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ABSTRACT 

It has long been speculated that the observed periodic radial velocity pattern for the K giant Pollux might be explained 
in terms of an orbiting planetary companion. We have collected 80 high-resolution spectra for Pollux at Lick Obser­
vatory yielding precise radial velocities with a mean error of 3.8 m s-1, providing the most comprehensive and precise 
data set available for this star. Our data confirm the periodicity previously seen in the radial velocities. We derive a 
period of 589:7 ± 3:5 days and, assuming a primary mass of 1.86 M8, a minimum companion mass of 2:9 ± 0:3MJup, 
consistent with earlier determinations. No evidence for any periodicities is visible in our analysis of the shapes of the 
spectral lines via the bisector method, so we conclude that evidence is accumulating and compelling for a planet around 
Pollux. However, some final doubt remains about this interpretation, because nonradial pulsations that might be present 
in giant stars could in principle also explain the observed radial velocities, while the accompanying bisector variations
 
might be too small to be detectable with current data.
 

Subject headings: line: profiles — planetary systems — stars: individual (Pollux) — stars: oscillations —
 
techniques: radial velocities 

Online material: color figures 

1. INTRODUCTION 

Pollux (; Gem, HR 2990, HD 62509, HIP 37826) is one of the 
brightest stars in the sky (V ¼ 1:16 mag) and has been observed 
extensively in the past. Fundamental parameters from a detailed 
model atmosphere analysis of the spectrum have, for example, 
been provided by Drake & Smith (1991), and it is usually clas­
sified as K0 IIIb star (Keenan & McNeil 1989). The parallax 
determined by Hipparcos results in a distance of 10:3 ± 0:1 pc.  
In the Hipparcos Catalogue, Pollux was flagged as a possible 
microvariable with a photometric amplitude of less than 0.03 mag 
(but no obvious periodicity), as well as a possibly nonsingle star, 
maybe because of slightly different astrometric solutions from 
the two different data reduction consortia. 

Walker et al. (1989) were the first to report significant radial 
velocity (RV) variations for Pollux, with a standard deviation 
of 26 m s-1 around the mean from RV measurements spread over 
about 5 years. Although they noted that based on a periodogram 
analysis significant periodicity was present in the data, they did not 
quote any period. Only after having monitored Pollux extensively 
over 12 years with a typical RV precision of 10Y20 m s-1 did 
Larson et al. (1993) publish a RV period of 584:65 ± 3:3 days 
and discuss possible reasons for the observed periodicity. Possible 
explanations include an orbiting planetary companion or rota­

tional modulation of surface features. The latter hypothesis was 
supported by a slight indication in the data for a periodicity in the 
equivalent width index data of the 8662 8 (Ca ii) line  with about  
the same period as found in the radial velocities, but with a very 
low amplitude and only a marginal statistical significance. 

Finally, Hatzes & Cochran (1993) also presented strong ev­
idence for a periodicity in the radial velocities, with a period of 
558 days. The spectra were taken over a period of 3.5 years, and 
the typical RV accuracy was 20 m s-1. The RV variations were 
consistent in amplitude and phase with the older data by Walker 
et al. (1989). 

Here we present precise radial velocity measurements of Pollux 
that leave no doubt about a periodicity, determined from our data 
to 589.7 days. This RV set is the most comprehensive and precise 
one taken so far for this star, spanning almost 6 years. From the 
first measurements of Walker in 1981 to the latest ones by us in 
2006, this adds up to 25 years of RV monitoring for Pollux, with 
no evidence for a change in phase or amplitude of the almost 
sinusoidal variations. Along with no detectable variations in the 
spectral line shapes, our data set thus lends further evidence for 
the companion hypothesis. 

