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A phonon often is described as ‘‘a quantum of lattice vibration,’’ but this description can be difficult 
to reconcile with the wave functions explored in a typical undergraduate quantum mechanics class. 
A phonon wave function is similar to the harmonic oscillator wave functions studied in introductory 
quantum mechanics, except that it is many-dimensional. We suggest a way to visualize the 
probability density for this very high-dimensional wave function. The resulting pictures are 
especially clear and intuitive for a coherent state, which is both a good approximation to a sound 
wave and a discrete analog to laser light. These pictures can also provide a qualitative introduction 
to quantum field theory. 
I. INTRODUCTION 

Phonons and quantum field theory are usually regarded as 
graduate topics but undergraduate students often are curious 
about them. The goal of this article is to give a semi-
quantitative introduction to these topics at a level appropriate 
for the final weeks of an introductory quantum mechanics 
class. At this level, students are comfortable with one-
dimensional wave functions and may have been introduced 
to higher dimensional wave functions. This article takes this 
background into account and presents a phonon or a quantum 
field as simply another wave function, albeit a wave function 
of many coordinates instead of the usual one, two, or three. It 
is challenging to visualize a function in more than three di
mensions, but we claim that some intuition can be gained by 
looking at groups of one- and two-dimensional projections of 
such functions. A related series of pictures can be generated 
by the software in Ref. 1. 

Understanding Fig. 18 is the key to our visualization tech
nique. It shows a propagating coherent state of the phonon 
field. Most of this article up to this point describes the vari
ous concepts and techniques used to generate this figure. 
First, the analysis of a two-particle coupled harmonic oscil
lator system is given using our visualization scheme, both 
classically and quantum mechanically. This system is consid
ered to establish our notation and to illustrate the idea of 
using multiple projections of a function to visualize it. Then, 
an eight-particle lattice is analyzed in detail, emphasizing 
some of the very interesting states of this system and culmi
nating in Fig. 18. Some other interesting states of the eight-
oscillator system are then discussed and a comparison is 
made to a quantum field. 

II. A TWO-PARTICLE SYSTEM 

A system of two coupled harmonic oscillators makes an 
excellent system for demonstrating many phonon concepts 
because this system can be thought of as a very small �two
particle� lattice. In particular, it demonstrates normal mode 
decomposition and how the wave functions are separable, 
and hence much simpler, when expressed in normal mode 
coordinates. Best of all, the probability density of the entire 
wave function in position space can be fully visualized, so 
that we can develop some intuition about projections onto 
the one-dimensional position or normal mode axes. An ex-
cellent treatment of this system is given in Shankar.2 
� � � � � �

� � � � � �

We first do a classical analysis. The system is shown in 
Fig. 1. Each mass is constrained to move vertically, and we 
consider only small oscillations so that this system is a 
coupled pair of one-dimensional �1D� harmonic oscillators. 
Vertical oscillations are chosen because they correspond di
rectly to the axes of our plots. The position coordinates of the 
masses are q1 and q2 . The momenta, which are directed 
vertically along each coordinate, are denoted as p1 and p2 , 
respectively. The masses of the two particles are assumed to 
be identical, m , and the spring constants are also identical, �. 

The key to analyzing this system and to understanding its 
behavior is to use normal mode coordinates, denoted by the 
upper-case letters Q1 and Q2 . For this system, they are 

1 
Q1� �q2�q1 �, �1a� 

& 

1 
Q2� �q2�q1 �. �1b� 

& 

The momentum coordinates conjugate to Q1 and Q2 are P1 

and P2 , and are related to the momenta of each mass by a 
similar set of equations, 

1 
P1� � p2�p1 �, �2a� 

& 

1 
P2� � p2�p1 �. �2b� 

& 

In position coordinates the equations of motion are coupled 
as indicated by a nondiagonal force matrix in the equation of 
motion, 

2�/m ��/m q1 q̈ 1
�m �0. �3� 

��/m 2�/m q2 q̈ 2 

In normal mode coordinates, however, the equations of mo
tion are not coupled as indicated by the diagonal force ma
trix, 

�/m 0 Q1 Q̈ 
1

�m �0. �4�
0 3�/m Q2 Q̈ 

2 

This is the reason for introducing and using normal mode 
coordinates—each of the normal modes can be treated as if it 



Fig. 1. A two-particle system, showing the position coordinates q1 and q2 of 
the two masses �dots�, which are constrained to move vertically, connected 
by springs. 

were an independent, one-dimensional harmonic oscillator. 
Figure 2 shows three ways of plotting the configuration of 

this system at any time. The pair of one-dimensional q1 and 
q2 axes on the left simply gives the location of each of the 
masses. �The horizontal line crossing both axes indicates the 
origin or equilibrium position.� The two-dimensional plot in 
the center specifies the location of both masses with a single 
point. The pair of plots on the right gives the projection onto 
each of the normal mode axes. These three views will be 
used consistently to visualize the two-oscillator system in 
this section. 

