Calculating the Energy Barriers Required to Join Metal-Organic Framework Synthesis Intermediates with Non-Equilibrium Molecular Simulation

MARCUS TUBBS
DAVID CANTU, ROGER ROUSSEAU, VASSILIKI-ALEXANDRA GLEZAKOU
PNNL
What are Metal-Organic Frameworks (MOFs)?

- Crystalline, sponge-like materials whose lattice is made of metal cores connected by organic linkers.
- Some distinct properties of MOFs are high internal surface areas and consistently-sized pores.
- MOFs have potential applications for carbon capture, gas and chemical storage, separations and filtering, and more.
- Working with MIL-101 as prototypical case.
Need to scale up MOF production

- Thousands of MOFs have been identified, but only two have been produced in large quantities.
- Understanding the synthesis kinetics is required to increase production from the lab scale (autoclave) to the industrial scale (reactor).
- The mechanisms of MOF formation remains unknown.

Autoclave:
Small quantities, long times
Thermodynamic control of products

Reactor:
Large quantities, short times
Kinetic control of products
Summary of previous work

- At PNNL, a mechanism making MIL-101 intermediates from basic components (metal ions and organic linkers) was proposed\(^1\).

- Experimentally similar intermediates have been detected\(^2\).

- How do these intermediates combine for material nucleation?

Molecular Dynamics

- Defining particles and applying Newton’s Laws simulates the behavior of many-body systems.
- Interactions between particles are defined by a harmonic potentials and Van der Waals forces.
- For every timestep, for every particle:
 - Calculate net force caused by interactions with all other particles.
 - Adjust the velocity according to the acceleration caused by this force.
 - The particle “moves” at that velocity to the next timestep.
Umbrella Sampling

- Set up a series of frames in which one residue moves along a reaction coordinate.
- Run MD simulations on each frame with external restraints on the residues (pin it with a spring). They will oscillate, and we calculate the potential energies continuously along the reaction coordinate.
Results and Future Work

Data Distribution

Count

COM Distance (nm)

2

2.3

0

1.3

1.1

1.5

1.7

1.9

2.1

2.3

COM Distance (nm)