNA fi ngerprints 
to characterize relatedness of 28 captive founders and 4 deceased found­
ers for which tissues were available (Fig. 2). Fingerprint data were used to 
identify three distinct clans, where condors within a clan were more closely 
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Fig. 2. Genealogical relationships between founding members of the cap­
tive flock and results from three different analyses of California Condor genetic 
variation. Numbers are the studbook (SB) numbers (Mace 2002). Circles represent 
females and squares represent males. Slashes indicate individuals for which data 
were not obtained, or were obtained indirectly. Individuals SB #2, and #3 represent 
two males that died in the wild and whose genotypes have not been recovered. 
Haplotypes for females SB #8 and #9 were obtained indirectly from offspring (A 
and C). Maternal genetic founders are the four individual females (SB #10, #11, 
#12, and #13) that produced female offspring (A and C). (A) Haplotypes identified 
using mtDNA sequence data. The un-shaded individuals represent haplotype 1, 
individuals shaded with light gray represent haplotype 2, spotted shading repre­
sents Topatopa (SB #3), an individual having a unique haplotype, and individuals 
shaded in dark gray represent haplotype 4. (B) Clans identified by Geyer et al. 
(1993) using nuclear DNA fingerprinting. No shading, light shading and dark shad­
ing identify individuals grouped into each of three clans. (C) Maternal haplotypes 
identified from mtDNA RFLP analyses (Chemnick et al. 1999). Unique haplotypes 
are identified by no shading, light shading, dark shading and spotted shading. 
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related to each other than to condors in any other clan. When compared to 
Andean Condors (Vultur gryphus), California Condors showed much less 
diversity and a higher degree of relatedness (Geyer et al. 1993). This is 
interesting given that Andean Condors themselves have very low genetic 
diversity (Hendrickson et al. 2003). Finally, Chemnick et al. (2000) used 
mitochondrial restriction fragment length polymorphism (RFLP) analysis 
to assess the genetic diversity of 14 potentially unrelated maternal lineages 
in the founding population (Fig. 2). This study identified four unique 
maternal lineages and showed that only two of these lineages persisted in 
the extant population. 

The studies of Corbin and Nice (1988), Geyer et al. (1993), and 
Chemnick et al. (2000) have provided information on the relatedness 
of founder birds, and were instrumental in developing the initial cap­
tive breeding strategy. However, these studies do not provide information 
regarding the magnitude or rate of loss of genetic diversity in the extant 
population. Nor are the methods used applicable to the study of preserved 
(archived museum) specimens. Therefore, they cannot yield an assessment 
of change in genetic diversity. In other words, using these methods, we 
could never ask the larger question—has there been a reduction in genetic 
diversity over the last 100+ years? 

Here, we consider the genetic effects of the California Condor popu­
lation bottleneck. For several reasons, the California Condor offers an 
important opportunity to measure the genetic effects of a severe demo­
graphic bottleneck. First, the condor’s decline has been well documented 
over the past 50 years, and the number of survivors is known (Wilbur 
1978, Snyder and Snyder 2000). Second, the pedigree of over 90% of the 
surviving condors is known (Mace 2002). Third, there is no evidence of 
historic or recent population subdivision (N. Clipperton unpubl. data, N. 
Snyder pers. comm.) meaning that all individuals should represent a single 
breeding population (but contra Wilbur [1978] who contended that there 
were two breeding populations). We provide an assessment of changes in 
genetic diversity associated with the founding of a captive population. It is 
our intent that ultimately, data from archival museum specimens will be 
compared with our data, to determine patterns of genetic variation over a 
longer time scale. 