In x 2, we describe our observations, which are part of a larger 
program of monitoring giant stars for periodic RV changes, and 
present our orbital fit to the RV data. In x 3, we analyze the spectral 
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TABLE 1 TABLE 1—Continued 
Measured Radial Velocities for Pollux 

v rad  vrad 

JD - 2,450,000 (m s -1)  (m s  -1)v rad  v rad 

JD - 2,450,000 (m s -1)  (m s  -1) 
3290.027........................... -27.1
 3.0 

1808.039........................... 35.4 3.1 3323.988........................... -46.7 3.8
 
1812.039........................... 32.7 2.9 3324.988........................... -37.6 3.9
 
1854.073........................... 41.5 3.1 3355.851........................... -56.1 3.3
 
1898.060........................... 56.0 3.8 3357.988........................... -55.3 3.2
 
1898.940........................... 57.3 3.1 3400.828........................... -58.3 3.3
 
1899.899........................... 55.1 3.2 3424.734........................... -60.8 3.7
 
1901.898........................... 50.5 3.7 3442.703........................... -49.5 3.6
 
1929.819........................... 38.7 3.5 3446.642........................... -31.1
 4.0
 
1930.893........................... 42.9 3.2 3447.665........................... -41.5 4.1
 
1931.723........................... 34.4 4.5 3492.671........................... -15.7 3.4
 
1949.771........................... 39.4 5.7 3651.058........................... 37.7 3.5
 
1990.667........................... 21.2 3.3 3703.043........................... 20.2 4.3
 
1992.693........................... 32.3 3.8 3741.009........................... 22.7 4.3
 
2015.697........................... 13.9 3.2 3790.775........................... 1.9 3.7
 
2032.681........................... -6.9 3.3 3792.756........................... -0.8 3.9
 
2046.656........................... -5.9 3.6
 
2047.657........................... 0.3 3.7
 
2048.659........................... 3.8 3.5
 line shapes with the help of the bisector method, and in x 4 we  
2175.055........................... -42.5 2.9 present a discussion and our final conclusions. 
2177.047........................... -48.8 3.3
 
2193.021........................... -44.7 3.6
 

2. OBSERVATIONS 2193.983........................... -42.8 3.2
 
2205.968........................... -36.6 3.3
 The observations were carried out as part of a larger program 
2206.970........................... -47.1 4.1
 measuring precise radial velocities of several hundred G and 
2207.995........................... -38.4 3.5
 

K giant stars at Lick Observatory. The early objectives of this pro­
2222.917........................... -34.3 3.4
 

gram have been described in Frink et al. (2001), and the first sub­
2223.924........................... -37.8 3.1
 

stellar companion from the survey (around the K giant i Dra) was 2258.832........................... -23.9 3.7
 
2259.898........................... -13.9 4.0 announced in Frink et al. (2002). Hekker et al. (2006) charac­
2295.812........................... -17.2 3.9 terize the giant stars with the most stable radial velocities in our
 
2297.873........................... 1.5 4.2 survey, and D. S. Mitchell et al. (2007, in preparation) present
 
2307.749........................... -0.3 3.7 evidence for four more K giant stars harboring one or more sub­
2362.729........................... 14.2 4.3 stellar companions.
 
2363.740........................... 14.5 4.4
 As part of this ongoing program, we have obtained 80 spec­
2384.701........................... 27.9 4.9
 tra for Pollux covering about 5.5 years. All observations were 
2393.676........................... 26.2 3.9
 

taken using the Hamilton high-resolution echelle spectrograph 
2529.043........................... 44.8 3.3
 

(R ; 60;000 at 6000 8) at Lick Observatory, attached to the 0.6 m 
2542.035........................... 13.7 3.8
 

Coudé Auxiliary Telescope (CAT). Typical exposure times were 2544.004........................... 14.6 3.1
 
2560.031........................... 37.6 5.4 1.5 minutes for Pollux, yielding a S/N of up to 200. However,
 
2561.051........................... 18.6 3.2 some observations were taken with cloud cover, when exposure
 
2562.023........................... 29.2 3.1 times can be considerably longer and the S/N somewhat smaller
 
