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Distinguishing between Dirac and Majorana Neutrinos with Two-Particle Interferometry 
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Two-particle interferometry, a second-order interference effect, is explored as another possible tool to 
distinguish between massive Dirac and Majorana neutrinos. A simple theoretical framework is discussed 
in the context of several gedanken experiments. The method can in principle provide both the mass scale 
and the quantum nature of the neutrino for a certain class of incoherent left-handed source currents. 
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Two contemporary problems in neutrino physics are 
determining the absolute mass of the neutrino and dis
covering if the neutrino is a Dirac or Majorana fermion 
[1]. The existence of neutrino mass has been established 
through oscillation experiments such as Super-
Kamiokande, SNO, and KamLAND [2– 4], which have 
successfully extracted the differences of the squared 
masses between the energy eigenstates. Various experi
mental approaches, such as tritium decay [5,6] and cosmo
logical background studies [7], are capable of extracting 
the kinetic mass of the electron neutrino and mass sum of 
the neutrino energy eigenstates, respectively. While these 
experiments have been able to put an ever-improving upper 
limit on the neutrino mass, they provide no information 
about the neutrino’s Majorana or Dirac nature. One power
ful approach currently used to determine the quantum 
nature of the neutrino is neutrinoless double beta decay 
[���0��] [8]. The decay rate is proportional to the effec
tive mass of the neutrino and proceeds only if the neutrino 
is a Majorana particle. Other interesting methods to ad
dress these fundamental questions have been explored 
since the 1950s [9], but exploring new ideas may be 
beneficial. 

This Letter investigates another technique, two-particle 
intensity interferometry, which theoretically provides in
formation about the mass and nature of the neutrino. This 
form of interferometry has been used extensively in many 
areas of physics and has served to cross pollinate ideas in 
different subfields for over 40 years. It is natural to wonder 
what role this technology might play in neutrino physics. 

Intensity interferometry was originally developed by 
Hanbury Brown and Twiss (HBT) as an alternative to 
Michelson interferometry to measure the angular sizes of 
stars in radio astronomy [10]. The ideas behind intensity 
interferometry were eventually quantum mechanically ap
plied to photons, rather than classical radio waves, insti
gating a revolution in modern quantum optics [11]. The 
technology was independently developed in momentum 
space for final-state particles in elementary particle physics 
and is sometimes called femtoscopy in that context [12– 
17]. 

The basic observation in two-particle interferometry is 
pairs of incoherently generated indistinguishable bosons 
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tend to bunch close in phase space while similarly gener
ated fermions tend to antibunch. What ‘‘close’’ means 
exactly depends on the scale and geometry of the problem 
and in what space one is performing the measurement. The 
sensitivity of the effect to the quantum statistics obeyed by 
measured pairs, in particular, the tendency for incoherent 
fermions to antibunch in phase space, is of interest here in 
an attempt to determine the quantum nature of the neutrino. 

A common physical observable in intensity interferom
etry is the two-particle correlation function, C2, which is a 
measure of the degree of independence between two events 
in some variable of interest, such as momentum, space, or 
time. The two-particle correlation function can be written 
as 

y yP�1; 2� Tr��̂âk âq âkâq� C2 � � ; (1)
y yP�1�P�2� Tr��̂âk âk�Tr��̂âq âq� 

where P�1; 2� represents the joint probability of measuring 
two events, while P�i� represents the individual probabil
ities of events i � 1; 2 and can be naturally generalized to 
higher order correlations. The explicit momentum space 
form of C2 on the right-hand side of Eq. (1) highlights the 
basic physical components of the correlation function. 
Tacitly contained in the density matrix, �̂, when projected 
as a Wigner function, are the space-time geometry of the 
source, the source dynamics, and any pairwise interactions. 
The quantum statistics of the particles are determined by 
the (anti)commutation relations of the creation and anni
hilation operators, ây and â. When normalized to the 
single-particle distributions as shown, C2 is proportional 
to the relative probability for a joint two-particle measure
ment as compared to two single-particle measurements. If 
the measurements are independent, then C2 � 1. If the 
measurements are correlated, C2 deviates from unity. 