Demographic and genetic founders.—The global population of wild 
California Condors was ultimately reduced to 27 individuals by 1987 
(Snyder and Snyder 2000). We term these birds the demographic found­
ers. Eleven of the demographic founders never bred in captivity, while 
sixteen of the demographic founders did breed or had offspring raised 
in captivity. We term these 16 the genetic founders (Fig. 2A, B, C). These 
16 represent those individuals that are hypothetically unrelated and thus 
potentially represent unique lineages. Our objective was to determine the 
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level of genetic diversity in these 27 (demographic) and subsequently the 
16 (genetic) founders. Four of the 16 genetic founders, two males and 
two females, died in the wild. Therefore, no genetic material was directly 
available from which to genotype these individuals. However, the mtDNA 
haplotype was obtained for the two deceased founder females (Table 1 and 
Fig. 2, studbook [SB] #8 and SB #9) by determining the haplotype of an 
offspring. Thus, DNA sources were available for 14 of the 16 genetic found­
ers (lacking two males). Ralls and Ballou (2004) state that the genetic 
founders were 14 individuals. These authors do not consider the two males 
that were never captured, but which are known to have left progeny (Fig. 
2, SB #2 and #3). 

Importantly, the maternal inheritance of mitochondrial DNA reduces 
the genetic founders to only the maternal genetic founders. In the genetic 
founder population only four individual females, SB #10, #11, #12, and 
#13, produced female offspring who have since reproduced to maintain 
these maternal haplotype lineages (Fig. 2A, B, C). 

In this study we explored mtDNA genetic diversity in three subpopu­
lations of California Condors. Throughout we will refer to the 27 demo­
graphic founders (founders of the captive flock), the 16 genetic founders 
(of which 14 are potentially unrelated), and the 4 maternal genetic 

Table 1. Identity of the 14 California Condors genotyped in this study (studbook 
numbers from Mace 2002), and respective sequence at all variable sites. Base 1 is 
at the 5’ end of the Control Region’s Region I and Base 482 is the base at the 5’ end 
of the TDKD primer in CR Region II. Nucleotide positions that are not shown were 
not variable. Haplotypes are numbered sequentially in order of discovery within the 
founder California Condor population. 

California Condor Haplo- Base Base Base Base Base 
(Studbook #) type 163 170 237 318 321 

AC1 (19) 1 C A C C T 
AC5 (7) 1 C A C C T 
AC6 (5) 1 C A C C T 
BFE (18) 1 C A C C T 
UN1 (13) 1 C A C C T 
AC2 (6) 2 C A T C T 
AC7 (4) 2 C A T C T 
AC8 (12) 2 C A T C T 
Paxa (23)a 2 C A T C T 
Tama (11) 2 C A T C T 
Topa (1) 3 C A T C C 
AC3 (10) 4 T G T T  T 
AC4 (20) 4 T G T T T 
Sequoia (33)a 4 T G T T T 

a Progeny used to identify the haplotype of a female genetic founder that was not captured 
from the wild. 
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founders (female founders that produce female offspring). Using data from 
the genetic founders and the pedigree, we extrapolate maternal haplotypes 
through the population bottleneck (as of 30 June 2002). The current popu­
lation includes: all living demographic founders, and all living captive born 
birds (both captive and released). 

Measures of genetic diversity.—The amount of genetic variation in a 
population is a function of the effective population size (N ) (Wright 1938, e
Nei 1987, Frankham 1995, Crandall et al. 1999). When there is a rapid 
reduction in N , theory predicts that rare alleles are lost fi rst (Allendorf e 
1986, Tajima 1989, Matocq and Villablanca 2000). Thus, the fi rst detect­
able change should be a reduction in the number of haplotypes, due to a 
loss of rare or infrequent sequences, as measured by haplotype diversity. 
As more and more time accumulates, changes in haplotype frequencies can 
also be used to study loss of genetic diversity. Rare haplotypes, which are 
lost first, have a small effect on overall haplotype frequency. Signifi cant 
changes in the frequency of the more common haplotypes are required 
before shifts in haplotype frequency are detectable. Nucleotide diversity 
(Nei 1987) reflects frequency differences, but is a measure that is slow to 
change compared to haplotype diversity. 

