
    

   
 
 

 

 

 
   

 
 
 
 

 

 
 
 
 

 
 

  
 

 
 
 
 

 
 
 

   
 

 
  

 
 

       
       

 
 

 
 
 

  
  

           
 
 

 
 
 

            

   

  

   

    

 

 
 

    
  
  
 

      

A R T I C L E  The Truth about Models: How Well 
Do Mechanical Models Mimic the 
Observed Gender Distributions in 
Two-Child Families? 

W i l l i a m  D.  S ta n S f i e l D,  m at t h e W  a .  
C a r lto n  

AbstrAct 

We question the use of mechanical models, such as coin flipping, to represent 
the probabilities of gender distributions in sibship families consisting of two 
children. Both the assumptions of the models and the reliability of the data 
should be evaluated. Using models without these critical evaluations may tend to 
perpetuate myths rather than elucidate biological realities. 

Key Words: Binomial distribution; birth order; chi-square test; conditional 
probability; data quality; Lexis variation; model assumptions; Poisson variation. 

Biology and genetics textbooks sometimes use 

JJ  JDice-Rolling Model 
Throwing a die twice or a single roll of two dice can also simulate a 
family of two children. Let even-numbered sides (2, 4, 6) represent 
boys and odd-numbered sides (1, 3, 5) represent girls, so again Pr(B) 
5 Pr(G) 5 0.5. The outcomes would resemble the coin-tossing model, 
with equally frequent probabilities of 1/4 each for BB, BG, GB, GG. 

JJ  JCard-Game Model 
Marilyn vos Savant authors a weekly column 
(titled “Ask Marilyn”) in Parade magazine. One 

the mechanical model of coin flipping to rep
resent the process whereby the gender (sex) of 
babies is determined. Can this process be sim
ulated by any other mechanical model, and, if 
so, which model best reflects biological reality? 
What deeper understandings about scientific 
models, in general, can be transmitted to our 
students by investigation of this subject? 

The mechanical models 

presented … offer 

hands-on experience that 

may help students better 

understand probability 

of her readers recently posed the following 
problem: 

During a card game, I said that the 
probability of getting dealt two 
aces is the same as getting an ace 
and a deuce – that the chance of 
getting any two cards is the same, 

JJ  JCoin-Flipping Model theory. whatever they are. My friends say 
I’m wrong. Who’s right? 

Honeycutt & Pierce (2007) recommend “that 
students collect at least some data using the manipulative activities (e.g., 
coin tossing, rolling dice, pulling beans from bag), and not rely entirely 
on simulations for data generation.” They supply URLs for electronic 
tools that illustrate probability using these mechanical models. 

In the coin-tossing model, we assume that the coin is well bal
anced (not biased). Let heads represent boys (B) and tails represents 
girls (G). In a simple model, the probabilities of B and G are equally 
frequent in a population at birth (Pr[B] 5 Pr[G] 5 0.5), and the prob
ability distribution of the second child’s gender in the same family 
is identical to, and independent of, the first child’s gender. To simu
late families consisting of two children, we toss the coin twice. Four 
gender combinations (birth orders) are possible (BB, BG, GB, GG). 
Over an infinite number of such trials, each combination is expected 
to be equally frequent (1/4 each); equivalently, the number of boys (or 
girls) follows a binomial distribution with n 5 2 and p 5 0.5. 

Vos Savant responded as follows. “Your friends are right. To illustrate, 
let’s narrow the question to the red or black half of the deck with only 
two aces and deuces. Lay the four cards in a grid – aces on the left and 
deuces on the right, like this: 

ace deuce 
ace deuce 

To get two aces, you must be dealt the left column. (And to get two 
deuces, you must be dealt the right column.) But to get one ace and 
one deuce, you can be dealt either the top row or the bottom row. So 
getting one of each is more likely” (vos Savant, 2010). 

