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Abstract 

In this paper, a 2D motion detection bounded hand 3D trajectory tracking and gesture 

recognition system is proposed for virtual reality interactions. First, the Bayes decision rule for 

classification of background and foreground is utilized to automatically locate the hand that 

bounded within a rectangle, and then the trajectory of the hand in 3D space is tracked by mean 

shift particle filter and stereo imaging. The skin color feature is exploited for image matting that 

effectively segment the hand contour in video sequence automatically. Finally the hand gesture is 

recognized by the connected component analysis and line approximation. 

The proposed technique works without any markers or constraints, overcomes the disturbance of 

arms and faces in the scene, and can recognize multiple hands with different gestures under 

complex background. 

1 Introduction 

Hand motion tracking in 3D spaces and gesture recognition is an important research issue with 

many practical applications in the fields of virtual reality, human-computer interaction, sign lan-

guage recognition, and visually assisted medical surgery and so on. The vision-based 

methods[Lee and Kim 1999; Ng and Ranganath 2002; Psarrou et al. 2002; Shan et al. 2004; 

Moeslund et al. 2006; Elmezain et al. 2008; Manders et al. 2008; Pan et al. 2010] provide a more 

suitable and natural human-machine interaction than the contact-based method using the mouse, 

keyboard, joysticks, wii remotes or sensor glove [Bowman and Hodges 1997; Pierce et al. 1999; 



Jia et al. 2007]. The hand is commonly represented by its geometric features such as contours 

[Chang et al. 2005], fingers[Oka et al. 2002], and its distinctive features of color and texture 

[Soriano et al. 2000; Perez et al. 2002; Yang et al. 2005; Yuan et al. 2008]. However, every 

single type of features has its limitations. For example, hand contours are view-dependent and 

vary dramatically in natural hand motion, and skin color is not reliable due to varying 

illumination. 

Our research objective is to design and implement a vision-based system that effectively tracks 

the position of the hand in 3D space and recognizes its gesture by using the clues of motion, skin 

color, depth and geometry shape tightly. We make three main contributions: First, the Bayes 

decision rule for classification of background and foreground is utilized to automatically locate 

the hand that bounded within a rectangle, and then the trajectory of the hand in 3D space is 

tracked by mean shift particle filter and stereo imaging. Second, the skin color feature is 

exploited for image matting that effectively segment the hand contour in video sequence auto-

matically, the matting is carried out in the bounding box that contained the hand, so the 

disturbance of similar skin color regions such as arms and face is decreased. Third, and finally 

the hand gesture is recognized by the connected component analysis and line approximation. 

The remainder of this paper is organized as follows. Section 2 describes the detection of the hand 

with a bounding box by the Bayes decision rule and the mean shift particle filter. The tracking of 

the hand motion trajectory in 3D space is demonstrated in Section 3. Hand gesture recognition 

based on skin color, image matting and geometry shape is then presented in Section 4. 

Experimental results are discussed in Section 5. Finally section 6 concludes the paper. 

2 Bounding the hand in the 2D image space 

2.1 Automatic hand location 



In this paper, the foreground object detection is utilized to initialize the location of the hand in 

2D image space. Several methods have been proposed that can work for the situations that 

contain a variety of background variations. We adopted the Bayes decision rule for classification 

of background and foreground from selected feature vectors [Li et al. 2003]. 

Let vt = [a0...an]T be a discrete feature vector value extracted from an image sequence at the 

pixel u = (x, y) at time t. By Bayes rule, the posterior probability of vt from the background b or 

foreground f is  

[Figure 1] 

Using the Bayes decision rule, the pixel is classified as background if the feature vector satisfies  

2P(vt|b, u) ・ P(b|u) > P(vt|u) (2) 

For each type of feature vectors, a table of feature statistics Su,t,i,vt, 

i = 1, ..., N2(N2 > N1)is maintained,N1is the number of feature vectors selected that cover a 

large percentage of total feature vectors,N2is the number of the most significant feature vectors 

 

and the conditional probabilities are obtained as 

 

where the matched feature set is defined as 

 

In our experiment, we found that the hand detected by the foreground object detection based on 

Bayes decision rule is better than the result get by mixture of Gaussians method[Stauffer and 



Grim-son 1999], because mixture of Gaussians tend to misclassify the foreground points when 

there are moving background objects. 