Mitochondrial DNA.—Our study makes use of DNA sequences from 
the highly variable mitochondrial control region (CR). The avian CR is 
subdivided into three regions or domains (Fig. 3A) based on the relative 
rate of evolution within each region. Region II, the central conserved region 
(Clayton 1991), is flanked by two variable regions (Tarr 1995, Baker and 
Marshall 1997, Zink and Blackwell 1998, Saunders and Edwards 2000). 
Region I contains the most variation, and therefore is the most informative 
for studies of genetic diversity at the population level (Wenink et al. 1994, 
Baker and Marshall 1997, Glenn et al. 1999). 

Mitochondrial DNA sequence data are a powerful tool for quantifying 
population level genetic variation (Wilson et al. 1985, Avise et al. 1987, 
Hillis and Moritz 1990, Geyer et al. 1993, Baker and Marshall 1997). The 
mitochondrial genome (haploid and maternally inherited) responds more 
quickly to drift than does the nuclear (diploid) genome (Birky et al. 1989, 
Palumbi et al. 2001), the mutation rate is up to 10 times faster than in 
nuclear loci, and there is no recombination (Hillis and Moritz 1990, Baker 
and Marshall 1997, Futuyma 1998, Palumbi et al. 2001). 

Statistical power is greatest when numerous loci are used to make esti­
mates of genetic diversity because of the inclusion of stochastic, or random, 
variance in genetic drift between loci (Lynch and Crease 1990). This is a 
compelling reason for using sequences from multiple nuclear loci. However, 
due to the rapid rate of evolution in the mitochondrial genome relative 
to the nuclear genome, and the rapid rate of lineage sorting (drift) rela­
tive to nuclear genes (Palumbi et al. 2001), our use of mtDNA maximizes 
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Fig. 3. Schematic representation of the mtDNA locus (Control Region [CR]) 
under investigation, and the primers used to amplify mitochondrial specific cop­
ies of the CR. (A) The three regions of the mitochondrial CR and the location of 
the conserved sequence blocks (F Box, D Box, C Box and CSB-1), shown on the L 
strand in 5’–3’ orientation. Shaded portions flanking the control region represent 
tRNA’s. (B) Primers shown amplify from tRNAGlu (Glu) to the D Box (TDKD) in 
two mitochondrial DNA specific fragments (250 and 353 nucleotides in length). 
(C) Data presented here are from the two fragments (170 and 312 nucleotides) 
without primers or overlap. 

the power available from a single locus (Bouzat et al. 1998, Matocq and 
Villablanca 2000). 

Nuclear copies of mtDNA.—Nuclear copies of mitochondrial sequences 
(numts) are known to exist. Nuclear paralogs (duplicated sequences) of 
avian mitochondrial sequences have been observed by several researchers 
(Quinn and White 1987, Quinn 1992, Kidd and Friesen 1998, Tiedemann 
and Kistowski 1998, Zhang and Hewitt 1996). Care must be taken to ensure 
that sequences used for analysis are orthologous (derived by mutation and 
not gene duplication). If undetected or misidentified, nuclear paralogs can 
confound phylogenetic and population genetic analysis as they are diploid, 
bi-parentally inherited (Bensasson et al. 2001), and would erroneously 
infl ate estimates of genetic diversity. 

During this study we identifi ed a nuclear copy of our target mitochon­
drial DNA sequence (for details see Adams 2002). Thus, polymerase chain 
reaction (PCR) primers were designed to preferentially amplify each of the 
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two (mt and numt) sequences following the methods of Quinn and White 
(1987) and Sorenson and Fleischer (1996). Condor specifi c and mitochon­
dria control region specific primers were used to preferentially amplify 
sequences presented herein. 

In this study, we used DNA sequences from California Condors to 
quantify mitochondrial control region genetic diversity using 482 nucleo­
tides of Region I and part of Region II. We evaluated the number of 
haplotypes, haplotype frequency, haplotype diversity (h), and nucleotide 
diversity (θ). These measures were then used to determine if there was 
a significant difference in genetic diversity between the genetic founders, 
the maternal genetic founders, and the current extant population (as of 30 
June 2002), thereby directly assessing changes in genetic diversity over the 
last 25 years. 

