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A pilot-scale land treatment unit (LTU) was constructed at the former Guadalupe oil 

production field with the purpose of investigating the effect of co-substrate addition on the 

bacterial community and the resulting rate and extent of total petroleum hydrocarbon 

(TPH) degradation. The TPH was a weathered mid-cut distillate (C10-C32) excavated from 

the subsurface and stockpiled before treatment. A control cell (Cell 1) in the LTU was 

amended with nitrogen and phosphorus while the experimental cell (Cell 2) was amended 

with additional complex co-substrate—corn steep liquor. During the pilot LTU operation, 

measurements were taken of TPH, nutrients, moisture, aerobic heterotrophic bacteria 

(AHB), and diesel oxidizing bacteria (DOB). The bacterial community was also assayed 

using community-level physiology profiles (CLPP) and 16S rDNA terminal restriction 

fragment (TRF) analysis. TPH degradation in both cells was characterized by a rapid phase 

of degradation that lasted for the first three weeks, followed by a slower degradation phase 

that continued through the remainder of the project. The initial rate of TPH-degradation in 

Cell 1 (–0.021 day-1) was slower than in Cell 2 (–0.035 day-1). During the slower phase, 

degradation rates in both cells were similar (–0.0026 and –0.0024 respectively). AHB and 

DOB counts were similar in both cells during the fast degradation phase. A second addition 

of co-substrate to Cell 2 at the beginning of the slow degradation phase resulted in an 



increased AHB population that lasted for the remainder of the project but did not affect 

TPH degradation rates. CLPP data showed that co-substrate addition altered the functional 

capacity of the bacterial community during both phases of the project. However, TRF data 

indicated that the phylogenetic composition of the community was not different in the two 

cells during the fast degradation phase. The bacterial phylogenetic structure in Cell 2 

differed from Cell 1 after the second application of co-substrate, during the slow 

degradation phase. Thus, co-substrate addition appeared to enhance the functional capacity 

of the bacterial community during the fast degradation phase when the majority of TPH was 

bioavailable, resulting in increased degradation rates, but did not affect rates during the 

slow degradation phase when the remaining TPH may not have been bioavailable. These 

data show that co-substrate addition might prove most useful for applications such as land 

farming where TPH is regularly applied to the same soil and initial degradation rates are 

more important to the project goals. 

 

INTRODUCTION 

Bioremediation is the conversion of undesirable compounds (pollutants) into preferable end products 

using biological processes. This process is well documented for petroleum hydrocarbons (Abed et al., 

2002;Admon et al., 2001;Al-Awadhi et al., 1996;Atlas & Bartha, 1972; Huesemann & Truex, 1996; 

Juck et al., 2000; Mishra et al., 2001; Morgan & Watkinson, 1990;Venosa et al., 1996); however, 

chemical, physical, and biological factors can affect the rate and extent of hydrocarbon 



degradation. These factors include specific hydrocarbon compound structures, their 

bioavailability, and the nature of the soil or matrix in which the petroleum resides. In addition, 

environmental conditions such as the type and quantity of nutrients, moisture, soil pH, and the 

availability of suitable electron acceptors are important factors affecting the degradation rate. 

Despite these caveats, bioremediation is commonly used to remediate petroleum-contaminated 

soils. 

The addition of nutrients, electron acceptors, and moisture has long been advocated to 

optimize biodegradation capacity, especially in highly engineered systems such as land treatment 

units (Huesemann & Truex, 1996; MacNaughton, 1999; Mishra et al., 2001; Morgan & 

Watkinson, 1990).The addition of a co-substrate such as methane is commonly used during 

bioremediation of chlorinated compounds such as trichloroethane (Watanabe, 2001). In contrast, 

co-substrate addition has not been investigated for the enhancement of petroleum degradation. In 

part, this is because total petroleum hydrocarbons (TPH) are widely considered to be a readily 

degradable mixture of compounds. However, petroleum is a very complex mixture, and there are 

many compounds in TPH that may not be readily degraded. In particular, weathered petroleum 

may be enriched in poorly degradable components (Admon et al., 2001; Alexander, 2000; 

Salanitro et al., 1997). Co-substrate additions may therefore be important to the remediation of 

aged petroleum, where the more readily degradable components are either gone or have already 

been partially oxidized during weathering. 