By the foreground object detection, the motion object in the scene can be detected. So when a 

user wishes his or her hand to be tracked by the system, he or she just needs to held up the hand 

and make some movement in front of the camera, in this way multiple hands can be detected to 

track their motion trajectories. 

2.2 Particle filter 

The human hand is a highly deformable articulated object with many degrees of freedom. Due to 

the presence of background clutter, complex dynamics of hand motion, and varying illumination, 

hand tracking is typically a non-linear and non-Gaussian problem. Hence the particle filter 

instead of the Kalman filter is employed for hand tracking in 2D image sequences. 

Particle filter (PF)[Arulampalam et al. 2002; Bray et al. 2007] is a technique for implementing a 

recursive Bayesian filter by Monte Carlo simulations. Managing multi-modal density allows PF 

to handle clutter and recover from failures in visual tracking. By incorporating the mean shift 

(MS)[Comaniciu et al. 2000; Yang et al. 2005] optimization into particle filter to move particles 

to local peaks in the likelihood, the mean shift embedded particle filter(MSPF) improves the 

sampling efficiency considerably, so we follow the approach of [Shan et al. 2007] to track the 

hand. However, in our method the stereo vision is combined for hand 3D trajectory tracking 

instead of only 2D image sequences tracking. 

In 2D image sequence, the hand position is represented by the rectangle that bounding it. The 

rectangle state st is defined as (u, v, w, h), that indicates its position and size, and the observation 

zt is modeled as a first-order Markov process, the probability density function(pdf) p(st|z1:t) can 

be obtained by prediction and updated as  



whereis a normalizing constant, p(st|st−1) is conditional probability distribution of dynamic 

model, and p(st|z1:t−1) is the priori probability distribution. In MSPF, after the particles 

propagated by the dynamic model p(st|st−1), the MS optimization is run for each of the particles. 

Particles are then moved in the gradient ascent direction in the likelihood until they converge to 

their neighboring local peaks. 

2.3 Mean shift optimization 

Let {x∗ i }i=1...n be the pixel locations of the target model, and the function b: R2 → {1...m} 

associates the color index of the pixel x∗ i in the histogram bin b (x∗ i ). The probability of the 

color u in the target model is derived as 

 

where k is a kernel profile function, is the Kronecker delta function, C is the normalization 

constant. 

Using the same kernel profile k with radius h, the probability of the color u in the target 

candidate is given by  

The similarity between the target model and the target candidate is measured by the 

Bhattacharyya coefficient, and can be approximated using Taylor expansion 

 



The second term in equation 9 represents the density estimate computed with kernel profile k, 

and the maximization can be efficiently achieved based on the mean shift iterations. 

2.4 Importance sampling 

The required posterior density is approximated by a weighted particle set {s(n) 

t , (n) t }Nn=1 at each time t. Each particle s(n) t represents one hypothetical state of the object, 

and is weighted by a discrete sampling probability (n) t ,The particles after running the MS opti-

mization can be regarded as sampling from an importance function gt(st), and the weights of the 

particles is as follows 

 

In our hand tracking process the hand is detected and tracked without taking into account any 

shape information, so the hand can be moved with much degree of freedom. 

3 Hand 3D trajectory tracking 

The bounding box that contained the hand is generated in each frame of image sequence, for the 

hand is represented by the rectangle state st = (u, v, w, h) that indicates its position and size 

during the tracking. Then the skin detection is carried out in HSV color space in this bounding 

box. A pixel is classified as a skin if its value is within a certain range of HSV color space, of 

which the thresholds are experimentally established. 

We retrieve the (x, y, z) coordinate value of all the image pixels in the bounding box that have 

skin color, then calculate the average or mean coordinate to make it represent the 3D position of 

the hand, so the hand tracking is carried out in the 3D space. The movement trajectories can be 

applied for 3D virtual space interaction. Compared with the 3D model-based tracking which 



usually suffers from high computational cost, our 3D space hand tracking is much simpler and 

the hand movement has much degree of freedom. 

The 3D point clouds are measured by the stereo camera. For the limitations of the stereo camera, 

not all the skin pixels in the bounding box can find its 3D coordinate value, the invalid is set to 

be (0, 0, 0) by the stereo camera, so those points should be excluded. What’s more, some pixels 

point corresponds to background may also have the similar skin color, so a disparity range is set 

to exclude those points for the calculation of the 3D position of the hand. 

4 Hand gesture recognition 

To exclude the influence of the complex background or the facial region whose color maybe 

similar to the skin, our hand gesture recognition is also carried out in the bounding box that 

generated during the tracking process in section 2. 