Methods 

Samples.—DNA samples for all captive founders were provided by O. 
Ryder, Conservation and Research for Endangered Species (CRES). Whole 
genomic DNA was extracted from blood at CRES under sterile laboratory 
conditions. We obtained mtDNA sequence data from all genetic founders 
that were brought into captivity (Fig. 2 and Table 1). In addition, in order 
to confirm our methods, we obtained and compared data from several dam-
offspring lineages (SB #12 [AC8] and offspring, n = 5; SB #11 [Tama] 
and offspring, n = 1; SB #10 [AC3] and offspring, n = 1). Finally, because 
we inferred the sequence of the CV female (SB #8) from her offspring, we 
sequenced both offspring (SB #23 and SB #27). 

Amplification and sequencing.—Polymerase chain reactions were 
performed with the avian universal primer L16758 which is complemen­
tary to the tRNAGlu adjacent to the control region (Sorenson et al. 1999), 
and TDKD, a vertebrate universal primer, that binds the conserved D Box 
sequence (Quinn and Wilson 1993) (Fig. 3A). Each of these was paired 
with a Condor specific primer, Indel+ (5’-CAAGAACACTACCATCAGACC­
3’) or +Reverse (5’-GGTCTGATGGTAGTGTTCTTG-3’) to amplify mito­
chondrial specific copied of California Condor control regions. A schematic 
of these amplicons is shown in Figure 3B, C. 

Polymerase chain reactions were performed using ready-to-go PCR 
beads following the manufacturer’s specifications (Amersham Pharmacia Bio­
tech Inc. 2000).The 25 µl reactions included 2.2 µl of each 10 µM primer, 1.0 µl 
template, 1.5 µl ampliTaq DNA Polymerase, 10mM Tris HCl, 50mM KCL, 
1.0mM MgCl2, 200 µM each dNTP and BSA. Polymerase chain reactions 
were subjected to 30 cycles at 94°F for 30 s, 52–58°F for 30 s, and 72°F 
for 30 s in a PTC-100 Programmable Thermocycler (MJ Research, Inc. 
1991). The PCR fragments (L16758/+reverse, and indel+ /TDKD) were 
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sequenced in both directions. Prior to cycle sequencing, the PCR products 
were cleaned using QIAquick PCR Purification Kit following the manu­
factures specifications (QIAGEN, 1999, QIAquick PCR purifi cation kit, 
Valencia, California). 

Cycle sequencing reactions were performed using cycle sequencing 
(Perkin-Elmer Corp., 1995, Big Dye Terminator Cycle Sequencing version 
2.0., California) following manufacturer’s specifications (PE Biosystems, 
1999, ABI prism big dye terminator cycle sequencing ready reaction kit 
protocol, California). Cycle sequencing products were purified using etha­
nol precipitation methods modified from Promega Corp. (1996) and run on 
an ABI 377 DNA Sequencer. 

Chromatograms were visualized, edited, and manually aligned using 
Sequencher 4.1 (Gene Codes Corporation, Inc. 1999). The composite frag­
ment used in this study extended 482 bases, from Base 1 of the control 
region (Glenn et al. 1999) to the 5’ end of the TDKD primer in the D box, 
and excluded the 21 base pair sequence of the Indel + and +Reverse prim­
ers (Fig. 3C). 

Phylogenetics.—MODELTEST, version 3.0 was used to determine 
the most appropriate model of molecular evolution and to calculate the 
average nucleotide frequency among all sequences (Posada and Crandall 
1998). MODELTEST sequentially compares nested models of DNA substi­
tution using a hierarchical likelihood ratio test. The following parameters 
(null hypotheses) are tested: equal base frequencies, equal transition and 
transversion rate, equal rate among sites, and no invariant sites (Posada 
and Crandall 1998). The most likely model was the HKY model (Hasegawa 
et al. 1985). The parameters of this model are unequal nucleotide base 
frequencies (estimated at A = 0.3322, C = 0.2970, G = 0.1215 and T = 
0.2493) and a transition bias (transition/transversion ratio) of 5:0. A 
weighted parsimony model (PAUP*) was used to generate a phylogeny of 
the haplotypes (Fig. 4). The HKY model was also used in analyses con­
ducted using the FLUCTUATE program (LAMARC, Kuhner et al. 1997). 