2572.020........................... 25.0 3.1 (around 150). The individual radial velocities, obtained as de­
2590.000........................... 15.0 3.4
 scribed in Butler et al. (1996), are listed in Table 1, along with 
2603.974........................... 8.2 3.7 their formal errors. Figure 1 shows the measurements together 
2604.957........................... 12.3 3.8
 with a Keplerian fit to the data; the orbital elements are listed in 
2605.893........................... 6.7 3.5
 

Table 2. There is no doubt about the clear periodicity in the data, 
2615.882........................... 2.0 4.0
 

as has already been observed by Walker et al. (1989), Larson 
2616.889........................... -6.4 3.7
 

et al. (1993), and Hatzes & Cochran (1993). 2627.889........................... -20.9 3.2
 
2665.800........................... -25.5 4.1
 Nevertheless, there is some additional scatter at a level of 
2667.840........................... -27.8 4.7 9 m s  -1 present in the data, which is larger than expected based 
2699.669........................... -26.2 4.8 on the formal measurement errors. It is possible that this stems 
2765.687........................... -35.8 5.6 from radial pulsations, but with the theoretical period for the 
2933.021........................... 13.1 3.8
 fundamental mode shorter than 1 day (Hatzes & Cochran 1993), 
2935.010........................... 6.7 3.0 our sampling is inadequate to provide any further constraints. 
2964.043........................... 42.7 4.9
 Solar-like oscillations in late G giants have been found by 
2964.938........................... 36.3 4.0
 

Frandsen et al. (2002) and de Ridder et al. (2006), and it is not 
2966.919........................... 27.8 3.4
 

unreasonable to assume that similar oscillations in Pollux are 
2985.912........................... 43.4 5.8
 

responsible for the excess jitter. The amplitude, however, is not 3022.829........................... 40.2 4.9
 
3025.893........................... 41.6 4.0 large enough to affect the derivation of the orbital parameters of
 
3089.732........................... 33.4 5.3 the putative companion. Furthermore, there are no indications
 
3111.687........................... 37.5 4.5 for any additional periodicities, as can be seen in the lower part
 



No. 1, 2006 PRECISE RADIAL VELOCITIES OF GIANT STARS. II. 663 

Fig. 1.—Top: Radial velocities measured at Lick Observatory, along with error 
bars, covering about 5.5 yr from 2000 September to 2006 February. The best-fit 
Keplerian is overplotted, with a period of 589.7 days. Bottom: Radial  velocity  
residuals after the best-fit Keplerian has been subtracted. The remaining radial 
velocity scatter has a standard deviation of 9 m s -1, and no systematics are visible in 
the residuals, neither by eye nor in the periodogram of the residuals in the lower 
part of Fig. 2. [See the electronic edition of the Journal for a color version of this 
figure.] 

of Figure 1, where the orbital fit has been subtracted from the 
data, and the corresponding Lomb-Scargle periodogram in the 
lower part of Figure 2.  

Our period for the orbital fit is 589:7 ± 3:5 days and com­
pares very well with the value of Larson et al. (1993) (584:65 ± 
3:3 days), while it is somewhat larger than the period derived by 
Hatzes & Cochran (1993) (554 ± 8 days). All previous measure­
ments are consistent in amplitude and phase with our result; 
Figure 3 shows a phased plot of our measurements along with 
the earlier ones by Larson et al. (1993) and Hatzes & Cochran 
(1993). (Note that we measure only relative radial velocities with 
an arbitrary zero point, so that a vertical shift had to be applied 
before plotting them along with the other data sets. This vertical 
shift is a free parameter in our fit; its formal error is 1.1 m s -1 and 
should be negligible for the comparison.) A combined fit to all RV 
data produces orbital parameters very similar to those of a fit to 
our RV data alone; the period from the combined fit is larger by 
1.6 days as compared to the period quoted in Table 2 based on 
our RV data alone, very well within the formal error. 