This study involved the remediation of highly weathered TPH in sandy soil from the former 

Guadalupe petroleum extraction facility. The Guadalupe site occupies nearly 2,700 acres of the 

larger Guadalupe-Nipomo Dune Complex and is located on the central California coast in San 



Luis Obispo and Santa Barbara counties. Natural gas and extremely viscous crude oil were 

extracted at the site from 1946 to March 1994. A refined petroleum product, referred to as 

diluent, was injected into wells to thin the viscous crude oil and enhance extraction. The diluent, 

a light petroleum distillate, was similar to a mixture of kerosene and diesel oil. Over the course 

of 20 to 30 years, diluent was inadvertently released from the network of supply pipes and 

storage tanks into soil and groundwater at the site. 

Biological land treatment was identified as one method for treating the affected soil, and a 

pilot project including the construction and operation of an on-site land treatment unit (LTU) was 

commissioned. The pilot project was designed to evaluate the efficacy of bioremediation for 

diluent-affected soil and the effects of co-substrate supplementation on diluent biodegradation. 

As part of the pilot project, the authors also sought to determine the effects of co-substrate 

addition on bacterial community physiology and phylogenetic structure. 

MATERIALS AND METHODS  

Site Description 

The pilot LTU was constructed approximately two miles east of the Pacific Ocean. The climate 

is characterized as Mediterranean with an average annual precipitation of 32 cm and a mean 

temperature of 13ºC. Chemicals of concern identified in soils treated in the pilot study were 

limited to TPH in the diluent range (C10–C32). Baseline sampling results showed the soil did not 

contain polynuclear aromatic hydrocarbons (PAHs); benzene, toluene, ethylbenzene, and xylenes 

(BTEX); or polychlorinated bi-phenyls (PCBs). The diluent-affected soil treated during the pilot 

study was the result of past excavation projects. Prior to treatment, the affected soil contained 

average total petroleum hydrocarbon (TPH) concentrations of approximately 2,000 mg/kg. 

 



This study involved the remediation of highly weathered TPH in sandy soil from the 

former Guadalupe petroleum extraction facility. 

 

Cell Construction 

After screening with a one-inch mesh to remove aggregate material, affected soil was transported 

from existing stockpiles to the treatment area. Approximately 12,000 cubic yards of material was 

divided between the cells in four 18-inch layers called “lifts.” The lowest lift was not amended but 

the top three lifts were amended with nutrients to enhance biodegradation. The top lift was 

designated as the treatment lift. The soil in each cell extended to an approximate total height of 60 

inches above the compacted subgrade. The treatment cells were separated by a 15-foot-wide access 

road and concrete k-rails. 

Tilling Depth and Frequency 

Tilling was performed to distribute nutrients and moisture throughout the cells and was generally 

performed whenever water or other amendments were added.The tilling process created an 18-inch-

deep windrow perpendicular to the prevailing wind.Tilling both cells required approximately one 

day. Due to problems in maintaining tilling depth there was a period of time in the middle of LTU 

operations when the soil in the top lift was mixed with soil from the lift below. 

Nutrient and Co-Substrate Application 

Nutrients in the form of ammonium sulfate and monopotassium phosphate or ammonium 

phosphate were first dissolved in water and then applied using a water truck to Lifts 1 through 3 



during construction of the cells. The rate of application was calculated to obtain the optimal C:N:P 

ratios of 100:6:1 as established in previous bench-scale studies. Nutrients were reapplied to the 

cells when analyses showed that the levels were below the desired C:N:P ratio. Corn steep (CPC 

International, Westchester, IL), a byproduct of high-fructose corn syrup production, was added to 

the top lift of Cell 2 as a co-substrate to test the effects on TPH degradation. Prior to its application, 

the corn steep was diluted with water to reduce its viscosity and enhance even application. The 

corn steep was administered in two doses of 0.2 percent by weight. 

