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Abstract— With the ever-increasing demand for the safety and 
functionality of civil infrastructures, structure health monitoring 
(SHM) has now become more and more important. 

Recent developments in computational intelligence and digital 
signal processing offer great potentials to develop a more 
efficient, reliable, and robust structure damage identification 
system. In this paper, the application of artificial neural networks 
and wavelet analysis is investigated to develop an intelligent and 
adaptive structural damage detection system. The proposed 
approach is tested on an IASC (International Association for 
Structural Control)–ASCE (American Society of Civil Engineers) 
SHM benchmark problem. Satisfactory computer simulation 
results are obtained. 

I. INTRODUCTION 

Civil infrastructure plays an important role in a nation’s 
economic prosperity and has a great impact on our daily lives. 
With the ever-increasing demand for the safety and 
functionality of civil infrastructures, structure health 
monitoring (SHM) has become more and more important. 

In general, structural damages can be detected by routine 
check-ups via human visual inspections. This traditional, labor-
intensive method requires large amount of manpower, and it is 
only effective in detecting severe damages that are visible and 
near the structure surface. In a modern non-destructive 
evaluation (NDE) SHM system, the raw measurement data 
from the wireless sensors that are mounted on buildings or 
bridges are automatically transmitted to a central information 
processing unit in real-time. The information processing unit 
(which is the most important component of the SHM system) 
determines the status or the health condition of infrastructures 
based on the analysis of the data stream from sensors ([1]). In 
fact, the major component of the information processing unit is 
a signal assessment algorithm. 

There are two distinctly different approaches for real time 
automatic structure damage detection; i.e., the model based 
approach and the non-model (or model-free) approach. In the 
former, a precise mathematical model of the civil infrastructure 
must be developed in advance, usually with the assumption that 
the system under study is linear and time-invariant. This 
approach is based on the fact that any physical structural 
damage often results in changes in system parameters and shift 
of pole locations in complex plane. Damage diagnosis can then 

be performed by studying the changes of the structure’s 
dynamic characteristics such as natural frequency, stiffness, 
and damping ratio, etc. ([2]) A similar and related method is to 
identify the pole locations of the transfer function of the 
structure in current status and then compare them with the ones 
of the same structure in intact mode ([3]). 

The model-free approach does not require a priori 
knowledge on the structure’s parameters; instead, it directly 
relates the sensor data from an instrumented structure with the 
causes and locations of damage patterns ([4]). It is known that 
structural damage results in changes on structure vibration 
dynamics which can be recorded by various types of sensors, 
including strain gages, accelerometers, and displacement 
transducers. Many damage detection studies focus on the 
analysis of the time history data collected from sensor 
measurement ([5], [6], and [9]). This approach does not rely on 
an accurate mathematical model so it is more flexible and 
suitable for real-time damage detection. However, how to 
extract the “best” (or the most appropriate) feature from the 
measurement time history data still remains as an open 
question. In addition, the short-term and non-stationary nature 
of the system transient response requires advanced signal 
processing techniques to characterize and classify different 
damage patterns. 

In modern signal processing, wavelet transform is a 
mathematical tool for multi-resolution analysis. Multi-
resolution analysis can analyze the different frequency 
components of a signal with different levels of details, and thus 
is an effective way to extract information from non-stationary 
signals. Recently, wavelet transform has been employed to 
identify the singularity (abnormality) of structural dynamic 
responses ([5], [6]) and vibration mode shapes ([7]). Wavelet 
analysis is well suited for the application of SHM to identify 
sudden changes or spikes in vibration signals. With multi-
resolution, damages can be more accurately located by 
analyzing the signal waveforms in a finer scale; and the 
severities of damages can be further identified by comparing 
the values of their wavelet transform coefficients. Also, 
measurement data is often contaminated with noise, which 
makes damage detection very difficult. An additional 
advantage of wavelet transform is that the thresholding 
technique (also called wavelet shrinkage) can be applied on 
wavelet coefficients for noise reduction. However, the “direct” 
wavelet decomposition for damage detections may still fail to 
respond when the measurement signal is corrupted with strong 
interference and/or noise, i.e., with a low signal-to-noise ratio 



    
  

  
   

 

   
   

  

  
  

 
 

 

   
  

     
 

 
  

     
   

   
  

  

 
 

 
   

  
   

    
  

   
    

   
    

   
 

   
 

   
 

 

    
 

  

  

   
 

   

   
 

  

   
 

 
  

  

  
  

   

 

 

 
 

   
 

  
  

   
  

  

 

 
 

  

(SNR), especially when the structural change or damage is 
gradual. 