It is helpful to look at a few examples of configurations 
plotted on these axes, as given in Fig. 3. In Fig. 3�a�, for 
example, the dot lies along the Q1 axis and the system is in 
one of its two normal modes. The projections onto q1 and q2 
show that in this normal mode, both masses are displaced 
identically. The projections onto Q1 and Q2 show that the 
system is only in normal mode 1. In this mode, the dot on the 
two-dimensional �2D� plot will oscillate only along the Q1 
axis about the origin and the masses will oscillate in unison 
about the equilibrium positions. Figure 3�b� shows the other 
normal mode, where the masses oscillate against each other. 
Figure 3�c� shows only mass 2 being displaced. The time 
evolution from this initial displacement will not be a simple 
oscillation like a normal mode, but a more complex motion 
that is a superposition of the two normal modes. 

We next analyze this system quantum mechanically. We 
seek state vectors ��(t)� that satisfy the Schrödinger equa
tion 

d 
i� ��� t ���Ĥ ��� t ��, �5�

dt 

where Ĥ is the Hamiltonian operator. In position coordinates, 
the Hamiltonian is 

p̂ 1
2 p̂ 2

2 1
ˆ � 2 2H � � m�2� q̂ 1� q̂ 2�� q̂ 1� q̂ 2�2� , �6�

2m 2m 2 

Fig. 2. Three views of the two-dimensional space formed by q1 and q2 . The  
center view shows the single point in this space which gives the locations of 
both masses. The position axes q1 and q2 are shown as solid lines and the 
normal mode axes Q1 and Q2 are shown as dashed lines. The left view 
shows its projection onto the q1 and q2 axes, and the right view onto the 
normal mode axes Q1 and Q2 . 
� � � �
 
� � � � 

Fig. 3. Plot of the system in each of its two eigenmodes �a� and �b�. The 
amplitudes of the displacements are arbitrary. �c� The system with one mass 
displaced but the other at its equilibrium position. 

where �2��/m . To make the transition from the classical to 
the quantum mechanical analysis of the same system, the 
position and momentum coordinates are changed to opera
tors as indicated by the caret. For example, q̂ 1 is the operator 
corresponding to the coordinate q1 . 

The Hamiltonian, as written in position coordinates in Eq. 
�6�, does not give a separable Schrödinger wave equation 
because of the ( q̂ 1� q̂ 2)2 term. However, in normal mode 
coordinates, 

2 2ˆ ˆP P 1 12 2Ĥ � 
1 

� 
2 

� m�1
2 Q̂ � m�2

2 Q̂ 
2 , �7�12m 2m 2 2 

it does give a separable wave equation. Here, �1
2��/m and 

�2
2�3�/m are the eigenvalues for normal mode coordinates 

Q1 and Q2 , which are the eigenmodes of the system. 
Because the wave equation separates in normal mode co

ordinates, these coordinates are the easiest to use. Solutions 
to the Schrödinger equation for this system can be written as 
simple products of the familiar one-dimensional harmonic 
oscillator states. For example, the ground state of the system 
is the product of ground state wave functions for Q1 and for 
Q2 , 

��Q1 ,Q2 ���0� Q1 ��0�Q2� 

m�1 
1/4 m�1Q1

2 

� exp � 
�� 2� 

1/4 2 m�2 m�2Q2 
� exp � 

�� 2� 

��Q�0,0� . �8� 

The last line uses Dirac notation. The state vector, or ket, is 
written as �0,0�, which is of the form �n1 ,n2�, where n1 and 
n2 indicate the energy eigenstate of the wave function along 
Q1 and Q2 respectively. Hence, �0,0� means that n1�0 and 
n2�0 and the system is in its ground state along both normal 



�� 
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axes. This state vector exists in an infinite-dimensional Hil
bert space and can be projected onto any set of basis vectors 
that span the space, such as an energy basis, a coordinate 
basis, or a momentum basis. One such set of coordinate basis 
vectors corresponds to the infinite set of points on the 
Q1 – Q2 plane and is represented by the shorthand notation 
�Q�. The Hilbert space projection �Q�0,0� gives the two-
dimensional wave function �(Q1 ,Q2). Note that all the 
other projections in this section are done in this 2D coordi
nate space, not in the Hilbert space. 

Note that the one-dimensional harmonic oscillator states 
do not lie along the position coordinates q1 and q2 , but 
along the normal mode coordinates Q1 and Q2 . Thus, it is 
easy to project the two-dimensional total probability density 
onto the one-dimensional Q1 and Q2 axes, 

P�Q1����0�Q1 ��2. �9� 

It is not so easy, however, to project it onto the q axes, 

P�q1 �� � ��� Q1 ,Q2��2 dq2 . �10� 

Typically, this integration must be done numerically. For the 
plots in this section, the numerical integration is done using 
the standard trapezoid method. For the plots in Sec. III, it is 
done using a Monte Carlo method. 

As for any one-dimensional harmonic oscillator, we can 
define raising and lowering operators �also called creation 
and annihilation operators�. Each normal mode coordinate 
has one raising and one lowering operator, 

Â 
1 
†��m�1 

2� 
Q̂ 

1�i� 1 

2m�1� 
P̂ 1 , �11a� 

Â 
1��m�1 

2� 
Q̂ 

1�i� 1 

2m�1� 
P̂ 1 , �11b� 

Â 
2 
†��m�2 

2� 
Q̂ 

2�i� 1 

2m�2� 
P̂ 2 , �11c� 

Â 
2��m�2 

2� 
Q̂ 

2�i� 1 

2m�2� 
P̂ 2 . �11d� 

The action of these operators on a ket is to raise or lower one 
of the n values, the energy eigenstate of the corresponding 
mode, 

Â †�n1 ,n2���n1�1�n1�1,n2�, �12a�1 

Â 
1�n1 ,n2���n1�n1�1,n2�, �12b� 

Â †�n1 ,n2���n2�1�n1 ,n2�1�, �12c�2 

Â 
2�n1 ,n2���n2�n1 ,n2�1�. �12d� 

A few examples are Â †�0,0���1,0�, Â †Â †�0,0��&�2,0�,1 1 1 

(Â †)3�0,0���6�3,0�, Â 
1�4,1��2�3,1�, Â †�2,8��3�2,9�,1 2 

and Â 
2�3,0��0. 