Some readers may assume from vos Savant’s presentation that 
being dealt “one of each” is twice as likely as being dealt two aces. 
In fact, the probability of drawing two aces from a standard 52-card 
deck is Pr(AA) 5 (4/52)(3/51) 5 12/2652; the fraction 3/51 is the 
conditional chance of the second card also being an ace. By contrast, 
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the chance of drawing an ace and a deuce – in either order – is Pr(A2 
or 2A) 5 (4/52)(4/51) 1 (4/52)(4/51) 5 32/2652. The ratio of the 
probabilities is 32/12 2.66, so the chance of drawing an ace and a 
deuce is 2.66 times greater than the chance of drawing two aces. 

Others may misinterpret the question asked of vos Savant, 
thinking that, if an ace is the first card dealt, what is the probability 
that the second card is an ace (or a deuce)? In this case, the condi
tional probability that the second card is an ace 5 3/51; for the deuce 
it is 4/51. The ratio of the probabilities is 4/3 1.33. Thus, a deuce 
on the second card is about one and a third times more likely than an 
ace on the second draw, given that the first draw was an ace. 

We often hear the metaphor that the meiotic mechanism “shuffles” 
the genetic deck of cards and deals out a new hand with the produc
tion of every egg or sperm. We have never seen a deck of cards used 
to demonstrate this principle as a teaching aid, but cards can be used 
to illustrate some aspects of biological reality. Can a deck of cards be 
used to represent the gender distributions in two-child families? For 
example, let the 26 black cards represent boys, and the 26 red cards 
represent girls. The probability that two children are both boys under 
this mechanical model is (26/52)(25/51) 5 0.2451. Reshuffle the 
deck of 52 cards after each two-card trial (two-child family) has been 
dealt. The probability of the first child being a boy and the second a 
girl is (26/52)(26/51) 5 0.2549. The same probability exists for the 
first child being a girl and the second a boy; combined 5 2(0.2549) 
5 0.5098. The ratio of Pr(BG or GB) to Pr(BB) is 0.5098/0.2451 5 
2.079. Thus, one of each gender is expected to be about 2.08 times 
more frequent than two boys. For comparison, under the coin-flip 
model the chance that a two-child family includes one child of each 
sex is 2 times the chance that the children are two boys. 

JJ  JDiscussion 

Models are tentative schemes or struc
tures that correspond to real objects, 
events, or classes of events, and that have 
explanatory power. Models help scientists 
and engineers understand how things 
work. Models take many forms, including 
physical objects, plans, mental constructs, 
mathematical equations, and computer 
simulations. Scientific explanations incor
porate existing scientific knowledge and 
new evidence from observations, experi
ments, or models into internally consis
tent, logical statements. Different terms, 
such as “hypothesis,” “model,” “law,” 
“principle,” “theory,” and “paradigm” are 
used to describe various types of scientific 
explanations. As students develop and as 
they understand more science concepts 
and processes, their explanations should 
become more sophisticated. That is, their 
scientific explanations should more fre
quently include a rich scientific knowl
edge base, evidence of logic, higher levels 
of analysis, greater tolerance of criticism 
and uncertainty, and a clearer demonstra
tion of the relationship between logic, evi
dence, and current knowledge. (National 
Research Council, 1996: p. 117) 

In an article titled “Making babies by the flip of a coin” (Carlton 
& Stansfield, 2005), we provided statistical evidence that the prob
ability of the gender of the second child in a two-child family is not 
independent of the probability of the gender of the first child. The 
coin-tossing experiment draws upon an unlimited source of indepen
dent events (birth of each child), and in this regard the simulation 
resembles the theoretically unlimited source of producing two-child 
families. However, the probability of the second child’s gender in a 
real family is not independent of the gender of the first child. This 
is one “Achilles heel” of the coin-tossing model. Another problem is 
that traditional “unbiased” coin-tossing is only good for modeling 
populations in which boys and girls are equally frequent. In the U.S. 
white population, the gender ratio at birth is approximately 105 boys 
for every 100 girls. The reasons for this discrepancy, which is even 
greater at earlier periods of gestation, are not well established. The 
sex ratio at birth also varies between different populations. 