As Eq. (1) implies, there are many possible approaches 
one can use to obtain an explicit expression for the corre
lation function. A particularly simple form for Eq. (1) that 
illustrates the essential physics is given by the Koonin-Pratt 
equation [13,18] 

Z 
~C2 � d3Rj �x~1; x~2�j2��R�: (2) 

The equation assumes an incoherent emission of particles 
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~from a normalized pair distribution ��R~�, where R is the 
vector separation between the pairs at the source. For 
simplicity, time has been implicitly integrated out of 
Eq. (2). However, the formalism can be expanded to in
clude correlations in the time domain. The two-particle 
wave function, �x~1; x~2�, contains information about the 
quantum statistics and any pairwise interactions. Working 
in natural units (c � @ � 1), if a pair of free identical 
fermions in any specific triplet spin configuration is con
sidered, the spatial part of the wave function will be anti
symmetric upon label exchange (assuming no other 
quantum numbers are involved) and given by the usual 
plane wave solution 

1 i ~pa� ~ i ~pb� ~ i ~pa� ~ i ~pb� ~�x~1; x~2� � p��� �e x1e x2 � e x2e x1�: (3)
2

One interprets this two-particle wave function as the am
plitude for particles emitted at points x~1 and x~2 to be 
measured with momenta p~a and p~b. For free particles, 
C2 is simply related to the cosine transform of the inco
herent pairwise source distribution, ��R~�. 

If two identical free fermions are emitted from exactly 
~two point sources separated by R, Eq. (2) can be written as 

C2�Q~ � � 1 � � cos�Q~ � �x~�; (4) 

~where Q � p~a � p~b and �x~ � x~1 � x~2. The parameter 
� � 1 for triplet spin states and �1 for singlet states. If 
the system is spin averaged, then � � 1 . Notice in the 2 

triplet case C2�Q~ � 0� � 0 and the fermions are anticorre
lated if in the same momentum state. Because the emission 
is incoherent, and there are no interactions, the correlations 
arise only from the quantum statistics obeyed by the par
ticles. The scale of the correlation is set by the source size. 
It is instructive to note that for nonidentical particles, 
where the wave function has no particular symmetry, C2 � 

~1 for all Q. 
TABLE I. The two-particle correlation function for Dirac, CDir
2

situations. Where � alone is quoted, use Eq. (5). An entry of C2 � 1
are filtering on same, opposite, or averaged final-state helicities. T
capability to determine the neutrino mass or discover the neutrin
distinguishable sources; case C, m � 0, identical sources; case D, m
case discussion. 

Helicity A 

CDir 
2 �d� Same � � 1 

Opposite C
Average � � 1 C

CMaj 
2 �d� Same � � 1 

Opposite C
Average � � 1 C

Mass? No 
Nature? No 
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Let us examine a useful limit of Eq. (4) that will be used 
later for a series of gedanken experiments. Consider two 
point sources of fermions separated by a distance R and~

~measured by a pair of distant detectors separated by d. The 
source and detector are a distance L from each other such 
that L� R� d. That is, there are well-separated sources 
far away from a relatively close pair of detectors. Assume a 
pair of single-mode fermions. In this limit Eq. (4) becomes 

C2�d� � 1 � � cos���d=��: (5) 

Although the particles here are fermions, this is similar to 
the original HBT experiment used to measure the angular 
size of stars. The correlation function is measured at differ
ent detector separations, d, for waves of known wave
length, �. From the shape of C2�d�, the angular size, ��, 
can be extracted. 

Imagine not knowing a priori the quantum nature of the 
particles being measured, but instead knowing some other 
information such as the angle subtended by the source 
relative to the detectors. In that case, using Eq. (5), one 
would fix the angular size and wavelength but then look at 
the behavior of C2 as the distance between detectors ap
proached zero to determine the quantum statistics obeyed 
by the particles of interest. 

Can two-particle interferometry be applied to neutrinos 
to determine if they are Dirac of Majorana particles? Let us 
examine four variations of a simple gedanken experiment, 
labeled A through D below, to answer this question. A 
summary of the relevant formulas and the ability of the 
four cases to resolve the neutrino mass and nature are 
outlined in Table I. For simplicity, only one neutrino flavor 
with one mass eigenstate is considered and oscillations are 
ignored. 

It will be helpful to remember for the cases below that 
while Majorana neutrinos are their own antiparticle (the 
field operators transform to themselves under a charge 
conjugation operation), the left-handed weak source cur-
�d�, and Majorana, CMaj
�d�, neutrinos are shown for various 2 

 indicates no correlation. The helicity column notes if detectors 
he final rows provide an overview of the case-by-case physics 
o nature. Case A, m � 0, identical sources; case B, m � 0, 
� 0, distinguishable sources. See the text for a detailed case-by

Gedanken Cases 

B C D 

� � 1 C2 � 1 

2 � 1 C2 � 1 C2 � 1 

2 � 1 � � 1 �m2=E2 C2 � 1 
� � 1 � � 1 

2 � 1 C2 � 1 C2 � 1 

2 � 1 � � 1 �m2=E2 � � m2=E2 

No Yes Yes 
No No Yes 
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rents creating them will generate final-state particles with a 
handedness as if they were Dirac fermions [8]. 