The quantum mechanical version of this system can be 
visualized using the same sets of coordinates as the classical 
version. Instead of plotting a single point on each plot, the 
probability density is plotted at each point using a gray scale. 
Figure 4 shows four examples. Figure 4�a� shows the ground 
state for the two-particle system as a whole, given explicitly 
by Eq. �8�. Each of the other plots is an excited state. For 
Fig. 4. Probability densities of four states of the two-particle system, �a� 
�0,0�, �b� �0,1�, �c� �1,0�, and �d� �1,1�. 

each state, the center, two-dimensional plot is the most com
plete representation of the probability density function. It has 
the disadvantage, however, that such a plot cannot be made 
for functions of higher than three dimensions. The other sets 
of one-dimensional plots do not give as much information 
and are probably not as easy to interpret, but they can be 
easily adapted to visualizing higher-dimensional functions. 
This feature of the one-dimensional projections is the reason 
we use them to visualize the many-dimensional phonon 
wave function considered in Sec. III. 

The projections onto the position axes �the left-hand plots� 
give the probabilities of finding masses 1 and 2 at various 
locations along the position coordinates q1 and q2 . The hori
zontal width of these plots has no physical meaning and is 
chosen to make the probability densities easy to see. The 
projections onto the normal mode axes Q1 and Q2 �the right-
hand plots� are similar except they usually lack the intuitive 
explanation of the q1 and q2 projections. For this system, the 
Q1 projection gives the probability density for the center of 
mass of the system because Q1�1/&(q1�q2); the Q2 pro
jection gives the probability density for the relative coordi
nate 1/&(q1�q2). In these plots, it is clear that the com
plete wave function is a product of functions along the 
dashed Q1 and Q2 axes, not the solid q1 and q2 axes. 

All the states shown in Fig. 4 are eigenfunctions of this 
system, so they do not vary with time. The superpositions of 
these states, however, will change with time. 

Figures 5 and 6 show the time evolution of a particularly 
interesting type of state for harmonic oscillator systems, a 
coherent state. This state is a superposition of an infinite 
number of two-particle eigenfunctions 



Fig. 5. Time evolution of a classical state of the two-particle system. In this 
state, the two masses are oscillating in synchronization in one of their eigen
modes. 

Fig. 6. Time evolution of a classical state of the two-particle system, shown 
at a different time scale than Fig. 5. In this eigenmode, the two masses 
oscillate against each other. 
� 

� 

Fig. 7. Probablilty density for q̂ 1
†�0,0�. 

���2 �n 
†��Q1 ,Q2 ���Q�exp� � � � � Â 
1 �

n�0,0�
2 n�0 n! 

���2 �n 

�exp� � � � �n�Q1 ��0� Q2 �,
2 n�0 �n! 

�13� 

where �n(Q1) is the nth excited 1D harmonic oscillator 
wave function, evaluated along coordinate Q1 , and � is a 
constant specifying the amplitude of oscillation. �See Ref. 3 
for other excellent illustrations of this type of state.� These 
states feature a single peak that is a Gaussian along any 
eigenmode axis and that stays Gaussian as it moves in an 
elliptical orbit around the origin. They are often called clas
sical states because the center of the peak follows the trajec
tory of a classical particle. 

This particularly strong correspondence between the time 
evolution of a quantum mechanical wave function and the 
motion of a classical particle makes coherent states particu
larly useful for demonstrating the transition from classical to 
quantum mechanical models of systems. For example, Fig. 5 
shows a state that corresponds to the classical oscillators os
cillating in synchronization, like Fig. 3�a�. The q1 and q2 
plots show the particles oscillating in synch with each other 
and the Q1 and Q2 plots show that only one eigenmode is 
excited. Figure 6 shows an oscillation corresponding to the 
other classical eigenmode where the two masses oscillate 
against each other, like Fig. 3�b�. The q1 and q2 plots again 
show this behavior in an intuitive way. 

Another interesting wave function is generated by the op
erator q̂ 1 , which can be calculated from the coordinate trans
forms of Eq. �1�. The resulting state q̂ 1�0,0� is shown in Fig. 
7. This plot is similar to Fig. 4�c�, which shows the state 
Q̂ 

1�0,0� . In particular, the q1 – q2 plots for q̂ 1�0,0� look like 

the Q1 – Q2 plots for Q̂ 
1�0,0�. There is a significant differ

ence between these states, however. Because �Q�Q̂ 
1�0,0� is 

an eigenfunction of the system, it is constant in time, but 
�Q�q̂ 1�0,0� is not an eigenfunction so it will change with 
time. Most notably, the two-peak pattern in the q1 – q2 plots 
is not constant. 