Water Application 

Bench-scale studies determined that the optimum soil moisture content was between 50 and 70 

percent of the soil’s water holding capacity or from 8 to 10 percent water by weight. Water was 

heavily applied to each of the cells during construction because the initial soil moisture content was 

very low. Laboratory analysis and visual inspection were used to determine the water application 

rates. The initial application was approximately 6 percent water by weight. Later doses were 

decreased to 3 percent, then less than 2 percent by weight to maintain optimum conditions. At the 

start of the pilot study, the cells were watered once a week. The frequency of water application was 

increased during hotter weather; however, the volume of water applied to each cell did not 

increase. Instead, it was added in two applications in an effort to maintain a constant moisture 

level throughout the week.The soil moisture content (percent by weight) of each sample was 

measured using EPA Method 160.3 (Zymax Laboratories, San Luis Obispo, CA). 

 

Tilling was performed to distribute nutrients and moisture throughout the cells and was 

 

        
Sampling 



A sample grid of ten squares was established for each cell. When sampling a grid square, ten 

grab samples were obtained from approximately 9 inches into the treatment lift and were then 

combined in a stainless steel bowl. The composite soil sample was collected in four- or eight-

ounce sample jars for shipping to the analysis laboratories. During LTU operations, the soil was 

sampled weekly through December 1998 and then once in January and once in February of 1999. 

Five out of the ten sample grid squares were sampled in each cell during one sampling event and 

the other five were sampled in the next sampling event. All samples collected were submitted for 

microbial, TPH , and moisture analyses. Nutrient and soil pH analyses were conducted weekly 

through Day 35. Following Day 35 of operations, the frequency of these analyses was decreased 

to every other week. 

Oxygen Monitoring 

The oxygen concentration within the cell soil was measured using Pogo-Probe Oxygen Sensors 

(Microbac Laboratories, Wexford, PA). Oxygen data was recorded from the area in which 

samples were obtained. Oxygen measurements were collected after tilling; after rain events; 

after carbon substrate, water, or nutrient addition; and when the soil had not been tilled for a 

period of time to determine how these parameters affected soil oxygen concentrations. 

Organic and Inorganic Monitoring 

TPH content (mg/kg), carbon chain distribution were measured using method ASTM 2887 and 

polar fraction was measured using EPA method 418.1 (Zymax Laboratories, San Luis Obispo, 

CA). Initially, all samples were analyzed for BTEX and PAH (EPA Methods 8260 and 8270). 

However, these compounds were consistently not detected in the soil, and analyses were 

discontinued after Day 28 of the study. Zymax Laboratories also monitored soil pH and nutrient 



(ammonia, nitrate, nitrite, sulfate, and ortho-phosphate) levels using the relevant EPA methods 

(9045, 350.3, or 300.0). 

Microbial Monitoring 

Aerobic heterotrophic bacterial counts were estimated by plating four replicate samples for 

each time point on R2A agar (Difco, Detroit, MI) using the large plate streak method (Jett et 

al., 1997) after dilution with Bushnell-Hass medium (Difco). Plates were incubated at 28°C 

for three weeks before counting colony-forming unit (CFU). Diesel-oxidizing bacteria were 

estimated by the MPN method on 96-well microplates (Wrenn & Venosa, 1996). Community-

Level Physiological Profiles (CLPP) were produced using Biolog GN plates (Biolog, 

Hayward, CA). After 100-fold dilution in Bushnell-Hass medium, each sample was 

distributed into four Biolog GN plates. The plates were scored after 1 week of incubation by 

reading the absorbance at 560 nm in a 96-well spectrophotometer (Beckman-Coulter, 