The minimum companion mass derived from our orbital fit is 
2.9MJup assuming a stellar mass for Pollux of 1.86 M8. The stel­
lar mass was derived from the location of the star in the color-

TABLE 2 
Fitted and Derived Orbital Parameters 

Parameter Value 

Period (days) .................................................... 589:7 ± 3:5 
T0 (JD - 2; 450; 000) ....................................... 2337:9þ70 

-52 
Eccentricity ...................................................... 0:06 ± 0:04 
! (deg) ............................................................. 277 ± 8 
f (m) (10 -9 M8)................................................ 6:2 ± 0:6 
m2 sin i (MJup)

a ................................................. 2:9 ± 0:1 
Semimajor axis (AU) ...................................... 1:69 ± 0:03 
RV semiamplitude (m s -1) .............................. 46:9 ± 1:5 
Reduced x2 ...................................................... 6.3 
rms scatter around fit (m s -1) ......................... 9.0 

a The companion mass error does not include the uncertainty in the 
stellar mass. 

Fig. 2.—Top: Periodogram of the measured radial velocities. The highly sig­
nificant peak occurs at 588 days; a Kepler fit to the data reveals a best-fit period of 
589.7 days. The next significant peak to the right, at about log P½days] ¼ 3:07, 
corresponds to twice the value of the most significant period. The numbers at the 
right indicate the false alarm probabilities of the labeled lines; a highly significant 
peak in the periodogram would sit clearly above the highest line, indicating a false 
alarm probability of less than 0.1%. Bottom: Same as above, but with the Kepler fit 
corresponding to 589.7 days removed from the radial velocities. No significant 
peak is left in the periodogram of the radial velocity residuals. [See the electronic 
edition of the Journal for a color version of this figure.] 

magnitude diagram as determined from Hipparcos data and com­
pared to the evolutionary tracks from Girardi et al. (2000). Solar 
metallicity was assumed for the comparison, which is a good ap­
proximation (Drake & Smith 1991). Allende Prieto & Lambert 
(1999) derive a value of 1.7 M8 for the mass of Pollux with a 
method very similar to that described above, and Drake & Smith 
(1991) also derive a mass of 1.7 M8 from a detailed model atmo­
sphere analysis. Using this value for the stellar mass would yield a 
minimum mass of 2.7MJup. The error on the minimum companion 
mass due to the error in the knowledge of the primary mass is thus 
about 0.2MJup, so that the total error (including the formal error de­
rived from the orbital fit, see Table 2) amounts to about 0.3MJup . 

Together, the radial velocities cover about 25 years, and the 
variations have been rather consistent over that time. Neverthe­
less, although we consider the interpretation of the observed RV 
changes as the result of an orbiting companion as likely, it is 
possible that another mechanism might cause the observed RV 
variations. In x 3, we take a closer look at the spectral line shapes, 
which might provide further hints at the underlying mechanism. 

3. LINE SHAPE ANALYSIS 

In order to investigate whether the observed RV variations are 
caused by a shift of the spectral lines as a whole (as expected in the 
presence of a companion) or by a change in the symmetry of the 
spectral lines giving rise to a net change in RV (as expected in 
the presence of pulsations), bisectors of the cross-correlation 
profile have been analyzed. We used all spectral lines between 
about 6540 and 9590 8 from 29 spectral orders and obtained an 
average line profile by correlation with a synthetic template ob­
tained from the VALD database (Kupka et al. 1999),1 matching 
the effective temperature and surface gravity of Pollux. The spec­
tral range from about 5000 to 5800 8 could not be used because it 