The main point of this section is to demonstrate in a visual 
way the requirements for plotting a system of two particles 
moving in one dimension. It requires a two-dimensional 
space to show the complete probability density, but some 
insight can be gained from groups of 1D projections. The 
two sets of axes that are most useful for projections are the 
position coordinate axes q1 and q2 and the normal mode 
coordinate axes Q1 and Q2 . 

III. AN EIGHT-PARTICLE LATTICE 

extended to higher dimensions to show the lattice vibrations 
The visualization techniques introduced in Sec. II can be 



Fig. 8. The eight-particle system of harmonic oscillators connected by 
springs of spring constant �. All masses are constrained to move vertically 
along the coordinates q1 through q8 . Mass 8 is connected by a spring to 
mass 1, as if the masses were arranged in a ring, giving periodic boundary 
conditions. 

of a crystal �that is, phonons�. As with the two-particle os
cillator, we first consider the classical case. A system with 
eight oscillators is shown in Fig. 8. This system has periodic 
boundary conditions, which is a popular choice4–6  for dem
onstrating propagating waves. The masses and the spring 
constants are all identical. The position space coordinates are 
q1 through q8 and are collectively referred to as qx where the 
index x ranges from 1 through 8. The momenta of the 
masses, which are directed vertically along each axis, are p1 

through p8 or collectively px with x ranging from 1 through 
8. 

As with the two-particle problem, the key is to find the 
normal modes. The normal mode coordinates we will use are 
given by discrete cosine or sine transforms, 

8 
1 � 

Qk� � qx cos kx �k�0,1,2,3,4 �, �14a� 
x�1 �8 4 

8 
1 � 

Qk�� � qx sin kx �k��1,�2,�3 �, �14b� 
x�1 �8 4 

and are collectively referred to as Qk . A positive k value 
indicates a ‘‘cosine mode’’ and a negative k value indicates a 
‘‘sine mode.’’ Modes with identical �k� are degenerate; they 
have identical energies and frequencies. For example, the 
cosine mode Q1 is degenerate with the sine mode Q�1 . 
These normal mode coordinates are similar to, but distinct 
from, the more commonly used coordinates based on a dis

8 i�/4kxcrete Fourier transform QF ,k�� (1/�8) qxe . Thex�1 
Fourier modes are linear combinations of the modes we use, 
QF ,1�(1/&)(Q1�iQ�1) and QF ,�1�(1/&)(Q1�iQ�1). 
Conversely, our modes are linear combinations of the Fourier 
modes, Q1�1/&(QF ,1�QF ,�1) and Q�1�i/&(QF ,1 

�QF ,�1). Fourier transform modes are complex, which 
makes them easier to manipulate than the pair of sine and 
cosine modes, but also makes them more difficult to plot. 
Because the goal of this article is to demonstrate phonon 
modes graphically, we have chosen the pure real sine and 
cosine modes. 

The conjugate momenta �see the discussion on momenta 
below� for these normal mode coordinates have nearly iden
tical transforms, 

8 
1 � 

Pk� � px cos kx � k�0,1,2,3,4 �, �15a� 
x�1 �8 4 

kx �k��1,�2,�3 �, �15b� 

8 
1 � 

Pk� � px sin
�8 4x�1 
Fig. 9. The coordinate axes used to plot the eight-particle lattice. 

and are collectively called Pk . The oscillation frequency for 
each normal mode is given by 

� �k� 
�k�2�� 

sin , �16� 
m 2 4 

which is the dispersion relation for this system. As for the 
two-particle case, the reason for using the normal mode co
ordinates is that the equations of motion are decoupled using 
these coordinates. 

The locations of all the masses, qx , can be specified by a 
single point in an eight-dimensional space. Because such a 
space cannot be drawn clearly on a two-dimensional page, 
we draw only the projections onto various axes in this space. 
The axes that will be used in this section are shown in Fig. 9. 

The position axes qx are on the left of each set of plots. 
The eight dots give the positions of the eight masses. Rather 
than draw and label each of the eight position axes, q1 

through q8 , we draw a single vertical axis labeled qx and 
label the horizontal axis the x axis. The variable x is a di
mensionless index; the distance from the leftmost mass to 
mass number x is x� , where � is the distance between each 
mass. 

The normal mode axes Qk are used in the center plot. As 
with the qx axes, a single vertical axis labeled Qk is drawn at 
k�0 and the horizontal axis is labeled k . The use of the 
letter k intentionally suggests a momentum, however, k is 
not the conjugate momentum. Like x , k is a dimensionless 
index. The value of k is the wave number of the mode, which 
for this system is the number of complete wave cycles in the 
lattice. �See the momentum discussion below.� 

The Q1,�1 plot shows the projection onto both �k��1 axes 
simultaneously as a single point on a plane. The plot contains 
no new information; it is simply a different view of the two 
axes Q1 and Q�1 which are already shown in the Qk plot. 
However, it is useful because it shows more clearly the time 
behavior of these two degenerate modes. 

