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Abst a istances  	 primarily  	 by  e ectric	 power transmission	 lines	 and	 by	 r lct Energy	 is	 transported	 over	 long d
pipelines	 carrying gas	 or	 liquid	 fuel. Electric	 power	 engineers need	 to	 compare	 these	 two	 energy
transmission	 methods,	 but	 often	 lack knowledge	 of	 fluid	 mechanics  	pre‐requisite  to  understanding  pipeline  
transmission. This	 article	 provides	 a	 focused	 tutorial to	 provide  	 the  	 necessary  	 background  in  	 the  fluid
mechanics	 of	 pipe	flow.
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1. 	INTRODUCTION 

When	 you	 approach	 a gas‐fueled	 electric	 power	 plant	 you	 immediately	 notice	 large power	 transmission	 lines	
dominating	 the landscape, carrying	 the generated	 electric power 	 away  from  	 the  plant.  But  where  is  	 the  
pipeline	 carrying natural	 gas	 into	 the	 plant?	 This	 pipeline	 carries	 three	 to four	 times	 more	 power	 than	 the	 
electric	 transmission	 lines	 leaving. Yet it is	 completely	 inconspicuous.	 Often	 it	 is	 buried	 underground;	 always	 
it  is  very  	much  smaller  than  	 the  	massive  	 structures  required  	 to  support high‐voltage	 electric	 power	 lines.	
Distributed	 generation is	 likely 	to become 	more prominent in 	the	 energy systems	 of the	 future,	 thus	 enabling	 
significant	 gains	 in	 energy	 efficiency	 through the	 use	 for	 combined	 cooling heat and	 power	 of	 heat rejected 
during	 electric	 power	 generation 	and 	otherwise 	wasted. 	Much of this	 distributed	 generation	 will	 be	 derived 
from fuel	 supplied	 in	 pipelines.	 One	 of	 the	 factors to be	 considered	 in	 finding	 the	 right	 balance	 between	 
centralized	 and	 distributed	 generation	 is the transport of energy 	to the site 	where it will 	be utilized. When is
energy best carried	 as	 fuel	 in	 pipelines	 and	 when	 as	 electric	 power	 on	 transmission	 lines? To	 appreciate the	 
trade‐offs involved	 in	 answering 	 this  question,  an  	 understanding  of  	 the  fluid  	 mechanics  of  pipe  flow  is  
required.  This  	 tutorial  is  intended  to  	 guide  	 the  	 reader,  	 assumed	 to	 be	 an electrical	 engineer	 without	 prior 
knowledge	 of fluid mechanics,	to 	that	 understanding. 

2. 	SUMMARY 

Electric	 power engineers	 know	 that  l
understand this one needs to 	know that 	transported 	power 
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equivalent	 o Ohm’s	 law	 for	 pipe low	 is	 a relation	 between	 pressure	 gradient	 and	 

flow  rateሻ.  	Pressure  gradient  is  like  	 voltage  	drop;  fluid  velocity i
fluid to flow,	 just as	 impressing a 	volgradient across	 a	 pipe	 causes	 tage drop across a 	resistor	 causes	 current	 

to flow. 	The 	resistor can be 	at high 	voltage with respect to 	ground,	 but	 it	 is only	 the	 voltage	 drop	 ሺdifference 
across	 its	 terminalsሻ	 that determines	 current flow.	 The	 pipe	 can  be  	 at  high  	 pressure  with  respect  to  the  
atmosphere, but flow is determined 	only by 	the 	pressure gradient ሺdifference	 between	 inlet and	 outletሻ.	 The
pressure	 gradient	 is	 expressed	 in	 dimensionless	 form as	 the	 friction	 factor.	 The	 velocity is expressed in	 
dimensionless	 form	 as	 the	 Reynolds	 number.	 The	 relation	 between 	 the  	 two  is  the  resistance  law.  It  is  the  
Ohm’s	 law	of pipe	 flow,	 but it lacks	the	 simplicity	 and	 fundamental 	character	of Ohm’s	 law.	 The	 resistance	 law 
of	 pipe	flow	is: 
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This  law  is  essentially  	 empirical  in  character.  	The  constants   are empirical	 in the law	appearing ߚ 	and ߙ 	,ߢ 
curve‐fitting parameters.	 They	 are	 universal	 in	 that they	 are	 the same for	 a	 wide variety	 of	 flow conditions 
ሺdifferent	 combinations	of pressure gradient,	flow	velocity,	pipe	diameter	and	wall 	roughnessሻ.	That	there	are 
such	 constants is	 a	 consequence	 of	 a remarkable	 fact:	 widely	 disparate flows	 obey the same law	 when scaled
to dynamically	 similar non‐dimensional	 quantities.	 The	 non‐dimensional	 quantities that	 correspond	 to
variable	 flow	 conditions	 are	 the	 friction	 factor	 ሺߣሻ	 representing	 the	 pressure	 gradient;	 the	 Reynolds	 number 
ሺܴ݁ሻ representing the	 average	 flow	 velocity;	 and	 the	 relative	 wall	 roughness	 ሺߝሻ.	 The	 pipe	 diameter	 does	 not	 
appear 	explicitly in 	the dimensionless 	resistance law; it re‐appears when 	the dimensionless law is scaled to a 
dimensioned	 form.	 A	 purpose	 of	 the	 subsequent exposition	

l
is	 to	 explain	 what	 the	 dimensionless	 constants ሺߢ,	 
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	 where ߣ  ௧ܴ݁ ൐  ܴ݁ flow rate  for  	 which  uel‐carrying pipeline.	 Fuel‐carrying pipelines	 operate	 at high 
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where
 

