Tropical Wetlands as a Dominant Driver of Long-Term Atmospheric Methane Changes

Carrie Ann Sharitt and Ed Dlugokencky

NOAA Earth System Research Laboratory
Global Monitoring Division
Introduction

- Atmospheric methane CH$_4$ is a greenhouse gas with direct and indirect effects on climate
- Methane has radiative forcing of 0.5 W/m2 which is second only to CO$_2$ (RF= 1.91 W/m2)
- Global Warming Potential (GWP$_{100}$) for CH$_4$=28
 - GWP is climate impact of equal masses of emissions of CH$_4$ and CO$_2$ integrated over 100 years
Introduction

- CH$_4$ is important to atmospheric chemistry since it affects the oxidizing capacity of the atmosphere and results in increased tropospheric ozone and stratospheric water vapor (RF \sim0.3 W/m2)
- OH radicals in troposphere destroy CH$_4$ and other reduced long-lived GHG
Process that Emit Methane

- 3 main processes:
 - Thermogenic
 - Pyrogenic
 - Microbial

- Produce and consume methane
- Rate of production is T dependent
- Methanogens: anaerobic methane producing microbes belonging to kingdom archaea
• Methanotrophs: methane consuming microbes
 - Archaeal methanotrophs: must be in symbiotic relationship with a bacteria which consumes sulfates; anaerobic
 - Bacterial methanotrophs: independent; aerobic
Atmosphere 1984 + 2970 ± 45
(average atmospheric increase: 17 ± 9 (Tg CH₄ yr⁻¹))

Units
Fluxes: (Tg CH₄ yr⁻¹)
Stocks: (Tg CH₄)
<table>
<thead>
<tr>
<th></th>
<th>Top-down</th>
<th>Bottom-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>218</td>
<td>347</td>
</tr>
<tr>
<td>Wetlands</td>
<td>175</td>
<td>217</td>
</tr>
<tr>
<td>Other</td>
<td>43</td>
<td>130</td>
</tr>
<tr>
<td>Anthropogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture + Waste</td>
<td>209</td>
<td>200</td>
</tr>
<tr>
<td>Biomass Burning</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Fossil Fuels</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Total Emissions</td>
<td>553</td>
<td>678</td>
</tr>
<tr>
<td>Sinks</td>
<td>550</td>
<td>632</td>
</tr>
<tr>
<td>Imbalance</td>
<td>3</td>
<td>46</td>
</tr>
</tbody>
</table>
Weekly methane at Barrow, AK. The red symbols show retained values. The blue and green symbols show flagged values. A map of GMD air sampling sites is inset.

\[[\text{CH}_4](t) = [\text{CH}_4]_\text{ss} - ([\text{CH}_4]_\text{ss} - [\text{CH}_4]_0) e^{-t/\tau} \]

Lifetime ≈ 9.4 yr

Role of Wetlands
Conclusions

• Tropical wetlands were important in paleoclimate

• Believe wetlands also a main driver of methane changes in the last decade

• In many tropical countries, few resources are spent on data relevant to understanding large scale methane changes
 - Human activities impact streamflow
 - Testing for memory effects was limited by insufficient data and technical complications

• Limited understanding of production of methane from archaeal methanogens and oxidation by methanotrophs
Acknowledgements

We would like to thank Kelsey Tayne and Ann Thorne for their help throughout the project.
Sources

Funding Acknowledgement

This material is based upon work supported by the National Science Foundation through the Robert Noyce Teacher Scholarship Program under Grant No. 1136356. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The STAR program is administered by the Cal Poly Center for Excellence in STEM Education (CESAME) on behalf of the California State University.