4.1 Automatic Laplacian matting 

The hand is represented by its distinctive geometric features of contours and fingers. It is 

possible to recognize the gesture of the hand after the hand contour is extracted. Formally, image 

matting methods assume the input an image I to be a composite of a foreground image f and a 

background image b. The color of the i-th pixel is assumed to be a linear combination of the 

corresponding foreground and background colors. 

 

where ai is the pixel’s foreground opacity, or alpha. This is a severely under constrained 

problem, and most recent methods is interactive based or expect the user to provide a 

trimap[Chuang et al. 2002; Apostoloff and Fitzgibbon 2004; Sun et al. 2004] as a starting point, 

labeling some pixels as foreground, background, or unknown. 



A cost function can be derived from the local smoothness assumptions on foreground and 

background colors, and in the resulting expression it is possible to analytically eliminate the 

foreground and background colors to obtain a quadratic cost function in alpha, in this way high 

quality mattes can be obtained by very few scribbles indicating background pixels or foreground 

pixels. For the color images with the foreground and background colors in a window satisfy the 

color line model, the cost function is as  

L is an N xN matrix and referred as the matting Laplacian, whose (i, j)-th element is 

 

where Ek is a covariance matrix, µk is a mean vector of the colors in the window wk,and I3 is 

the identity matrix. 

The skin color image pixels in the bounding box are labeled as the foreground pixels, while the 

pixels on the four edges with a certain width in the bounded image that do not have the skin 

colors can be labeled as the background pixels. In the experiment, considering the matting 

efficiency, only the skin color pixels in a small region with a certain width and height are labeled 

as the foreground pixels. The central of this small region can be set to be the mean of all the 

pixels in this bounding box that have skin color. [Figure 2] 

4.2 Geometry analysis 

We solve the segmentation problem by performing connected component analysis, and selecting 

the largest remaining connected component to be the input for the gesture recognition. Then an 

appropriate contour approximation is applied by compress horizontal, vertical, and diagonal 

segments and leaves only their end points. The approximated contours now can be used to find 

fingers. For this a line approximation technique was devised. It has the following steps: 



Step1: If the contour has three points (the largest contour left is unlikely to have less than three 

points), find the smallest angle. If the smallest angle is below the angle threshold value, calculate 

the length of the line from the point of the smallest angle to the midpoint of its opposite side. If 

the length is greater than the threshold, add the line to the list of detected lines; 

Step2: If a contour has more than three points. For each point pn do the following: (a) Calculate 

angle between the lines formed by the points pn−1 and pn, pn and pn+1; (b) Calculate the length 

of the line from pn to the mid-point of the line joining pn−1 and pn+1; (c) If the angle in step a, 

is less than the threshold angle and the length of the line in step b is greater than the threshold 

length then add the line found in step b, to the list of detected lines and set the next point to be 

processed as pn+2, else set the next point for processing as pn+1. 

The detected line numbers then can be employed to recognize the hand gestures. If one hand is in 

the scene, then 0-5 gestures can be recognized, while there are two hands, maximum 6 × 6 

combined gestures can be used to send different commands to the virtual reality interaction 

system. 

The framework of our hand motion tracking and gesture recognition system is shown in Figure 1. 

The automatic hand localization, hand 3D motion trajectories tracking, hand contour extraction, 

and gesture recognition are the key components of the system. The hand is continuously tracked 

in image space while the calculation of the 3D position of the hand and the hand gesture 

recognition steps are performed once every few frames so as to speed up the system per-

formance. 

5 Experimental results 

We performed hand tracking and gesture recognition experiments on more than 20 video 

sequences of hand movement with gesture transformation. The input image sequence is captured 



by the stereo camera Bumblebee 2. Each sequence contains about 600 frames, and the image 

resolution is 320 × 240 pixels. No markers or any special constraints about illumination and 

background were set in capturing. The proposed algorithms were implemented on a computer 

(Intel(R) Core(TM) 2, 1.86GHz, and 2.0GB of Ram) with MS Visual C++. 