Artificial neural networks (ANN) have been successfully 
applied to solve pattern recognition and classification problems 
in recent years. ANN has many important properties, such as 
adaptive learning, distributed association, and nonlinear 
mapping. In ANN, learning is achieved by adjusting the 
connections (weights) in the network to minimize a specific 
performance index (e.g., the mean square error at its output). 

Recently, artificial neural networks have also been 
employed to detect damage for structural health monitoring. In 
[4], a multi-layer feedforward neural network is trained to 
relate the frequency response function (FRF) characteristics 
and the damage location/severity. 

In this research, we propose a hybrid damage detection 
scheme which combines wavelet analysis and artificial neural 
networks together to improve the reliability of an adaptive 
structure health monitoring system. Wavelet transform is 
employed to extract the underlying features of the transient 
response from measurement data; then these feature vectors are 
employed as the input of the artificial neural network in which 
damage patterns can be further identified and classified. The 
proposed approach is applied and tested on an IASC 
(International Association for Structural Control) – ASCE 
(American Society of Civil Engineers) SHM benchmark 
problem via computer simulation. 

The rest of the paper is organized as follows. First, a brief 
discussion on wavelet analysis is given in section 2; then the 
wavelet-neural network approach for structural damage 
detection is presented in section 3. In section 4, this approach is 
applied to the IASC-ASCE benchmark structure and computer 
simulation results are presented. Section 5 concludes the paper 
and also gives directions for future works. 

II. THE WAVELET TRANSFORM 

Wavelet analysis is a mathematical tool that decomposes 
data into different frequency components, and then studies each 
component with a different (time) resolution ([8]). The wavelet 
transform can be reviewed as the inner product, or the cross-
correlation of a signal with a set of wavelets of various 
“widths” and scales. These wavelets are generated from a 
single function (known as the “mother wavelet”) with different 
translation (or shift) factors/coefficients and dilation (or scale) 
factors/coefficients. Wavelet analysis has many advantages 
over traditional Fourier methods due to its multi-resolution 
property, especially when analyzing signals that contain 
discontinuities and/or sharp spikes. 

A mother wavelet function ψ (t) is a basis function with 
finite energy function that should satisfy the two following 
criteria: 

³
∞ 

−∞ 
= 0( )ψ t dt    (1)  

and 

³
∞ 

−∞ 
dt < ∞t 2( )ψ    (2)  

The continuous wavelet transform (CWT) of a function f(t) 
is defined as: 

*Ψψ [ f (s,τ )]= 
∞ 

³ f (t)ψ s,τ ( )t dt (3) 
−∞ 

where ψ s ,τ ( )t represents the family of wavelets and the “*” 
represents the operation of complex conjugate: 

1 § t −τ · ψ s,τ (t) = ψ ¨ ¸   (4)  
s © s ¹ 

where τ is the dilation coefficient and s is the translation 
coefficient. 

For computational purpose, discrete wavelet transform 
(DWT) is often used. The family of discrete wavelets 
ψ (t) can be written as: m,n 

−m / 2 −mψ (t) = 2 ψ (2 t − n)   (5)  m,n 

where m and n are integers for indices. 
DWT can be implemented using a series of high- and low-

pass filters. When the signal passes through a high-pass filter 
h, it yields detail coefficients. When it passes through a low-
pass filter g, it yields approximation coefficients. The level of 
decomposition can be repeated, as shown in Fig. 1.  

Fig. 1. The discrete wavelet transform (DWT) ([11]) 

The most commonly used set of discrete wavelet 
transforms is the Daubechies wavelets ([12]). Daubechies 
wavelets have been widely used in solving a broad range of 
problems and are especially suitable for detecting signal 
discontinuities. In this research, Daubechies 4-tap wavelets 
(D4) is employed (Fig. 2). 