Haplotype and nucleotide diversity.—Pairwise sequence comparisons 
were conducted using PAUP (V 4.0b, Swofford 1998) to identify unique 
haplotypes, calculate number of polymorphic sites, and calculate haplotype 
frequencies in the genetic and maternal genetic founders. The haplotype 
frequency was tabulated as a function of the number of individuals in each 
group (genetic founders n = 14; maternal genetic founders n = 4; and the 
extant population as of June 2002, n = 207) having each of the possible 
haplotypes. 

Haplotype diversity (h) was calculated for the demographic and 
maternal genetic founders, and for the current population (following Nei 
1987, equation 8.1). Haplotype diversity ranges from 0 to 1 (Nei 1987). 
If all individuals in a large sample have a unique haplotype, the haplotype 
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Fig. 4. Neighbor joining UPGMA phylogeny for all 14 genetic founders of the 
California Condor captive flock. These 14 founders processed 4 haplotypes. 

diversity of the population will approach 1.0. If all individuals in a large 
sample have the same haplotype the haplotype diversity of the population 
is 0. 

Nucleotide diversity, or the average sequence diversity at the nucleotide 
level (θ), was calculated for each of the three groups following Watterson 
(1975) and using the FLUCTUATE program, version 1.1 (Kuhner et al. 
1997). Theta (θ) is a population parameter that is a function of effec­
tive population size (N ) and the mutation rate (μ), (θ = N μ). Theta is e e
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estimated from samples of sequences using nucleotide diversity (π) which 
is a function of the haplotype frequencies and the number of nucleotide 
differences (distance) between haplotypes (Nei 1987). The FLUCTUATE 
program uses Metropolis-Hastings Markov Chain Monte Carlo geneal­
ogy sampling to make a maximum likelihood estimate of the population 
parameters θ and g (growth rate) assuming the loci sampled are not 
affected by selection or recombination. This method for estimating θ is 
preferred since FLUCTUATE does not require an assumption of a stable 
population size. This is an assumption we were not willing to make since 
population size is a parameter we predict is changing. The accuracy of the 
θ estimate was determined using the likelihood curve or the graph of the 
log likelihood values associated with each estimate of theta. This curve is 
used to visualize an estimated 95% confidence interval of θ (Kuhner et al. 
1998). We used a short chain length of 100 times the number of sequences 
and a long chain length of 1000 times the number of sequences, with 10 
and 2 chains respectively per run. FLUCTUATE analyses for each of the 
three groups were replicated 500 times and the average θ was calculated 
for each set of replicates. Some replicates produced estimates of θ that were 
near infinity or negative infinity. These replicates were discarded and re­
run. We used the data from the FLUCTUATE run that was nearest to the 
global average θ for further analysis. 

Herein we have quantified the actual number of maternal lineages in 
the entire population and the fraction of those that are still extant in the 
breeding population. We have genotyped all female individuals that were 
brought into captivity or produced offspring that were brought into captiv­
ity. Consequently, we are not evaluating sample statistics, but are looking 
at the actual population parameter. 

Results 

Haplotype frequency and diversity.—The genetic founders revealed four 
haplotypes or unique sequences (Table 1 and Fig. 4). The four haplotypes 
are defined by five polymorphic sites (Table 1). The distribution of these 
haplotypes on the pedigree is shown in Figure 2A. One of these haplotypes 
is unique to Topatopa, the first male brought into captivity in 1967. Since 
males do not genetically transmit mtDNA to their offspring and Topatopa is 
the only living representative of this maternal lineage, only three of the four 
haplotypes will persist in the future California Condor population. 