Fullerton, CA).The phylogenetic structure of the bacterial community was estimated using 

16S rDNA terminal restriction fragment analysis. The five samples from each sampling 

event were combined, and DNA was extracted from the composite sample using the MoBio 

Soil DNA kit (Solana Beach, CA). PCR was performed using conditions and primers pre-

viously described (Kaplan et al., 2001). PCR products were digested with the restriction 

endonuclease DpnII and DNA fragments were analyzed on an ABI310 genetic analyzer 

(Applied Biosystems Inc., Foster City, CA). Agglomerative hierarchical cluster analysis of 

the CLPP and TRF data was performed with Minitab (Minitab Inc., State College, PA) 

statistical software using Euclidean distances and average cluster linkages. 

Five out of the ten sample grid squares were sampled in each cell during one sampling 



event and the other five were sampled in the next sampling event. 

RESULTS 

Moisture, Temperature, pH, and Oxygen 

The average moisture content in Cell 1 over the entire operation time was 6.5 percent with a low 

of 3.4 percent on Day 49 and a high of 10.2 percent on Day 91.The average moisture content in 

Cell 2 was also 6.5 percent with a low of 5.5 percent on Day 169 and a high of 8.3 percent on 

Day 63 (Exhibit 1). During operation of the LTU, the ambient air temperature decreased from a 

24-hr average of 62ºF in September to 53°F in December. The soil temperature averaged 76ºF 

during the month of September and 74ºF in October, and dropped to an average 64ºF and 54ºF 

in November and December, respectively (data not shown).The pH in the Cell 1 soil was 

initially measured at 7.0. It increased to a maximum of 7.5 on Day 28, and then declined to 

average 6.9 until Day 169 when it dropped to a low of 6.3.The pH in the Cell 2 soil was initially 

measured at 7.4. It increased to a maximum of 8.2 on Day 7, and then declined to average 7.0 

from Day 14 until Day 167. For the duration of the pilot study, under all conditions tested, the 

treatment lift (Lift 1) was aerobic in both cells. Oxygen concentrations within Lift 1 of both 

cells remained between 15 and 19 percent at 12 to 18 inches into a windrow peak. Aerobic 

conditions were present even when the treatment lift had not been tilled for a week (data not 

shown). 

Nutrients 

Ammonium concentrations were initially low in both cells and increased significantly after a 

second application of ammonium sulfate (Exhibit 2). Concentrations remained low initially in 



Cell 1 requiring a third application of ammonium sulfate. Ammonium concentrations decreased 

throughout the rest of the study in both cells with a slight increase after the first rain of the 

season in November. On Day 110, an application of ammonium phosphate was added to Cell 1. 

Nitrite appeared in both cells after Day 28 as the initial peak in ammonia began to decrease. 

Nitrite remained low (< 25 mg/kg) and then disappeared in both cells after the 12th week of 

operations. Nitrate appeared in both cells immediately after the appearance of nitrite. Nitrate 

levels remained around 30 mg/kg after the 8th week of operation in both cells. Phosphate 

remained between 10 and 20 mg/kg in both cells throughout the study. Sulfate was higher in Cell 

1 (80 to 120 mg/kg) than Cell 2 (40 to 80 mg/kg), probably because of the additional application 

of ammonium sulfate to Cell 1 (data not shown). 

Ammonium concentrations were initially low in both cells and increased significantly 

after a second application of ammonium sulfate. 