Fig. 2. The Daubechies 4-tap (D4) wavelets ([12]) 



    
   

   
    

  
  

 
  

    
    

 
  

   
  

 

 

 
 

 

 
 

  
 

 

    
     

     

  

  
 

 

   

 
 

   
   

     
  

   
     

 
 

   
  

      
  

 

 
 

   
 

 

 

 
   

 

  

 
 

     
 
 

  
 

  

 
  

   

 
 

  
  

 
  

 

   

   
   

 
 

  

III. THE WAVELET-NEURAL NETWORK APPROACH 

The overall proposed structure health monitoring system is 
shown in Fig. 3. First, raw measurement data from sensors are 
obtained and pre-processed. This process includes data 
interpolation and/or re-sampling if needed, as well as basic 
filtering techniques (e.g., high-pass or low-pass filters) for 
noise reduction. After pre-processing, wavelet transform is 
applied to extract features from vibration signals. By 
appropriate thresholding, the noise and interferences in the 
signal can be further reduced. The feature vectors (wavelet 
coefficients) are then become the inputs of an artificial neural 
network which determines whether the structure is damaged. 
Note that with the application of ANN, the proposed intelligent 
SHM system yields an important property of adaptive learning; 
that is, it can learn, or update itself, from new sensor 
measurements continuously if desired. 

Fig. 3. The wavelet-neural network approach 

A multi-layer feedforward neural network is employed in 
this research. All the weights are updated using the 
Levenberg-Marquardt algorithm to minimize the following 
objective function: 

1 N 1 N 

J = ¦[e(i)]2 = ¦[d (i) − y(i)]2 (6)
2N i=1 2N i=1 

where d is the desired output and y is the output of neural 
network; e is the output error; i is the index of training pair; and 
N is the batch size (N = 1 for online or incremental training). 

W( k +1) = W( k ) + ΔW   (7)  
T −1 TΔW = ( J J + μI ) J e   (8)  a a a 

where J is the first order derivative of the error function a 
with respect to the neural network weight matrix (also called 

∂e
the Jacobian matrix) ; μ is a learning parameter; and k

∂W 
is the index of iterations. 

IV. COMPUTER SIMULATION RESULTS 

In this research, the proposed approach is applied and tested 
on an IASC (International Association for Structural Control) – 
ASCE (American Society of Civil Engineers) SHM benchmark 
problem. This benchmark study was conducted by the IASC– 
ASCE SHM Task Group based on a laboratory scale prototype 
structure, which is a four-story steel-frame quarter-scale model 
in the Earthquake Engineering Research Laboratory at the 
University of British Columbia (Fig. 4). Finite element models 
based on this structure were derived to generate the simulated 
response data, which can then be used as a basis of comparison 
to test different SHM systems. In addition to the undamaged 
structure, the benchmark problem also includes six different 

damage patterns ([10]). This benchmark study provides a 
testbed for comparing various damage detection techniques and 
has been employed by many researchers in recent years ([6], 
[9]). 

Fig. 4. The IASC–ASCE SHM benchmark model ([10]) 

A. Signal Decomposition and Wavelet Coefficients 
The first row in Fig. 5 shows the signal measured by the 

acceleration sensor when beam 4 of the structure is damaged 
(the total signal time duration is 4 seconds and the damage 
occurs at about t = 2 second). The raw sensor signal is 
contaminated with Gaussian white noise (due to wind); thus a 
sixth order Butterworth low-pass filter with a cut-off (3 dB) 
frequency of 100 Hz is employed for pre-filtering. Obviously, 
it is difficult to detect damage by observing the waveform (in 
the first row of Fig. 5) directly without any signal processing 
technique. 

The next 6 rows in Fig. 5 show the Daubechies (D4) 
wavelet transform decomposition at different levels. The last 
(the 7th) row shows the level 1 detail coefficients; while the 6th, 
5th, and 4th row shows the detail coefficients of level 2, 3, and 
4, respectively. Note the detail and approximate coefficients of 
level 5 are shown in the 2nd and the 3rd row; and we can 
conclude from Fig. 5 that the approximate coefficients of level 
5 decomposition are suitable for damage detection. 

B. The Neural Network Configuration 
To determine the appropriate size of the neural network, 

various tests are conducted. In this research, only one output 
neuron is needed to indicate whether there is a structural 
damage (“1” for the case of damage and “0” for the 
undamaged case, with a threshold of 0.5). However, the 
number of inputs, the number of hidden layers and the number 
of neurons in each hidden layer may vary. 