The frequencies of haplotypes have shifted over time (Table 2). 
Haplotype 1 has become progressively more rare and haplotype 2 progres­
sively more common. Haplotype 4 was relatively uncommon in the genetic 
founders compared to haplotypes 1 and 2 but has increased its frequency 
relative to haplotype 1. As noted above, haplotype 3 will not survive into the 
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Table 2. Haplotype count (frequency) in genetic founders, maternal genetic founders, 
and the current California Condor population (as of 30 June 2002). Haplotype 
diversity (h) where h = 1 – ∑ x2 

i , and x is the frequency of each haplotype. 

Group name and 
population size 

Haplotype Haplotype Haplotype Haplotype 
1 2 3 4 h 

Genetic Founders
 n = 14 

Maternal Founders
5 (0.357) 5 (0.357) 1 (0.071) 3 (0.214) 0.694 

n = 4 
2002 Population

 n = 207 

1 (0.25) 2 (0.50) 

30 (0.145) 128 (0.618) 

0 (0.00) 1 (0.25) 

1 (0.005) 48 (0.232) 

0.625 

0.543 

future. Assuming no mutation in the mitochondrial CR, and using the pedi­
gree (Mace 2002) to extrapolate haplotypes, we predicted haplotypes for the 
entire extant California Condor population (n = 207). Haplotype diversity 
(h) for genetic founders was 0.694. In the extant population h was 0.524. 
The changes in h refl ected a 25% decrease in haplotype diversity (Table 2). 

Nucleotide diversity.—There was no shift in nucleotide diversity 
(Table 3). The mean nucleotide diversity (± standard error) in the mater­
nal genetic founders overlaps with that of genetic founders in the 2002 
population (Table 3). 

Discussion 

We examined mitochondrial control region sequences from genetic 
founders of the captive California Condor population. The nucleotide 
sequences of the entire Region I and part of Region II in the mitochon­
drial CR were determined by direct sequencing of 2 PCR products for 14 
individuals (12 founders for which samples were available and 2 founder 
females for whom samples were only available through offspring; see Fig. 
2). We detected a reduction in haplotype diversity and little or no change 
in nucleotide diversity. Thus, some diversity was lost in the population that 
was brought into captivity. Whether this population was genetically impov­
erished relative to pre-1900s California Condors remains unknown. 

Table 3. Nucleotide diversity (θ) in Region I plus part of Region II of the mt Control 
Region in California Condors. None of the differences between founding groups are 
statistically significantly (standard errors [SE] overlap with mean values between 
comparisons). 

Group name and population size (n) θ SE 

Genetic founders (14) 0.00300 0.00027 
Maternal genetic founders (4) 0.00470 0.00113 
2002 population (207) 0.00333 0.00003 
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Inheritance patterns for haplotypes.—When tested, sequences of 
mitochondrial origin were identical between female parents and their 
offspring. This allowed us to verify that sequences within a maternal line 
were identical. In addition, because we inferred the sequence of the CV 
(SB #8) female from her offspring, we sequenced both Cuyama (SB #27) 
and Paxa (SB #23). As expected the two female offspring sequences were 
identical. 

Haplotype frequencies.—Haplotype frequencies in the California 
Condor population have changed. Genetic drift theory predicts that in a 
randomly mating population haplotype frequencies would change due to 
chance alone, with some frequencies increasing, moving toward fi xation, 
and some declining (Table 2). An alternative hypothesis is that natural 
selection on mtDNA haplotypes has shifted. With condors, this alternative 
hypothesis is unlikely. First, artificial selection has occurred since pairings 
were made at the captive breeding facilities according to the genetic desir­
ability criteria (e.g., forced pairing with non-clan members following Geyer 
et al. 1993). Second, even if natural selection is acting on this small popu­
lation, chance is more likely to effect genotype frequencies than selection 
simply because of the populations’ small size (Barton and Charlesworth 
1984, Ohta 1995). 