 

[Insert Exhibit 1] 

[Insert Exhibit 2] 

[Insert Exhibit 3] 

[Insert Exhibit 4] 

 

TPH Reduction and Changes in Carbon-Chain Distribution 

By Day 28 in Cell 1, the initial TPH concentration (2,440 mg/kg) decreased by 42 percent; by 

the end of the project 61 percent of the TPH was removed. TPH loss was greater in Cell 2 at a 



90 percent confidence interval. By Day 28 in Cell 2, the initial TPH concentration (1,760 

mg/kg) decreased by 50 percent; by the end of the project 64 percent of the TPH was removed 

(Exhibit 3). Initially, the light-end hydrocarbon fraction (C12–C20) of TPH was 60 percent in 

Cell 1 and 56 percent in Cell 2. By day 28 the C12–C20 fraction had decreased in both cells, 

to 40 percent in Cell 1 and 46 percent in Cell 2.As a result the long-chain hydrocarbons 

became the dominant fraction in both cells by Day 28. Intriguingly, the C12–C20 fraction 

increased in both cells by the end of the study, to 55 percent in Cell 1 and 53 percent in Cell 

2.This may reflect the accumulation of partial degradation products from longer chain 

hydrocarbons after Day 28. Throughout the study the C20–C24 fraction was the largest.The 

average polar fraction in both cells varied between 15 percent and 25 percent during the study; 

although Cell 1 initially had a higher polar fraction than Cell 2, 34 percent and 20 percent, 

respectively. 

The degradation of TPH in both cells had two distinct phases–an initial fast degradation 

phase, followed by a slow degradation phase. To determine the breakpoint in the degradation 

rates, regression analysis was performed on a dataset broken into two groups (early and late). 

Sample membership within the early and late groups was varied so that all possible 

breakpoints were considered. The breakpoint that best fit the data in both cells put Days 0 to 

21 in the early group and Days 28 to 168 in the late group, indicating that the change in 

degradation rate occurred between sampling Days 21 and 28 (Exhibit 4).The initial rate 

constant (k1) for Cell 2 was 50 percent larger than for Cell 1 and was significantly different (p 

= 0.1) at a 90 percent confidence level. In addition, rate constants for the C12–C14 and C14–

C16 carbon-chain fractions were significantly higher in Cell 2 at a 95 percent confidence level 

(Exhibit 5). Conversely, the two cells had very similar second-stage rate constants (k2) for all 



carbon-chain fractions. Although degradation rates were higher for short-chain hydrocarbons 

(C12–C20) during the fast degradation phase, the long-chain hydrocarbons (C20–C32) had 

higher degradation rates during the slow degradation phase. The polar fraction was rapidly 

reduced in Cell 1 during the first two weeks, but remained essentially constant for the 

remainder of the study. The polar fraction in Cell 2 showed no change throughout the study 

(data not shown). 

[Insert Exhibit 5] 

Bacterial Counts 

Aerobic heterotrophic bacterial (AHB) counts were estimated by plating quadruplicate samples 

onto R2A media. AHB counts for both cells began around 107 colony-forming units (CFU) per 

gram of soil on Day 0 and varied between 107 and 109 CFU/g throughout the study (Exhibit 6). 

Cell 1 and Cell 2 showed an initial increase in AHB during the first three weeks of operation 

with doubling times (T2) of 14 and 12 days, respectively. This was followed by a period of 

decline in AHB that corresponded to the breakpoint between the two degradation rates observed 

during the study. AHB in Cell 1 began to increase again after Day 28 and continued to grow 

with a T2 of 99 days, ending at ~108 CFU/g  (Exhibit 6A).At Day 50, Cell 2 was amended with a 

second dose of corn steep in an attempt to reinvigorate the bacterial community and increase TPH 

degradation. Consequently, AHB counts increased rapidly again for the next three weeks with a 

T2 of 12 days. After Day 70, AHB counts in Cell 2 remained high (—5 × 108) for the rest of the 

study (Exhibit 6B). 



                                                            [Insert Exhibit 6] 

Diesel oxidizing bacteria (DOB) were estimated in quadruplicate samples using a most 

probable number (MPN) method. DOB was counted during the first five weeks of the pilot 

study, covering the period of most active TPH degradation. DOB in both cells varied little, 

remaining around — 105 MPN/g soil throughout this period. DOB numbers did not appear to 

respond to carbon input in Cell 2 and did not reflect the initial increases seen in AHB counts 

(data not shown). 