First, in case A, consider a massless neutrino and a 
geometric setup like that describing Eq. (5): well-separated 
sources far away from close detectors. Imagine two reac
tors acting as incoherent point sources of indistinguishable 
particles normally called Dirac antineutrinos. Two distant 
detectors are separated by a distance d. Relative to the 
detectors, the reactor pair subtends a known angle ��. 
There are two situations: one where the sources emit 
right-handed massless Dirac antineutrinos and another 
where the sources emit right-handed massless Majorana 
neutrinos. In this case, measuring C2 cannot distinguish 
between Dirac and Majorana particles. The measured cor
relation function will be equal to that in Eq. (5) with � � 1 
and will give the same result for both the Dirac and 
Majorana cases. This is because quantum indistinguish
ability applies equally well for the two situations and the 
two-particle wave function will be identical in both cases. 
Indeed, this is a sanity check because in the massless limit, 
Dirac and Majorana particles cannot be distinguished 
based on the practical Dirac-Majorana confusion theorem 
[19]. 

Next, for case B, consider massless neutrinos with a 
similar geometric source-detector setup as above except 
with one of the reactor sources being replaced by a ‘‘small 
sun.’’ That is, there are two sources emitting distinguish
able objects: one, an incoherent point source of particles 
normally called Dirac neutrinos, and another that would 
again be Dirac antineutrinos. But similar to case A, not 
knowing the neutrino nature, there is no way to use C2 to 
determine if there is one source of Dirac neutrinos and 
another of Dirac antineutrinos or if there is a pair of sources 
emitting Majorana neutrinos of opposite handedness. The 
correlation function C2�d� � 1 for both scenarios. This is 
because the two-particle wave function for either has no 
special symmetry. That is, it factorizes and the particles are 
not entangled at the detector. From Eq. (2), if the normal
ized wave function factorizes, the correlation function 
becomes unity. 

For C and D let us consider the above two cases again 
but this time give the neutrino a mass that is small com
pared to its energy. The presence of mass complicates the 
situation because chirality (‘‘handedness’’) is no longer the 
same as helicity. Also, for a realistic Majorana mass term, 
like that introduced in the seesaw mechanism, the mass-
degenerate four-component Dirac spinor splits into two 
two-component Majorana spinors. For the Majorana cases 
below, we can imagine taking the light doublet, keeping in 
mind that the value of the mass, m, will be different in the 
Dirac and Majorana cases but both will still be light 
compared to the mass of other leptons. 

The primary effect of interest is that left-handed weak 
source currents can now create massive neutrinos and 
antineutrinos of the ‘‘wrong’’ helicity with an amplitude 
12180
that goes like m=E when m� E. This will determine the 
probability of measuring an indistinguishable pair in the 
final state that will be treated separately for the Dirac and 
Majorana sources. If the measured fermion pair is indis
tinguishable, the wave function must be antisymmetric. 
The probability of this to occur, which will be related to 
the mass, will determine the strength of the two-particle 
correlation function. This is similar in spirit to the consid
erations in neutral kaon femtoscopy, although using differ
ent sources, quantum numbers, and statistics [20]. 

With this in mind, consider case C where the source-
detector geometry with two reactors is the same as case A. 
However, this time each reactor is the source of either 
Dirac antineutrinos of mixed helicity or Majorana particles 
of mixed helicity. For m� E, the helicity mixture will be 
mostly � � �1 with some � � �1 in both the Dirac and 
Majorana cases. For this exercise, consider ideal detectors 
that are capable of filtering on the neutrino helicity. If the 
detectors filter on identical helicities in the final state, C2 

will be Eq. (5) with � � 1, the same as case A. Particles of 
opposite helicity are quantum mechanically distinguish
able, so if the detectors filter on opposite helicities then 
C2 � 1, as in case B. However, if the detectors helicity
average particles in the final state, the mixed helicity of the 
source has the effect of introducing a helicity ‘‘contami
nation’’ at the detector and there will be quantum distin
guishably for a small fraction of the measurements. This 
contamination will have the effect of diluting the correla
tion function by a factor #�m2=E2�; so use Eq. (5) but with 
�� �1 �m2=E2� for both Dirac and Majorana particles. 
Again, Dirac and Majorana neutrinos cannot be distin
guished, but a careful helicity-averaged measurement of 
C2�d� could, in principle, extract the mass by measuring 
the strength of this weak anticorrelation. 