Figure 10 shows all eight normal modes for this system. 
Each eigenmode has a particularly simple projection on the 
Qk axes. Most of the normal modes �except for k�0 and k 
�4� are degenerate pairs, with identical resonant frequencies 
and identical wavelengths on the position axes. One mode of 
each of these pairs corresponds to a sine function and the 
other to a cosine function. Linear combinations of these 
mode pairs can produce sinusoidal waves with varying phase 
angles. Figure 11 shows such a wave propagating in time. 
Note the time behavior of the projection on the Q1,�1 
plane—the projected point moves in a circle as the wave 
propagates along the position axes. 

This system has two different momentum concepts, con
jugate momentum and wave number, which can be difficult 
to grasp.7 The conjugate momentum is proportional to the 
time derivative of the coordinates. It is the familiar Newton



Fig. 10. All eight normal modes of the eight-particle lattice, from k��3 in  
�a� to k�4 in  �h�, displayed using the coordinates used in Sec. III. 

ian momentum of each of the masses in the chain. For this 
system, it is only directed vertically. Each of the eight indi
vidual masses has a time-varying value for this momentum. 
The other momentum concept, the wave number k , is a bit 
more subtle. It is also called the phonon momentum or the 
crystal momentum and is not a physical momentum.4 Instead, 
Fig. 11. Time evolution of the system showing a propagating �k��1 wave. 

it is a quantity that is used in conservation laws for interac
tions. The phonon momentum for this system is directed 
horizontally along the x axis. 

The following example qualitatively illustrates the nature 
of phonon momentum. Consider a model for the absorption 
of light by an ionic crystal. We neglect absorption by the 
electrons and assume all the light is absorbed as the ions 
vibrate in the electromagnetic field of the light �which is a 
good model for an ionic crystal absorbing infrared light�. 
Absorption is proportional to the amplitude of vibration of 
the ions, so light will be appreciably absorbed only when the 
ions are vibrating near one of their resonant frequencies. For 
a lattice, the resonant frequencies are the normal mode fre
quencies of Eq. �16� and each corresponds to a particular 
normal mode with a particular wave number k . Light with 
both the right frequency �k and wave number k will push all 
the ions of the crystal in the right direction at the right time 
to increase the amplitude of a particular normal mode. Light 
at a frequency �k� but with a wave number k� that does not 
match the wave number of the normal mode will push dif
ferent parts of the crystal out of phase with each other and 
will not increase the amplitude of the normal mode. Thus, 
the light must have the same frequency and wave number as 
a particular phonon mode to interact with it. So, how is the 
phonon momentum a conserved quantity? As the light is ab
sorbed, its amplitude at a particular k decreases and the am
plitude of the oscillation of the crystal at the same k in-

sense,creases. In this the quantity ‘‘amplitude at k’’ is 



�� 

� 

conserved. Quantum mechanically, the amplitudes are quan
tized and an interaction term in the Hamiltonian will be of 
the form B̂ 

kÂ † 
k , where B̂ 

k removes a photon of wave vector 
†k from the electromagnetic field and Â adds a phonon of k 

wave vector k to the crystal. This is part of the fascinating 
topic of interacting quantum fields, which is beyond the 
scope of this article. 

We next analyze this eight-particle system quantum me
chanically. As with the two-particle system, we seek state 
vectors ��(t)� that satisfy the Schrödinger equation 

d 
i� ��� t ���Ĥ ��� t ��. �17�

dt 

In position coordinates, the Hamiltonian is 
8 2 8p̂ 1x

Ĥ � � � � m�2� q̂x�1� q̂x�2, �18� 
x�1 2m x�1 2 

which again does not give a separable wave equation be
cause of the ( q̂x�1� q̂x)2 term. In normal mode coordinates 

4 2 4P̂k 1 2Ĥ � � � � m�k 
2Q̂ , �19�k 

k��3 2m k��3 2 

which does give a separable wave function. The eight-
dimensional wave function can be written as a product of 1D 
harmonic oscillator wave functions, 

4 

�� Q�3 ,Q�2 ,. . . ,Q4�� � �k�Qk� 
k��3 

��Q�n�3 ,n�2 ,n�1 ;n0 ,n1 ,n2 ,n3 ,n4�, 

�20� 

where each �k can be any function of one variable. The 
Dirac-style notation on the last line is defined similarly to 
that of the two-particle system and is a particularly useful 
notation for the state of the system. The quantum mechanical 
state of such a many-particle system is often called a Fock 
state. 

Projecting the eight-dimensional probability density func
tion onto one of the normal modes is easy, 

P�Q1����1�Q1 ��2, �21� 

but it is not so easy to project it onto one of the qx axes, 

P�q1 ��� dq2 dq3 dq4 dq5 dq6 dq7 dq8���2. �22� 

The integration over a seven-dimensional subspace of the 
eight-dimensional function must be done numerically. We 
use a Monte Carlo method as follows.8 We generate a large 
number �typically 105� of random points in the eight-
dimensional Qk space with a distribution that matches the 
probability density in that space. This is done using the Me
tropolis algorithm.9 Each of those points is transformed to qx 
coordinates using the inverse transforms of Eq. �14�. A his
togram is constructed for each qx and these histograms are 
plotted on the qx vs x plots, with greater numbers of points 
corresponding to darker shades of gray. 