The inputs of the neural network are the level 5 wavelet 
transform coefficients which must be in the power of 2. Four 
different networks are tested; each one of them has 8, 16, 24, 
and 32 inputs, respectively. Although the network with larger 
number of inputs seem to yield higher accuracy during 
training phase, the improvement is not significant and the 



 

 
 

 
 

 
 

    
 

  
  
   

 
  

 
 
 
 

   
 

 

 
 

  
 

  

   
 

  
 

  

  
 

  
 
 

 
 

 
 
 
 
 

 

 

 

 
 

 

 
 

 

   
   

 

  

 
 

 
 

 
 

 
 

   
 

  
 

  
  

  
   

 

 
 

     
  

  
  

 

MSE (mean-square-error) in testing phase may even increase -
an indication of over-fitting. It is observed that the network 
with 16 inputs yields a low MSE during training and the 
lowest MSE in testing phase; therefore we choose the number 
of inputs to be 16. 

Fig. 5. Wavelet coefficients at different levels 

Next, the number of hidden neurons needs to be 
determined. A network with one hidden layer is considered 
here and the number of hidden neurons is varied (considering 
the case of 10, 20, 40, and 80 hidden neurons). Computer 
simulation results show that the network with 20 hidden 
neurons results a low training MSE and the best testing MSE. 

Finally, the optimal number of hidden layers needs to be 
determined. We consider the case of 1, 2, 4, and 8 hidden 
layers (with 20 hidden neurons in each layer). Simulation 
results show that when there are 4 hidden layers in the 
network, the network yields the lowest MSE in both training 
and testing phases. 

From the above discussion, we conclude the most 
appropriate size of neural network for this research is a 
feedforward network with 4 hidden layers and 20 hidden 
neurons in each layer. The activation function of the output 
neuron is linear while the activation function of hidden 
neurons is the hyperbolic tangent function: 

1− e− x 

f (x) = −x	 
   (9)  

1+ e 
When training the neural network, a “sliding window” 

technique is employed. That is, after the first set of data points 
is used to find wavelet coefficients, the “window” (with the 
same size) is shifted by K points to obtain the next set of data 
points for wavelet decomposition (overlapping with the 
previous data sets). This ensures that there is enough data for 
both training and testing of the neural network. 

C.	 Test Results 
The above "optimized" neural network now can be applied 

for damage detection. To evaluate the performance of the 

wavelet-neural network approach, two different damage cases 
are considered, i.e., 

Case 1:  All braces on 1st story broken 
Case 2:  All braces on 1st and 3rd story broken 
The simulation results are listed in Table 1. In training 

phase of damage case 1, among 621 different 
damaged/undamaged data sets (about 50% each, i.e., 311 
undamaged sets and 310 damaged sets), only 3 of them are 
misclassified; in other words, the correct classification rate is 
99.52%. Once the neural network is fully trained, its 
performance is tested on a different dataset (also about 50% 
each of damaged/undamaged data sets). In testing phase, 28 
out of 621 sets are misclassified; that is, the correct 
classification rate is about 95.49%. Similar results can be 
obtained with damage case 2, with the percentage of correct 
classification of 99.03% for training and 96.78% for testing. 
From these results, we conclude that the proposed wavelet-
neural network approach can successfully detect structural 
damage. 

Table 1. Test Results 

Case 
Training Testing 

Incorrect 
classification 

% 
Correct 

Incorrect 
classification 

% 
Correct 

1 3 99.52 28 95.49 
2 6 99.03 20 96.78 

D.	 Discussion 
The wavelet transform in this approach serves for two 

purposes. It not only provides inputs to the neural network, but 
also reduces noise (via thresholding). The neural network 
performs the task of pattern recognition (damage detection); in 
addition, its fault tolerance and extrapolation ability also help 
to further attenuate the effect of noise in sensor measurement 
data. The simulation results show the combined wavelet-
neural network approach is promising and has great potentials 
for structural damage detection. 

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, a hybrid wavelet-neural network approach for 
structural damage detection is discussed and applied to an 
IASC-ASEE benchmark structure. Computer simulation results 
show this approach can successfully detect damage with 
satisfactory accuracy (95.49% and 96.78% for the two testing 
damage patterns). Further evaluation and testing (on more 
damage patterns) will be conducted. 
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