Community-Level Physiological Profiles (CLPP) 

The physiological profile of the microbial community was monitored as the ability to oxidize the 

carbon compounds in Biolog GN plates over a 24-hour period (Bending et al., 2002; Kerkhof et al., 

2000; Mayr et al., 1999).The CLPP data were averaged across quadruplicate samples, analyzed by 

cluster analysis and fell into four large clusters that had —60 percent similarity (Exhibit 7). Day 0 

samples from both cells grouped together in Cluster 1 with —85 percent similarity. Samples taken 

during the fast degradation phase for Cell 1 grouped together in Clusters 1 and 2 with —58 percent 

similarity. Samples taken during the fast degradation phase for Cell 2 grouped separately from Cell 1 

in Cluster 4 with —85 percent similarity. Cell 1 samples from Day 77 until Day 126 grouped together 

in Cluster 3 with —90 percent similarity. Cell 2 samples from Day 77 until Day 105 grouped together 

in Cluster 4 with —85 percent similarity. Cell 2 samples from Day 126 grouped with late Cell 1 

samples in Cluster 3 with —80 percent similarity. Samples taken after the end of the fast degradation 

phase in Cell 1, Days 28 to 70, did not cluster well and had large variations between replicates. In 

contrast, Cell 2 samples during this same period grouped together in Cluster 4 with the exception of 

Days 42 and 70. 



16S rDNA Terminal Restriction Fragment (TRF) Patterns 

The phylogenetic composition of the bacterial community was monitored in both cells by collecting 

16S rDNA TRF patterns. The number of TRFs in a pattern is a measure of the number of different 

bacterial phylotypes present in the sample (Braker et al., 2001; Clement et al., 1998; Kaplan et al., 

2001; Kitts, 2001; Liu et al., 1997; Marsh, 1999; Moeseneder, 2001; Sakano et al., 2002).The 

number of TRFs in both cells increased during the first part of the project. However, while Cell 1 

samples retained a high number of TRFs (—65) for the remainder of the study, the number of TRFs 

in Cell 2 declined after Day 56 to a low of —45 (Exhibit 8). Cluster analysis of TRF patterns from 

both cells grouped samples into three large clusters that had —55 percent similarity (Exhibit 9).The 

first cluster contained samples from the early part of the study, Cell 1, Days 0 to 42 (—60 percent 

similarity) and Cell 2, Days 7 to 28 (—70 percent similarity). Cell 1 samples from the remainder of 

the study grouped in Cluster 2 with —60 percent similarity. Cell 2 samples from the later part of the 

study grouped together in Cluster 3 with —65 percent similarity. In contrast to CLPP data, Day 0 

for Cells 1 and 2 did not cluster together. Cell 1, Day 168 grouped with Cell 2, Day 168 in Cluster 2 

(—58 percent similarity). 

The physiological profile of the microbial community was monitored as the ability to oxidize 

the carbon compounds in Biology GN plates over a 24-hour period. 

  

[Insert Exhibit 7] 

 

DISCUSSION 



TPH degradation in both pilot LTU cells followed a two-phase kinetic pattern, a commonly 

reported phenomenon in petroleum bioremediation (Admon et al., 2001; Alexander, 2000; 

Salanitro et al., 1997).The breakpoint in degradation kinetics occurred between Days 21 and 28 in 

both cells and was therefore unaffected by co-substrate addition (Exhibit 4). In addition, changes in 

environmental factors, such as the ambient temperature, pH, and moisture were not correlated 

with the breakpoint in degradation kinetics (Exhibit 1). Due to the addition of ammonium 

sulfate the previous week, ammonium levels peaked on Day 21 in both cells (Exhibit 2); 

however, this addition most likely did not affect degradation rates since a rebound in rates was 

not observed as ammonium levels decreased after Day 28. Similarly, although the nitrite was 

detected in both cells from Days 28 to 84, degradation rates did not rebound after nitrite 

disappeared. 