Finally, in case D, revisit the nonidentical sources of 
‘‘sun-reactor’’ geometry of case B, but extend it to the 
massive neutrino case. Because of helicity mixing, the 
quantum distinguishability arguments are similar to C but 
now there are more combinatorics for the Dirac particles 
because of the extra lepton quantum number. Nevertheless, 
like the massless case, the Dirac particles are always dis
tinguishable at the detector by either helicity or lepton 
number. No matter how one filters on the final state, the 
Dirac particles are distinguishable so C2 � 1. 

If the neutrino is a Majorana particle, however, case D 
will be different. The reactor source will be emitting 
primarily Majorana neutrinos with � � �1 with a small 
component of � � �1. The sun source will be emitting 
Majorana neutrinos of the opposite degree of contamina
tion: mostly � � �1 with a small � � �1 mixture. Here, 
because the Majorana neutrino is its own antiparticle, all 
emitted neutrinos are just various helicity states of the 
same particle. With a judicious choice of filtering at the 
detector, one could detect a distinct signal compared to the 
Dirac case. For example, if the detectors filter on opposite 
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final-state helicity, C2�d� � 1 because the particles are 
distinguishable. But if the detectors filter on the same he
licity, C2 becomes Eq. (5) with � � 1. If a helicity averag
ing is performed in the final state, this introduces contami
nation (more severe than case C) that will reduce the corre
lation strength. The probability of measuring two equal 
helicity states with open final-state helicity filters scales 
like m2=E2 so use Eq. (5) with ��m2=E2. That is, the 
neutrinos would only be slightly anticorrelated at small d. 

Let us entertain some experimental considerations. The 
primary concerns are data rate, detector efficiency, and 
energy resolution. The above discussion assumed infinite 
energy resolution to resolve neutrinos of an arbitrary wave
length with no loss of fidelity or smearing. This assump
tion, using Heisenberg’s uncertainty principle, permits 
infinitely slow counting statistics, allowing quantum me
chanically coherent data to arrive over infinitely long time 
scales. This is clearly an unrealistic practical assumption. 

The data rates for current experiments such as 
KamLAND and SNO are about one event per day. To 
perform the measurement, even assuming copious statis
tics, the ability to measure neutrinos of arbitrary energy, 
and very fine vertex resolution, experiments would require 
an unphysical energy resolution to see the effect as de
scribed. Conversely, using �E�t� �eV��fs� it can be seen 
that even with extremely good, but still physical, energy 
resolutions, eV or keV, an experiment needs to measure 
neutrino pairs separated by times on the order of femto- to 
attoseconds—a rate approaching weak-charge amperes of 
neutrinos. If neutrinos could, in principle, be measured 
experimentally with such copiousness and efficiency, other 
methods would mostly likely provide a more straightfor
ward path to revealing the neutrino’s currently unknown 
properties to the same order in m2=E2 . 

The femtoscopic limit of Eq. (4) (L� d� R) can also 
be considered. In that limit, neutrinos and antineutrinos 
could be generated from very small sources like those 
created in a high energy physics collisions. In order to 
image femtometer-sized sources, an experiment would 
construct C2 in momentum space, measuring two or 
more identified or reconstructed inclusive neutrinos per 
event with a momentum resolution of roughly MeV. 
Finally, the method could be applied as an antibunching 
counting experiment in the time domain, similar to what is 
done in quantum optics with photons. This could be per
formed on a beam of neutrinos and/or antineutrinos, mir
roring cases A–D above. High flux neutrino-antineutrino 
beams, like those expected from muon colliders, and ex
ceptional detection time resolution would be required. 
12180
Based on the gedanken experiments, in particular, 
case D, and reviewing Table I, there is the rather promising 
theoretical result that, with the correct sources and filters, 
two-particle interferometry can obtain both the mass and 
the nature of the neutrino of any flavor using a single 
physical observable, C2. While the above experimental 
discussion is not meant to be exhaustive, it appears prac
tical requirements currently render the method prohibitive 
and would require a fundamental shift in the way neutrinos 
are detected. 
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