1 Available at http://ams.astro.univie.ac.at/vald/. 

http://ams.astro.univie.ac.at/vald
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Fig. 3.—Radial velocities from Larson et al. (1993) (open triangles) and Hatzes & Cochran (1993) (asterisks) phased to the period determined from our own measurements 
( filled circles). Our orbital fit is also shown (solid line). No changes in period or amplitude of the periodic RV signal is apparent from that plot. For clarity, no individual error 
bars have been included in the plot. The data in Larson et al. (1993) consist of two separate data sets; data from CFHT have mean internal errors of 12 m s -1, data from DAO 
27 m s -1. The majority of the data points in Hatzes & Cochran (1993) have mean internal errors of around 20 m s -1, while a few data points have mean internal errors of 7 m s -1. 
Note that not all of the measurements in Hatzes & Cochran (1993) have been used; the second set of 13 measurements in their Table 1C is identical to the first 13 measurements 
and thus obviously wrong, so it has been omitted. Errors for the DAO data set from Larson et al. (1993) are rather inhomogeneous and reach up to around 80 m s -1 for 
some measurements, which explains the few data points that seem to be outliers in this graph. [See the electronic edition of the Journal for a color version of this figure.] 

is affected by iodine lines, and the spectral range around 6300 8 
was avoided because it is dominated by strong telluric oxygen 
lines (which give rise to a spurious 1 yr period when included in 
the analysis). Otherwise, as many lines as possible from a con­
tinuous spectral range were used, since it is known (Gray 1983, 
1984) that different lines in the same star can display different 
bisector behavior. 

For the cross correlation with the synthetic template, our indi­
vidual spectra had to be wavelength-calibrated, for which we used 
the thorium-argon exposure that was taken closest in time to 
each spectrum, from either the beginning or the end of the night. 
Altogether, about 1110 spectral lines with theoretical depths be­
tween 0.1 and 0.9 were used for the cross correlation. Of course 
many blended lines are included in the cross correlation, but by 
using many lines we are confident that the effects average out. 
Furthermore, as long as the same lines are used for all obser­
vations, and only variations in the shape are of interest, blends 
by stellar lines do not affect the final result. 

After having obtained the cross-correlation profiles, we deter­
mined bisectors by stepping down the blue side of the profile, 
linearly interpolating the line depth at the red side for the same 
flux level as observed at the blue side (in the center of the 
profile, a parabolic fit was used instead of the linear one), and 
derived the midpoints between the velocities on the blue and red 
side of the profile. The connection of midpoints determined in 
this way is the bisector; see Povich et al. (2001) for more details 
on the method. 

In order to analyze possible variations in the bisector, two 
quantities are defined that characterize its shape: the velocity span 
and the velocity displacement. While the bisector span is the 
difference between the width of the bisector at two different flux 
levels (30% and 75% were used here), the velocity displace­

ment is the average width of the bisector at three different flux 
levels (30%, 60%, and 75% were used). 
Periodograms of both quantities are shown in Figure 4. No 

significant periods whatsoever are present in these periodograms; 
all trial periods have extremely small significance levels. In par­
ticular, no peak is present at the RV period, so that we conclude 
that there is no evidence for any variations in the shapes of the 
spectral lines in our Pollux spectra. 
This finding is consistent with the one by Hatzes & Cochran 

(1998), who also analyzed the bisectors of two different spectral 
lines in their Pollux data without discovering any periodicities 
similar to the RV period (they used 554 days). However, they cau­
tion that low-order nonradial pulsation modes, which might be 
able to account for the observed RV variations, might produce 

Fig. 4.—Periodograms of the derived bisectors. Top: Velocity span. Bottom: Ve­
locity displacement. There are no significant periodicities visible; all trial periods 
have an extremely small probability of being real. The period present in the RV data 
is indicated. [See the electronic edition of the Journal for a color version of this 
figure.] 
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changes in the bisector velocity span of only 5 to 20 m s -1. While  
we estimate the errors in a single bisector velocity span to lie be­
tween 50 and 100 m s -1 in our analysis (50 m s -1 in the analysis of 
Hatzes & Cochran 1998), the sensitivity to a real periodic signal in 
the data increases if one uses a large number of spectra for the 
periodogram, to about the relevant level. However, we conclude 
that nonradial pulsations cannot be completely ruled out with the 
observational material or analysis methods currently available. 