                                                     [Insert Exhibit 8] 

Petroleum sequestration in soil particles, which renders it unavailable to bacteria, is the most 

likely explanation for the observed change in degradation rate. The rate of degradation during 

the slow phase would thus be limited by the desorption rate of petroleum from soil particles 

rather than bacterial activity (Admon et al., 2001; Alexander, 2000). Changes in the number or 

type of bacteria present should not be critical if this is the case. Admon et al. (2001) were able to 

show a similar effect on initial degradation rates with changes in ambient temperature. As 

observed here, Admon et al. also saw little or no change in the slow-phase degradation rates. 

Current techniques for quantifying TPH are carried out using solvents that extract sequestered 

petroleum, which might be biologically unavailable. To account for the difference in 

sequestered versus available petroleum it has been suggested that a complementary method of 



analysis should be developed that does not extract sequestered petroleum (Alexander, 2000). 

The development of such a method would allow for correlation of changes in degradation rates 

with petroleum bioavailability. 

During the fast degradation phase, Cell 2 recorded the highest rate of TPH degradation, 

especially for the low molecular weight hydrocarbons (Exhibit 5). However, in spite of the 

addition of the readily utilizable co-substrate corn steep, the doubling time for AHB in Cell 2 

was not significantly different from Cell 1 during the first three weeks of LTU operation 

(Exhibit 6).The DOB count was also similar in both cells during the fast degradation phase. With 

the exception of Day 0, the phylogenetic structure in both cells was also at least 60 percent 

similar during this time, implying that the same phylotypes of bacteria were dominant in both 

cells. Although the initial addition of co-substrate did not significantly alter bacterial numbers or 

community phylogenetic structure, the CLPP data did show differences between the cells during 

the fast degradation phase. This implies that corn steep addition resulted in changes to bacterial 

community physiology that enhanced TPH biodegradation rates, even though the substrates used 

in the CLPP assay are not necessarily found in TPH so the exact nature of the physiological 

change induced by corn steep and its relationship to TPH degradation are not clear. 

                                                       [Insert Exhibit 9] 

In addition to increased degradation rates, a higher percentage of the initial TPH was 

degraded in Cell 2 during this three-week period; 50 percent in Cell 2 versus 42 percent in Cell 

1. Perhaps the corn steep, which is composed of protein, lipids, and carbohydrates in an acidic 

solution, also acted as an emulsifier and increased the initial proportion of bioavailable TPH in 

Cell 2. 

A drop in AHB counts in both cells marked the change in degradation kinetics between 



Days 21 and 28 (Exhibit 6). This is consistent with the idea that the majority of the bioavailable 

TPH had been utilized at this time. Counts fell abruptly in Cell 1 and more slowly over a three-

week period in Cell 2. Although the change of degradation kinetics appeared abrupt, a transition 

period of three to four weeks occurred in the bacterial phylogenetic structure of both cells and a 

similar transition in the CLPP data was also visible in Cell 1 during this time. This gradual 

transition implies that the change in TPH degradation rate did not result from changes in 

bacterial abundance or physiology; rather, the bacterial community was adjusting to a more 

abrupt change in substrate availability mediated by TPH sequestration. 

Toward the end of the transition period, Cell 2 received an additional co-substrate 

amendment that had both short- and long-term effects. For three weeks, the AHB counts in Cell 

2 returned to the 12-day doubling time seen at the start of operations, a clear contrast to the 99-

day doubling time seen in Cell 1 (Exhibit 6). However, the increased bacterial growth did not 

correlate with an increased TPH degradation rate, suggesting an absence of bioavailable TPH. 

This implies that the addition of co-substrate on Day 49 did not increase the amount of 

bioavailable TPH beyond what might have already been emulsified in the first application. 