In the card game, the probability of the second child being a 
boy is different from the probability of the first child being a boy, 
and in this respect the card game more accurately reflects the reality 
of biological families. Also, the number of black or red cards can be 
roughly adjusted to resemble other sex ratios at birth. This principle 
cannot be demonstrated with balanced coin-tosses. For example, if 
we remove one red card from a standard deck of 52 cards, we are left 
with a black/red (boy/girl) ratio of 26/25 5 1.04. This is the minimal 
boy-biased B/G ratio possible with a deck of 52 cards; boy-biased 
B/G ratios between 1.04 and 1.00 cannot be simulated with only 
52 cards but can be produced by adding more cards to a standard 
deck. For example, a deck containing 102 black and 100 red cards 
simulates a population with boy/girl ratio 5 1.02. 

At this point, we might just as well replace cards with a jar of 
black and white beans whose bean numbers can be easily adjusted 
as needed. For example, to simulate a population with boy/girl 
ratio 5 105/100, we could place 105 black and 100 white beans 
in the jar. The probability that a black bean will be the first draw is 
105/205; the conditional probability of black on the second draw is 
similar (104/204), but not identical, to the first draw. Although the 
probability of the second bean being black is different and depen
dent on the color of the first bean, that probability would be very 
unlikely to reflect the biological population the mechanical model 
is intended to represent (as suggested by a mathematical formula 
akin to that of Malinvaud, 1955). Edmond Malinvaud studied 
almost 4 million births in France for years 1946–1950 and con
cluded that, if boys represent 51.45% of first-born children in a 
population, the probability estimate p (measured as a percentage) 
of a pregnancy producing a boy in subsequent pregnancies is fairly 
well fitted by the linear relationship p 5 51.45 1 0.3b – 0.5f, 
where b is the number of preexisting boys and f is the number of 
preexisting girls in a sibship. Thus, if the first child is a boy, then 
the probability of the second being a boy is 51.45 1 0.3(1) – 0.5(0) 
5 51.75%. Similarly, if the first child is a girl, the probability that 
the second child will be a boy is 50.95%. Malinvaud’s formula pre
dicts that the third child in a family with two preexisting boys has 
probability p 5 51.45 1 0.3(2) – 0.5(0) 5 52.05% of also being 
a boy. The card or bean model predicts that the number of male 
births decline as family size increases, whereas Malinvaud’s model 
suggests the opposite. 

In a 2007 article, we provided statistical support (based partly 
on a chi-square test of data assumed to conform to a binomial 
distribution) for the hypothesis that parental choice (family plan
ning) seems likely to be responsible for more same-sex sibships 
than unlike-sex sibships in families of two. In our 2009 article, we 
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reported that the probability of a male birth declines with birth 
order within individual sibships (Poisson variation) and that the 
probability of a male birth is also affected by between-sibship vari
ation (Lexis variation). The evidence for both types of variation 
is overwhelming in regard to mammalian, including human, sex 
ratio at birth. Because a mixture of Lexis and Poisson variation may 
mimic a binomial distribution (James 2000), it is invalid to infer 
from a seemingly binomial distribution that the probability of a 
male birth is equal at all trials. “In particular, the assumption that 
all couples have the same probability of male births (homogeneity) 
is invalid” (Stansfield & Carlton, 2009). To quote the National 
Research Council (1996: p. 23) again: 

Inquiry is a multifaceted activity that 
involves making observations; posing 
questions; examining books and other 
sources of information to see what is 
already known; planning investigations; 
reviewing what is already known in light 
of experimental evidence; using tools to 
gather, analyze, and interpret data; pro
posing answers, explanations, and pre
dictions; and communicating the results. 
Inquiry requires identification of assump
tions, use of critical and logical thinking, 
and consideration of alternative explana
tions. Students will engage in selected 
aspects of inquiry as they learn the sci
entific way of knowing the natural world, 
but they also should develop the capac
ity to conduct complete inquiries. (Italics 
added) 

We should question not only the assumptions of our models but 
also the reliability or quality of the data. In our previous three papers, 
the data on gender distributions in sibships of two children came 
from the National Health Interview Survey (NHIS) for years 1987– 
1993 and 1998–2002. We would have preferred data on the B/G 
ratio at birth, but the youngest cohort available from NHIS reports 
biological families 10 years of age or younger. Also, the NHIS does 
not obtain information on children who are not living in the house
hold at the time the survey was taken. In addition, no information 
was provided on the numbers of identical twins. Monozygotic (MZ, 
“identical”) twins represent a single fertilized egg and should not be 
included twice in the numbers of like-sex children. Otherwise, the 
numbers of like-sex families tend to be inflated. 