Figure 2 presents tracking and recognition results from one test image sequence (frame 219) with 

the arms and face appeared in the scene. The green bounding box indicates the tracked hand, and 

Figure 2(a) is the detected skin regions with the blue color, (b) is the automatically generated 

scribble image, (c) is the image matting, (d) is the binary image of the matting, (e) is the 

approximated hand contour,and (f) is the recognition result. The detected skin region in this 

frame image is shown in Figure 2(g), the detection and recognition of the hand that based on 

only the skin color would face difficulty for the arms and face have similar colors, and the 

detected skin region on the hand is too sparse and scattered to extracted its connected component 

contour. However, in our method, this problem can be settled to some extent for the hand is 

encircled in the bounding box by the motion tracking process, and the skin color is only used to 

assist the automatic matting. [Figure 3] [Figure 4] 

Figure 3 gives another experiment result of tracking and recognition from one test image 

sequence (frame 219) with different background and with different gesture pose. Figure 3(a) is 

the detected skin regions with blue color, (b) is the automatically generated scribble image, (c) is 

the image matting, and (d) is the recognition result. The regions that marked by red color in 

Figure 3(e) indicate the pixels with skin color that have valid (x, y, z) coordinate value calculated 

by the stereo camera. 

Figure 4 is one recognition result when some background pixels in the bounding box that also 

include some skin color region. Figure 4(a) is the detected hand, (b) is the detected skin regions 



with the blue color, (c) is the automatically generated scribble image, (d) is the image matting, 

and (e) is the recognition result. Figure 5 is the example of the tracking and recognition result 

from one test image sequence (frame 58) under light illumination that is different with the frame 

image shown in Figure 4. Figure 5(a) is the detected hand, (b) is the detected skin regions with 

blue color, (c) is the automatically generated scribble image, (d) is the image matting, (e) is the 

approximated hand contour, and (f) is the recognition result. 

Figure 6 is one example of the tracking and recognition result from one test image sequence 

(frame 80) with multi-hands. Figure 6(a) are the detected hands, (b) is the image matting, and (e) 

is the recognition result. The result shows that the system is capable of robustly tracking multiple 

hands with different gestures under complex background. [Table 1] 

Table 1 show the running time of the each module in our hand 3D trajectory tracking and gesture 

recognition system for one test image sequence, the image sequence capture by the stereo camera 

contains 600 frames, the stereo imaging calculation and the recognition is carried out every 5 

frames, so its running on total 120 frames. As we can see from the table that recognition process 

is somehow time consuming, for the image matting rely on solving large sparse matrices, the 

algorithm about fast matting using large kernel matting Laplacian matrices would be applied to 

speed up the system performance. And we should point out that the average running time for 

each frame also affects the performance of the tracking the hand with the bounding box in 2D 

image sequence, and finally would influences the recognition. [Figure 5] [Figure 6] 

6 Conclusions 

Vision-based hand tracking and gesture recognition is a task of great importance for intelligent 

human-computer interaction. In this paper, an integrated framework that contains automatic hand 

localization, hand 3D motion trajectories tracking, hand contour extraction, and gesture 



recognition is proposed. The capability of the system to handle complex background, 

illumination variation, and multiple hands without any markers or constraints is demonstrated by 

experiment results. Further investigation will be carried out to utilize the disparity data to 

enhance the recognition when some skin like background pixels in the bounding box that just 

connected with the hand part. Exploit a 3D virtual reality interaction system based on our hand 

tracking and gesture recognition will also be our future work. 
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Figure 1: The framework of the 2D motion detection bounded hand 3D trajectory  

 

tracking and gesture recognition system. 

 

 

 
 



Figure 2: The tracking and recognition results from one test image sequence (frame 219)  

 

with the arms and face appeared in the scene. 

 

 

 

 

 
 

Figure 3: The tracking and recognition results from one test image sequence (frame 280)  

 

with different background and different gesture pose. 

 

 

 

 

 

 

 
Figure 4: The recognition result from one test image sequence (frame 106) when the  

 

background in the bounding box has the similar skin color. 

 

 

 

 

 

 

 

 



 

 

 Stereo 

imaging 

Bounding the 

hand 

Recognition 

1 3782 59713 54467 

2 3773 54267 63076 

3 3783 53279 65920 

4 3791 53176 60608 

    

 

Table 1: The running times(ms) of the each module of the hand 3D trajectory tracking  

 

and gesture recognition system for one test image sequence that contained 600 frames. 

 

 

 

 

 
 

Figure 5: The example of the tracking and recognition result from one test image  

 

sequence (frame 58) under different light illumination. 

 

 

 

 

 
 

Figure 6: An example of the tracking and recognition result from one test image sequence  

 

(frame 80) with multi-hands. 