Simultaneously, the bacterial phylogenetic structure in the two cells diverged, suggesting that 

the growth of a group of cosubstrate-specific bacteria was responsible for the increased AHB 

counts (Exhibit 9). By the end of the project, both the physiological and phylogenetic profiles in 

the two cells began to converge, suggesting that the effect of co-substrate addition was 

diminishing (Exhibits 7 and 9). 

During the slow degradation phase, the bacterial communities in the two cells were the most 

dissimilar. During this phase, Cell 1 samples had lower AHB counts, different bacterial 

phylogenetic structures (Exhibit 9), and different physiological profiles (Exhibit 7) from Cell 2 



samples. However, TPH-degradation rates in the two cells were similar, suggesting that 

bacterial degradation potential was not determining degradation kinetics during this phase. This 

is consistent with the hypothesis that TPH was sequestered in the soil, leaving it biologically 

unavailable, and that the TPH desorption rate was driving the overall degradation kinetics. 

CONCLUSIONS 

The addition of complex co-substrates to petroleum land treatment operations appears to be 

effective when added at project initiation. In the early phase of operations when bacterial 

abundance and physiology are important, the amendment was able to increase TPH-degradation 

rates by altering bacterial community physiology. It is also possible that corn steep served as an 

emulsifier, increasing the amount of bioavailable TPH during the fast degradation phase. As a 

result, a higher percentage of TPH was removed over the same period compared to the control 

cell. An incidental benefit of corn steep was that only one nutrient addition was necessary to 

maintain N and P levels during the fast degradation phase. However, in the later phase of 

operations when TPH bioavailability may have been rate-limiting, additional co-substrate was 

ineffective, even though it clearly altered the abundance and physiology of the bacterial 

community. Thus, co-substrate addition, while providing limited benefit for soil remediation 

where the ultimate goal is a clean soil, might prove most useful for applications such as land 

farming where TPH or sludge is regularly added to the same soil, making the soil a medium 

for degradation. Since the object of this kind of land farming is the removal of large amounts 

of TPH and not complete remediation of the soil, an increased initial degradation rate is 

desirable because it would result in less TPH sequestered in soil particles after each 

application and result in better degradation efficiency over several sludge applications. 



The addition of complex co-substrates to petroleum land treatment operations appears 

to be effective when added at project initiation. 
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Exhibit 1. Environmental data at the Guadalupe LTU: A) ambient temperature, B) soil mois-
ture, C) soil pH. Cell 1–solid circles and solid lines. Cell 2–open circles and dashed lines 



 

 

 

Exhibit 2. Nitrogen species concentration at Guadalupe LTU: A) nitrite, B) nitrate, C) 
ammonia. Cell 1-–solid circles and solid lines. Cell 2–open circles and dashed lines. 
Addition of ammonium phosphate for Cell 1 and Cell 2 is indicated by solid arrows and 
open arrows, respectively. Error bars indicate one standard deviation 



 

 

Exhibit 3. Composition of TPH during degradation. The average of five measurements is 
presented with standard deviations in parentheses 

 

 



 

 

 
 
Exhibit 4. Average relative TPH concentration for A) Cell 1–solid circles and B) Cell 2–open 
circles. Error bars indicate one standard deviation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Exhibit 5. First-order dimensionless rate constants for hydrocarbon degradation 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhibit 6. Aerobic Heterotrophic Bacterial (AHB) counts for A) Cell 1 and B) Cell 2. Lines 
indicate regions used to calculate doubling times 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Exhibit 7. Dendogram from agglomerative hierarchical cluster analysis of average community-
level physiological profiles (CLPP). Cell 1 samples–closed circles; Cell 2 samples–open circles 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Exhibit 8.  Number of bacterial phylotypes (TRFs) present in TRF patterns from LTU 
samples. Cell 1 samples–closed circles; Cell 2 samples–open circles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Exhibit 9. Dendogram from agglomerative hierarchical cluster analysis of 16S rDNA TRF 
patterns. Cell 1 samples–closed circles; Cell 2 samples–open circles 