Haplotye diversity.—We observed a 25% decrease in haplotype 
diversity (Table 2). This is a direct result of the recent increase in popu­
lation size of condors in captivity, and the associated shifts in haplotype 
frequency. For example Topatopa’s haplotype “fell” from a frequency of 
about 1 in 20 to about 1 in 200 simply as a result of population growth. 
Baker and Marshall (1997) compiled data from several avian species and 
assessed the haplotype diversity in Region I of the CR, finding that values 
of Nei’s (1987) h ranged from 0.449 to 0.982. In their study, values for 
non-bottlenecked species ranged from 0.827 to 0.982. One species (the 
Knot, Calidris canutus) with known low genetic diversity for nuclear 
markers (allozymes) was the low value of 0.449. Indeed, when compared 
to Baker and Marshall’s non-bottlenecked avian species, the haplotype 
diversity in the genetic founder (h = 0.694) and current California Condor 
population (h = 0.524) were both low enough to be outliers. Haplotype 
diversity in California Condors is lower than in the wide-ranging and 
apparently non-bottlenecked Andean Condor (Hendrickson et al. 2003). 
Thus, it is possible that the low values we observe are consistent with the 
low values expected for megafauna with a restricted range (Hendrickson 
et al. 2003), or it is possible that diversity has been lost during a bottle­
neck. A historic, pre-bottleneck population sample of the California 
Condor is necessary to correctly determine whether the starting value of 
haplotype diversity we observe (h = 0.694) represents a historical value 
or recent reduction. 
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Nucleotide diversity.—The nucleotide diversity estimate for the genetic 
founders reflects the remnant genetic diversity of the wild California 
Condor population prior to its captivity. The nucleotide diversity estimate 
for the 2002 population reflects the demographic history of the California 
Condor since its captivity and growth from the four maternal genetic 
founders. These two populations showed no significant difference in nucle­
otide diversity. Populations that have the same demographic history should 
have statistically indistinguishable values of theta (θ) (Slatkin 1987). 
Therefore, we expected that the log likelihood estimates of theta would not 
be significantly different under three possible scenarios: the population size 
reduction was not significant compared to past reductions; the population 
size reduction was too brief to have an evolutionary consequence; and/or 
the California Condor has already been through such demographic–genetic 
bottlenecks during its history. From the results of our study, it might be 
concluded that the population size reduction has not lasted long enough to 
have any effect on haplotype diversity. Most likely, if more time had passed, 
there would have been a greater (significant) reduction in nucleotide diver­
sity. That no difference was observed implies that this measure of genetic 
diversity is insensitive to very large but temporary changes in population 
size. Or, alternatively, that this demographic crash (including its duration) 
is not too distinct from other naturally occurring crashes experienced by 
this species. Again, we would like to point out that a historic population 
sample of the California Condor is necessary to correctly discriminate 
between these alternative hypotheses. 

Comparison with other genetic studies of California Condors.—The 
DNA fingerprint analysis of Geyer et al. (1993) was based on nuclear DNA 
digested with three restriction endonucleases. Their study revealed three 
clans. Their resulting groupings differed from the four haplotype groupings 
identified in this study. This difference might be expected when comparing 
mitochondrial sequence data to nuclear minisatellite data (see Fig. 2A, B, 
respectively). It is of note that in our study Topatopa was identified as having 
a unique mitochondrial haplotype, yet based on Geyer et al.’s nuclear analy­
sis, Topatopa was placed into the largest clan. 

The mitochondrial genome of California Condors has been studied 
previously through an RFLP analysis. Using five restriction enzymes, 
Chemnick et al. (2000) identified four haplotypes, but found only two per­
sisting in the extant population. Our results were generally concordant with 
the results of the mtDNA RFLP analysis, with the exception that Topatopa 
has a unique mitochondrial haplotype in our analysis. It is important to 
note that none of the restriction enzymes used in the RFLP analysis would 
have detected the DNA sequence variation identified herein, because the 
recognition sequences of those enzymes are not contained in the fragment 
that we sequenced. 
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In summary, we corroborate the loss of genetic (mtDNA) diversity asso­
ciated with the founding of the captive population. The number of haplo­
types has been reduced as has haplotype diversity. Although our results 
do show a 25% decrease in the haplotype diversity between the genetic 
founders and the current population, our results did not show an apparent 
change in the average nucleotide diversity (θ). Haplotype diversity is more 
sensitive to changes in population size and the frequency of haplotypes 
within the population. In contrast nucleotide diversity is an estimate of 
heterozygosity at the nucleotide level. It is known that heterozygosity is 
slower to change than allele frequencies since rare alleles are the ones lost 
first and these contribute little to heterozygosity (Nei et al. 1975, Watterson 
1975, Hartl and Clark 1989). 