4. CONCLUSIONS 

The currently available data on Pollux are all compatible with 
an orbiting substellar companion around this bright and nearby 
star. The minimum mass of the companion is 2:9 ± 0:3 MJup, 
which makes it most likely a planet and not a brown dwarf. From 
the nondetection of the companion in the Hipparcos data, one can 
derive an upper limit on the companion mass, since it would have 
been detected by Hipparcos if it had been massive enough. The 
lower limit on the inclination that we derive from Hipparcos is 

°about 5 , which translates into an upper mass limit of 33MJup , 
constraining the companion to be of substellar nature (if the 
companion interpretation of the RV pattern is correct). Its period is 
589:7 ± 3:5 days, and it orbits at a distance of 1:69 ± 0:03 AU 
from the star in an almost circular orbit. The RV pattern has been 
stable over the last 25 years. An analysis of the spectral line shapes 
shows no evidence for any changes with the RV period nor any 
other periods, which one might expect in the presence of pulsa­
tions. Hipparcos has picked up excess scatter in the astrometric 
standard solution (without a companion), but it is unlikely that this 
is the signature of the planetary companion, since its expected 
minimum astrometric signature is only 50 pas. 

Detailed theoretical predictions of the expected amount of bi­
sector asymmetry in the presence of nonradial g- or  r-mode pul­
sations in giant stars are currently not available. However, the 
numerical simulations conducted by Hatzes (1996) show that it 
is in principle possible to explain the observed RV variations in 
Pollux by low-order nonradial pulsation modes, while the ac­
companying bisector variations would be too small to be detected 
with current techniques (Hatzes & Cochran 1998). This is the 
main reason why some last doubt remains about the interpre­

tation of the RV variations in terms of an orbiting companion, 
even if it would be a bit surprising to find only one single long-
period pulsation mode. Note that the small eccentricity that we 
find (0:06 ± 0:04) is barely significantly different from zero, so 
that it cannot be used to rule out pulsations as the reason for the 
observed RV variations as has been done for highly eccentric 
giant star orbits (Frink et al. 2002). 

In contrast to that, rotational modulation of starspots can be 
excluded as the reason for the observed RV changes, since other­
wise some photometric variability larger than the microvariability 
actually seen should have been detected by Hipparcos. Also, it 
would be difficult to explain how a single or several starspots 
could produce RV variations that are so close to sinusoidal over 
the rotation period, as well as being stable over the last 25 years. 

We conclude that while evidence is accumulating and com­
pelling for an orbiting planet around Pollux, the final confirmation 
has to await a theoretical prediction of the amount of spectral line 
asymmetry in the presence of nonradial g- or  r-mode pulsations in 
giant stars, much increased sensitivity in bisector analyses or 
photometry, or the detection of the companion with indepen­
dent techniques such as, e.g., precise astrometry. 

After this paper was first submitted we learned of the similar 
paper by Hatzes et al. (2006). Hatzes et al. (2006) present 55 new 
radial velocity measurements of Pollux with mean internal er­
rors between 11 and 17 m s -1 taken between 1998 and 2006 and 
analyze them together with the older data sets by Larson et al. 
(1993) and Hatzes & Cochran (1993), also used in the present 
paper. Their orbital elements are in excellent agreement with the 
ones derived here, and both papers arrive at the same con­
clusions regarding the interpretation of the observed RV peri­
odicity in terms of an orbiting planetary companion. 

We kindly thank the staff at Lick Observatory for their out­
standing dedication and support, as well as our referee, Gordon 
Walker, for helpful comments on the manuscript. This research 
has made use of the Vienna Atomic Line database (VALD) lo­
cated at http://ams.astro.univie.ac.at/vald/. 
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