ܦ2
ඨܩ ܣ ൌ
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and
 

.	݄√݄ൌ  ܨ ߩ
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carried	 in	 the	 pipeline:	 density	 ሺߩሻ	 and	 specific 	 enthalpy  of
viscosity	 ሺߤሻ	 does	 not appear because	 friction	 losses are dominated 	by turbu
by	 the	 pipe	 wall	 roughness	 rather than	 fluid	 viscosity. The	 

depends only on	 geometr ic	 propertܩ
is	the	cross‐sectiona ܣ ሻ.	 ݁ which	in	turn	depends	only	on	pipe	rms	wall	roughness	 

has	 units	 W	 m‐2 and	 may	 be	 called	 the	 fuel	 power	 density.	 It depends	 only	 on	 the 
,	 energy per	 unit massሻ.	 The	 ݄	 combustion	 ሺ 
lence 	which in turn is controlled 
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fluid 	properties of 	the fuel 

fuel	 power	 density	 is	 a figure	 of merit	 for	 ranking	 
ithe	 suitability	 of	 different fuels	 as	 energy vectors	 for	 l
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compression/decompression 	cycle	must be	accounted	 
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3.	VISCOUS 	FLUID	FLOW 

To	 understand	 the	 results	 summarized	 in	 the	 previous	 section it is necessary to 	appreciate viscosity and 	the 
elements	 of	 viscous	 fluid	 flow.	 Viscosity	 is	 friction,	 the	 friction  of  fluid  layers  sliding  	 over  each  	 other.  It  is  
perceived  both  	 as  the  resistance  	 one  feels  	 when  stirring  a  viscous	 fluid,	 and	 as	 the	 heat	 such	 stirring	 
generates.	 It	 is the equivalent	 of	 resistance in electrical	 circuits,	 and	 is	 the	 reason	 why	 there	 are	 losses	 
associated 	with	power	 transmission	by	fuels	flowing	in	pipelines.	 

3.1	Shear	stress 		Lay	a	plank 	down	on	the	ground	 and	place on	it	a	brick	to 	which	you have	tied	a	string.		Stand
at	 one end	 of	 the plank	 and drag the brick	 toward	 you	 by pulling	 the string.	 You	 apply	 force to the string	 and 
momentum is transferred in 	the 	same directi ll: 	the 	brick	 moves	 toward you.	 If	 the	 force	 with	 which	 

no m l, the ܣ 	and the  	 cross‐sec  s s ܨ   r a
l	 i

୭୮݌ where	
pipelines	is	50	bar.	 

for  	 existi୭୮݌ mumሻ	 pressure	 of the	 pipeline.	 A typical	 value	 of	 i ng  gas 
  

	Another s ܨ/ܣ.   
name	 or norma stress s	 pressure;	 both have	 units	 N	 m‐2 	or Pa 	ሺPascal its 	momentum 
in	the	same	direction	as	the	 stress.	As	you	pull	the	brick the	 plank	is	likely	to	move	toward 	you	too,	perhaps	at 
a slower 	speed if the brick slips over 	the 	surface of the plank.	 Momentum	 is	 transmitted	 from	 the	 brick	 to	 the 
plank.	 The direction of	 this momentum transfer i ps	 erpendicular to	 the	 direction	 of the	 momentum;	 it is	 
transmitted	by shear	 .	 The	 shear	 force	 is	 in	 the	 direction	 of the	 pulled	 string,	 but 	the 	momentum trans er force f

s 	proporti the o ܣ 	the area to 
L ke normal.ܣ ded 	by 

ll i
 
on you pu

ional  area  of  	 the  string  i  str s n  the  stries i ng  i 

ሻ. 	Normal stress 	transm


t 
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f

is  	perpendicular  to  that,  from  	brick  to  plank.  	The  	shear  force  i
brick	 in	 contact	 with	 the	 plank.	 The she r	 	i ia s thstress

l
 f 	the face of

	stress or pressure, the	
 s force div
i
 

ona

i


units of 	shear 	stress are	 N m‐2.	 