The ground state of the eight-particle quantum mechanical 
system is shown in Fig. 12 and is written as 
�0,0,0; 0,0,0,0,0� or simply �0�. The projections onto the qx 
axes are Gaussian and are all identical. The projections onto 
Fig. 12. Ground state of the quantum mechanical lattice. The apparent ab
sence of a Q0 projection is discussed in the text. 

the Qk axes are also Gaussian with varying widths. Higher 
�k� values have narrower Gaussian profiles, corresponding to 
the higher energies and higher frequencies of these modes, as 
specified in the dispersion relation of Eq. �16�. 

The Q0 mode in Fig. 12 appears to be missing because we 
have chosen a delta function �(Q0)��(Q0) for the Q0 nor
mal mode. Thus, the ground state wave function is 

�Q�0����Q0 �� �0� Qk�, �23� 
k�0 

where �0(Qk) is the 1D ground state harmonic oscillator 
wave function for normal mode k . Normal mode Q0 repre
sents the motion of the center of mass of the entire system. 
Our eight-particle system is not anchored to any fixed refer
ence system because of periodic boundary conditions, so the 
motion of its center of mass coordinate Q0 is that of a free 
particle in space. Because the probability density for a free 
particle is uniform over space, using the free particle wave 
function for �0(Q0) would produce a uniform probability 
density for all qx coordinates, which would not be useful for 
visualization. So, instead, we use the center of mass of the 
system as the origin for our coordinate system. This choice is 
equivalent to transforming into the center of mass reference 
frame. The result is a delta function for the probability den
sity of Q0 . 

As for the two-particle system normal modes, or indeed 
any 1D harmonic oscillator, we can define raising and low
ering operators for this system. Each normal mode coordi
nate has one raising and one lowering operator, 

1
ˆ ˆ ˆA†��m�k 

Qk�i� Pk , �24a�k 2� 2m�k� 

1 
Â 

k��m�k
Q̂ 

k�i� P̂ k . �24b�
2� 2m�k� 

The action of these operators on a Fock space ket is to raise 
or lower one of the nk values, the energy eigenstate of the 
corresponding mode. For example, the action of the k�1 

raising operator is Â †�n�3 ,n�2 ,n�1 ;n0 ,n1 ,n2 ,n3 ,n4�1 

��n1�1�n�3 ,n�2 ,n�1 ;n0 ,n1�1,n2 ,n3 ,n4� and of the k 

�1 lowering operator is Â 
1�n�3 ,n�2 ,n�1 ;n0 ,n1 ,n2 ,n3 , 

1Fig. 13. The quantum mechanical lattice with one k�1 phonon, Â †�0� . 



Fig. 14. The quantum mechanical lattice with one k�2 phonon, Â †�0� .2 

n4���n1�n�3 ,n�2 ,n�1 ;n0 ,n1�1,n2 ,n3 ,n4� . Note that the 
action of the k�1 lowering operator is not the same as that 

ˆ †of the k��1 raising operator, which is A�1�n�3 ,n�2 , 
n�1 ;n0 ,n1 ,n2 ,n3 ,n4���n�1�1�n�3 ,n�2 ,n�1�1;n0 ,n1 , 
n2 ,n3 ,n4�. 

The word phonon refers to an increase in the excitation 
†number of the system. The Â 
k operators add one phonon 

each and the Â 
k operators remove one phonon each from a 

†system. The ground state has zero phonons. Using an Â 
k 

operator on the ground state creates a one-phonon state. For 
example, Â †�0,0,0; 0,0,0,0,0���0,0,0; 0,1,0,0,0� is a sys1 

tem with one k�1 phonon. A more compact notation is 

Â 
1
†�0�. This one-phonon state is shown in Fig. 13. In the 

normal mode space, we see that the probability along Q1 is 
that of a first excited harmonic oscillator and all the other 
normal modes are in their ground states. The Q1,�1 axes 
emphasize that the first excited state is along a cosine mode. 
On the qx position axes, we do not see a cosine wave as we 
might expect. The expectation value of the position for any 
mass is still zero. However, the width of the probability dis
tribution now varies with x and this variation follows a co
sine function. 

Similar observations apply to Fig. 14, which shows the 
result of Â †�0,0,0; 0,0,0,0,0���0,0,0; 0,0,1,0,0� or Â †�0� .2 2 

This system has one k�2 phonon. Its Q2 probability density 
is that of a first excited harmonic oscillator state. The width 
of its qx probability densities vary with x following a cosine 
function, except that the wavelength of this cosine function 
is shorter than for the k�1 phonon. 

We can put several phonons into a system by using the 
raising operator several times. For example, (Â †)4�0�1 

��0,0,0; 0,4,0,0,0� is a system with four k�1 phonons and 
is shown in Fig. 15. The Qk plot shows that the k�1 normal 
mode is in its fourth excited state and the qx plot clearly 
shows the cosine variation in the width of the probability 
density of the masses. The amplitude of the width variation 
is greater with more phonons in the system. 

A system can also contain several phonons of arbitrary k 
values. Figure 16 shows the system with three k�1 phonons 
and one k��1 phonon. This system has the same number of 

Fig. 15. The quantum mechanical lattice with four k�1 phonons, (A1
ˆ †)4�0�. 
� 

tion of states, the ground state and a one-phonon state, 1/&� Â †�0���0�]. 

Fig. 16. The quantum mechanical lattice with four k�1 phonons, three in 
†cosine modes and one in a sine mode, (Â †)3(Â )1�0� .1 �1 

phonons as the one in Fig. 15, and because they are all �k� 
�1 phonons, the total energy of both systems is identical. 
The qx projection still shows an expectation value of zero for 
each mass. 