During the years 1922–1936 in the United States, 1.129% of all 
white births were twins in which at least one twin was born alive. 
On average, about 34.2% of these twin births were identicals. Thus, 
(0.342)(0.0129) 5 0.004412, or about 0.44% of all births in this 
population were estimated to be MZ. A young white mother under 
20 years of age had about the same chance of having either an iden
tical (MZ) or a nonidentical (DZ) set of twins. White mothers 35–39 
years of age had about three times as many nonidentical as identical 
twins. Prenatal deaths of one of a pair of twins have been estimated 
to be as high as 20–50%, with identical twins dying 2–3 times more 
frequently than nonidentical twins (Stern, 1960: pp. 532–535). 
Some genetics textbooks offer a simple statistical model, based on W. 
Weinberg (1901), for estimating the numbers of MZ and DZ twins 
in a population: 

1. Number of DZ twins 5 (known number of unlike-sex twins, BG 
and GB) 1 (number of DZ like-sex twins, BB and GG) 

2. *Assume number of DZ like-sex twins 5 number of DZ unlike-sex 
twins, so number of DZ twins 5 2(number of unlike-sex twins) 

3. Number of MZ twins 5 (known total number of all twins) – 
(number of DZ twins) 

This model (*) assumes that the gender probability of the second 
child is independent of the gender probability of the first child. It also 
assumes that, within a family, the probability of MZ or DZ twins does 
not change over the life of the mother. Neither of these assumptions 
exists in reality for the population cited by Stern. Nevertheless, in 
twinning data from Finland and Sweden, Finnish researchers com
pared their results with findings in the literature. “In conclusion, our 
findings indicate that Weinberg’s differential rule is rather robust and 
that despite its simplicity, it gives reliable results when official birth 
registers are analyzed” (Fellman & Eriksson, 2006). 

JJ  JConclusions 
It appears that sexes of human births in two-child families do not 
follow a binomial statistical model with Pr(B) 5 Pr(G) 5 0.5 or with 
any other probability parameter. Should we stop using this two-
child family example and these model assumptions to teach prob
ability and independence? Not necessarily. We use genetic examples 
in probability for their pedagogical merits, not because the binomial 
model exactly reflects biological reality. Nevertheless, the mechanical 
models presented in this article offer hands-on experience that may 
help students better understand probability theory. In an ABT edito
rial, William Leonard (2010) stressed the “need to use more math
ematics in biology” because “our society is far too nonquantitative 
in general, and this only leads to misconceptions in many areas.” 
As George Box aptly put it, “All models are wrong; some models are 
useful.” If we must use models, it would seem irresponsible not to 
explain to our students the assumptions and defects of these models, 
and at least acknowledge the existence of any other known com
petitive models. Why is it important that this kind of information be 
transmitted to our students? If we do not question the assumptions 
of our models and the reliability of our data, we may be perpetuating 
myths rather than elucidating biological realities. 

JJ  JTeaching Aids 
http://statweb.calpoly.edu/bchance/applets/CoinTossing/CoinToss.html 

Binomial distributions: fair and biased coins, probability 
calculations, approach to normal distribution as number of trials 
increases. 

http://www.jstor.org/pss/4448928 
McKean, H.R. & Gibson, L.S. (1989). How-to-do-it: hands-on 
activities that relate Mendelian genetics to cell division. American 
Biology Teacher, 51, 294–299. 

http://www.hhmi.org/biointeractive/gender/pdf/shuffling_deck.pdf 
Stapleton, B., Avant, R. & Avant, P. Shuffling the deck – the card 
game of life. 
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