The genetic founders have only four unique mitochondrial CR haplo­
types, defined by five polymorphic sites. Interestingly, haplotype 3 is unique 
to Topatopa, the oldest living California Condor brought into captivity as 
a chick in 1967. Due to the maternal inheritance of mitochondrial DNA 
this haplotype will not persist in the population, as Topatopa cannot pass 
it on to his offspring. Topatopa may be part of the largest nuclear clan, yet 
the unique mtDNA haplotype suggests that he also carries some additional 
nuclear genetic variance not found in other founders. Importantly, he has 
bred very successfully in the captive breeding program. 

Inbreeding.—The entire captive flock was founded by six breeding 
pairs (Fig. 2). Males from two of these pairs were never genotyped. The 
dam and sire in three of the four genotyped pairs had different mitochon­
drial haplotypes from each other. Our DNA sequence result corroborates 
the same finding as the mitochondrial RFLP analysis (Chemnick et al. 
2000; see our Fig. 2C). The CV pair (SB #4 and #8) is the only pair to 
share the same maternal haplotype. This is of interest because (1) it may 
indicate a higher level of relatedness within this pair; (2) these are the 
parents of the only known wild hatched chick that died with abnormal 
limb and skull development which are symptomatic of the lethal recessive 
chondrodystrophy gene (Snyder and Snyder 2000); and (3) they are also 
the parents of a male, Cuyama (SB #27), which fathered chicks expressing 
chondrodystrophy in captivity (Ralls et al. 2000). 

Although a behavioral component has not yet been linked to chondrodys­
trophy or any another genetically based condition, behavior may affect fi tness. 
Both Paxa and Cuyama exhibited abnormal behavior as chicks. Observed 
behaviors included excessive gaping and wing drooping, respectively (Snyder 
and Snyder 2000). Field observations in the early 1980s resulted in the 
documentation of several abnormal reproductive behaviors among wild pairs. 
These included poor coordination of egg incubation resulting in egg neglect 
and nest failure, aggressive interaction at the nest site and attempted homo­
sexual copulation between two birds (Snyder and Snyder 2000). 
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Future implications.—In the captive California Condor population, the 
expression of deleterious alleles is concordant with the mating of individuals 
sharing the same haplotype (i.e., the CV pair [SB #4 and #8] and offspring). 
If we assume that individuals sharing a haplotype are more closely related 
than individuals with different haplotypes then we could use haplotypes to 
infer inbreeding. We suggest our results be used in exactly that manner. 

Because mtDNA is passed along from a female to all her offspring with­
out recombination, the techniques developed in this study can be used to 
identify maternal parents. For example, if maternity of a wild born condor 
is unknown and the potential female parents are from different maternal 
lineages (have different haplotypes) the maternal parent can be identifi ed 
by sequencing a small fragment of mitochondrial DNA. A possible source 
of DNA that could be used includes feathers or egg shell fragments from 
the nest site. 

Until recently, genetic diversity could only be assessed in extant popu­
lations. In addition, the amount of diversity was usually evaluated in com­
parison to some closely related species or population. However, this approach 
has the potential to lead to erroneous conclusions (see Bouzat et al. 1998, 
Matocq and Villablanca 2000). With current molecular methods and the 
primers developed in this study, it is possible to directly quantify the genetic 
variability of the California Condor both before and after the bottleneck of 
1987. Such an analysis would allow us to fully understand the impact of this 
bottleneck and determine if and how much genetic diversity has been lost. 
Moreover, such an analysis would allow us to determine if the California 
Condor is one of a small number of species that show historically low levels 
of genetic diversity (Matocq and Villablanca 2000, Pertoldi et al. 2001). 
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