To get a nonzero position expectation value for any of the 
masses, a superposition of states is required. Figure 17 shows 
a superposition of the ground state and a one-phonon state. 
The probability densities of many of the masses are now 
clearly centered above or below the equilibrium position, 
indicating a nonzero expectation value. Figure 17 shows the 
time evolution of this state by showing it at three separate 
times. The peak of qx probabilities follows a cosine shape in 
space and oscillates in time like a vibrating string. 

The time behavior of these states is calculated from the 
Schrödinger equation. Each 1D harmonic oscillator wave 
function is multiplied by a phase factor ei�kt, where �k is 
determined by the dispersion relation of Eq. �16�. The norm 
of the resulting wave function gives the probability density 
that is plotted. 

At this point, we have introduced all the background 
needed to understand the most important plot in this paper, 
Fig. 18. It is a coherent state similar to those introduced in 
the discussion of the two-particle system. To get a coherent 
state in any one mode, we would use an expression similar to 
Eq. �13�, 

���2 �n 
i�exp� � � � e n� Â † �n�0�, �25�

2 n�0 n! k 

Fig. 17. Time sequence for the quantum mechanical lattice in a superposi

1 



Fig. 18. Time evolution of the quantum mechanical lattice in a coherent, 
propagating �k��1 state. This is a good visualization of a sound wave in a 
solid. 

where �n�(n� 2
1)�kt gives the time dependence. This state 

would produce a coherent standing wave corresponding to 
mode k . However, Fig. 18 is a propagating wave which re
quires a superposition of a cosine mode and a sine mode with 
the right relative phase. Such a state is constructed by 

�
�n �

�m 
† †exp�����2� � ei�n� Â �n � ei�m� Â �m�0�, 

n�0 n! 1 
m�0 m! �1 

�26� 

with �n�(n� 2
1)�1t and �m�(m� 2

1)(��1t� �/2), show
ing that the sine modes are shifted by ��/2 relative to the 
cosine modes. �With no shift, the result would be another 
standing wave.� Figure 18 shows the time evolution of such 
a �k��1 propagating coherent state. 

The qx projection is the most pedagogically useful. If we 
compare Fig. 18 with the classical propagating wave in Fig. 
11, we see that the pictures look qualitatively similar with a 
sinusoidal wave propagating to the right. In the quantum 
case, however, the locations of each mass are not certain, but 
are given by a probability distribution that is centered on the 
classical location. We claim that Fig. 18 is an intuitive and 
correct picture of a propagating phonon. It is important to 
note that this picture is of a rather special, coherent state 
instead of a single phonon. Still, the idea of replacing the 
definite classical values of the positions of each mass with a 
Fig. 19. A fifty-particle phonon system in a coherent k��1 �sine-type 
mode� state. 

probability distribution is true for all states of this system, 
and the coherent state simply makes the connection to the 
classical system most vivid. 

In fact, the basic idea of replacing each classical value 
with a probability distribution applies to any quantum field, 
and we believe that this idea is a good way to introduce 
quantum field theory. Figure 19 shows a coherent state for a 
fifty-particle quantum mechanical lattice. Using fifty par
ticles makes this system a good approximation to a continu
ous, scalar field in one dimension. 

The coherent propagating waves of Figs. 18 and 19 are 
good approximations to several real-world quantum fields. 
For a lattice, these represent sound waves traveling through 
the lattice. In contrast, noncoherent sums of phonon states �in 
the proper proportions� can represent thermal vibrations of 
the lattice. Using the scalar field to represent one component 
of an electromagnetic field, Figs. 18 and 19 are qualitatively 
correct representations of the coherent light of a laser. They 
could also represent the electric waves broadcast by a radio 
antenna. In contrast, noncoherent sums of these electric field 
states can represent thermal radiation. 

It is interesting to see a few other states of the eight-
particle system. Figure 20 shows a noncoherent sum of sev
eral �k��1 states, each with the same energy. Without coher
ence, though, the qx probability distributions are all centered 
on zero. This sum of states is a good analogy for monochro
matic but noncoherent light. 

Figure 21 shows a squeezed state.10 Squeezed states of 
light are similar to laser light and can be produced by various 
nonlinear optical techniques. A squeezed state is similar to a 
coherent state, but the width of the Gaussian function plotted 
in the Q1,�1 plane varies with time. The squeezing is greatest 
in Fig. 21�c�, where the width of the Gaussian is a minimum. 
A measurement of the �k��1 modes of the system at that 
time will have less uncertainty than a measurement on an 
otherwise identical coherent state. This squeezing is balanced 
by the width of the Gaussian in Figs. 21�a� and 21�e�, which 
is larger than for an otherwise identical coherent state. Thus, 
a squeezed state allows the system to have a lower uncer
tainty in its position at some times, but compensates by hav
ing a higher uncertainty at other times. This reduction in 
uncertainty can be used to improve the sensitivity of some 
types of measurements, for example, a gravitational wave 
detector.11 

Fig. 20. A noncoherent superposition of several �k��1 four-phonon states. 



Fig. 21. Time development of a squeezed state. 

Figure 22 shows a one-phonon state in one of the alternate 
discrete Fourier transform normal mode coordinates, dis
cussed after Eq. �14�. This state is a complex linear combi
nation of the k�1 and k��1 normal mode coordinates. It 
has the advantage that this one-phonon state represents a 
traveling wave. States with positive k travel in one direction 
and negative k travel in the other direction. However, a plot 
reveals why we chose not to use these coordinates—they are 
featureless on a probability density plot. If phase were plot
ted on these plots, such as by using a color code, a point of 
constant phase on the Q�1 plot would travel in a circle at 
frequency �k . �For beautiful pictures of one- and two-
dimensional wave functions showing phase information, see 
Ref. 12.� 

It is possible, and often useful, to define an operator that 
creates a localized excitation of the lattice �for phonons� or 
the field �for photons and electrons and such�. For our eight-

Fig. 22. A one-phonon state using one alternate normal mode coordinate, 
†� Â †�iÂ ��0�.1 �1 
Fig. 23. A local excitation at x�3 from the q̂ 3
† field operator, q̂ 3

†�0�. 

particle system, this is done by using the q̂ x operator, which 
is often called a field operator. Like q̂ 1 for the two-particle 
system, this operator can be expressed in terms of the normal 
mode operators using the inverse of the discrete sine and 
cosine transforms of Eq. �14�, 

4 �1
1 � 1 � 

q̂ x� � Q̂ 
k cos kx� � Q̂ 

k sin kx . �27� 
k�0 �8 4 k��3 �8 4 

Figure 23 shows the state q̂ †3�0� which puts such a localized 
excitation at location x�3. The qx plot of this system is quite 
similar to the Qk plot of Fig. 13. In both plots, most of the 
coordinates have ground state probability densities and just 
one coordinate has a first excited state probability density. 
However, the Qk plot shows an eigenfunction so it will be 
stationary in time, whereas the qx plot shows a superposition 
so it will vary in time. In particular, the qx plot’s appearance 
is short-lived and quickly decays to be barely distinguishable 
from the ground state. 

The word ‘‘particle’’ has a different meaning in quantum 
field theory than it does in many other contexts. Usually, 
particle refers to an object localized in space. However, a 
phonon is usually called a particle, and it is distributed over 
the entire lattice. The same observation can be made, for 
example, for a photon �an excitation of the electromagnetic 
field� or for an electron �an excitation of its associated field, 
often called the Dirac field�. The local excitation q̂ †�0� de-x 
scribed above is not a phonon; it is in fact a linear combina
tion of many phonon states. In some contexts, this local ex
citation is called a particle. 

IV. CONCLUSION 

A one-dimensional lattice of N coupled harmonic oscilla
tors is a good demonstration system for phonons and, as N 
�� , for quantum fields. Classically, this system demon
strates the normal mode decomposition needed to solve such 
many-particle or field theory problems and also shows the 
two types of momentum, px and k , that such systems have. 
Quantum mechanically, the wave function is a complex func
tion of N dimensions which cannot be plotted for N�3. 
However, the probability density is a positive, real number at 
each point in this N-dimensional space and can be projected 
onto groups of coordinate axes such as the qx position axes 
and Qk normal mode axes. The resulting probability density 
plots present a somewhat intuitive picture of the phonon 
wave function, or of the wave function of any quantum field. 
What they show for a particular state of the system, the co
herent state, is that displacement of each classical mass is 
replaced by a probability density centered on the classical 
location. Thus, just like the location of a single particle is 
blurred in quantum mechanics, the location of every particle 
in a lattice, or every value of a field, is blurred in quantum 



field theory. We hope that these pictures can serve as an 
enticing introduction to the fascinating but difficult subject 
of quantum field theory. 

V. PROBLEMS 

�1� Find the time dependence of the positions of the two 
classical masses for each configuration in Fig. 3. Use Q1i 

and Q2i or q1i and q2i as the coordinates at time t�0. First 
use the Q coordinates and then transform to the q coordi
nates. 

�2� Write explicit expressions for the four wave functions 
shown in Fig. 4. 

�3� Show that Q̂ 
1�0� is an eigenstate of the two-particle 

system, but that q̂ 1�0� is not. Hint: find Q̂ 
1 and q̂ 1 in terms 

of Â 
1 and Â † using Eqs. �11� and �1� and show that operating 1 

on �0� with Q̂ 
1 gives a single particle state, but that q̂ 1 gives 

a superposition of states. 
�4� Find the time dependence of the positions of the eight 

classical masses in Fig. 11. Use Qxi or qxi as the coordinates 
at time t�0. First use the Q coordinates, and then transform 
into the q coordinates. 

�5� �Advanced� Evaluate the expectation value for Q̂ 
1 and 

Q̂ 
2 for the states in Figs. 13 and 17 �at time t�0 only�. Hint: 

the expectation value of Q̂ 
k for a state ��� is ���Q̂ 

k���, 

where it is usually helpful to express Q̂ 
k and ��� in terms of 

Â 
k and Â † . For example, ����Â †�0� and �����0�Â 

1 . Use k 1
 
4
the result that �n�3 .. .n4�m�3 .. .m4��� k��3 �nkmk

. That is, 

�n�3 . . .  n4�m�3 . . .  m4� is 0 unless both sides have the 
same number in each mode. For more of this sort of problem, 
see Ref. 13. 
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