3.2	 Couette	 flow Now	 imagine	 a	 trough	 filled	 with	 water on	 which	 a plank floats, the plank 	and the 	water all
being	 at rest.	 Let the plank be set	 into motion, pulled	 along	 down the	 trough which	 is	 assumed	 long,	 like	 a 
canal. 	The 	water in the trough 	begins to move. 	At	 the bottom of the	 trough	the	 water	 remains	 stationary	 ሺas	 is
the trough itself, 	assumed fixed 	to the earthሻ. At the 	top of the	 trough	 the	 water	 moves	 at	 the	 same	 speed	 as	
the	 plank,	 thus	 remaining stationary	 with	 respect to	 the	 surface	 of	 the	 ሺnow	 movingሻ	 plank.	 Idealize	 this	 

,irections 	ܦ separated by distance 	and ݖ d	the cture ݕ to 	parallel planes infinite in 
.	These	planes	represent solid	wa ܦ ocated	at ݔ ൌ 0	and	the	other	at ݔ ൌ plane	be	 

s	 filled	 with	 fluid.	 Now	 let	 the bottom	 wall	 be stationary but the top wall be 	mov
൅ݖ 	direction.	This 	situation,	depicted 	in	Figure	1,	is	Couette	 flow. 

p
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Figure 	1:	Couette 	flow 
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velocity between	 that	 which	 is	 pulling	 and	 that	 which	 is	 pulled.  
great, 	the fluid 	can 	be imagined 	to consist of layers that sli
cards	 resting	 on	a	table	when	the	top	 of	the	deck	is	pushed.	This	is	laminar	f

I
l

3.3	 Viscosity
 
plank  and  pu 


	f
ed  	by  a  str

l
i

f fluid pulls along 	the
 
ank  along  with  it.  The 
  

ayer 	beneath it, just as 	the 	brick 	resti

riction	 force	 increases	 with the	 diff


ng on a
 
erence	 in	
 

ow each 
ll
ayer o

he  pl 
ng  	pu 
 s 
  

If  	 the  	 speed  of  the  top  wall  	 ሺݑ௪ሻ	 is	 not	 too	 
de	 over	 each	 other	 without	 mixing,	 like	 a deck	 of

low;	it	is	illustrated	in 	Figure	2.
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Figure 2:	 Laminar	flow 

A  layer  ሺcardሻ  	 experiences  a  force  only  f  its  	 velocity  differs  from its	 neighbors.	 For small	 velocities shear 
stress 	is	 proportional	 to velocity 	gradient

 ݑ݀
߬ ൌ ߤ  ሺ1ሻ.	

ݔ݀

The	 proportionality	 constant	 ߤ is	 the	 viscosity.	 The	 units of viscosity are	 Pa	s	cm‐1 	or N s m‐3 	or kg s‐1 m‐2.	 The	 
shear stress is in 	the ݖ direction, the same 	as the fluid velocity.	 The	 gradient	 of fluid	 velocity	 is	 perpendicular 
to that,	 in	 the ݔ direction.	 Think	 of the fluid as like a deck of cards.	 The	 viscosity	 represents the	 friction	 force 
between	 two	 cards.	 For	 a new	 deck it is	 low;	 the	 cards	 slide	 easily. For an old 	deck it is high; the cards stick to 
each	other.	 

In Figures 	1 and 	2, a force per unit 	area is 	exerted 	by the top 	ሺmovingሻ wall on 	the 	topmost layer of fluid. It is
directed	in	the	൅ݖ direction.	If the	flow is	laminar	it	has	 magnitude 

ݑ݀
ൌ ߤ ൬  ௪߬ ൰

ݔ݀

i
i

௪
.	 ሺ2ሻ 

ሻ. Th ܦ ሺat ݔ ൌ ng 	wa
i

The	 subscript	 ݓ indicates	 that the	 derivative	 is	 taken	 next to	 the mov
൅ݖ direction,	 the same direction	 as	 the velocity	 of the top layer  of flu

the	 moving	 wall.	 This	 agent expends	 power	 to	 maintain	 the motion.	 The power 

ll
d.  	Work  

is force is in the 
s  	done  by  	whatever  external

agent maintains	 the	 speed	 of
per	unit 	area flowing into	the	fluid 	from the top sur

ݑ݀
ൌ ߤ ൬  ௪ݑ௪ൌ ߬ᇱᇱܲ

face is
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The	 double‐prime	 superscript means	 “per	 unit area.”	 This	 power	 heats	 the fluid.	 It	 is proportional	 to	 the 
viscosity;  in  the  absence  of  viscosity  it  disappears.  Viscosity  represents	 friction:	 the	 conversion	 of relative	
motion	ሺkinetic	energyሻ	into	heat. 

3.4	 Steady	 flow With both top and 	bottom walls 	at rest 	the fluid 	between 	them is also at rest. When 	the 	top 
plane starts	moving	 the fluid	also 	begins	 to move; all	parts	 of it	accelerate.	Once	 the	 top	wall	reaches	speed	 ݑ௪
and	 remains	 at	 that	 speed, steady	 flow	 is	 achieved.	 In	 steady‐state  	 there  is  no  further  acceleration  and  

ሺin	the	ݕ directionሻ	and ܹ therefore no net  width 
cards.	Let like	a	deck of	ݖ din	the ሺ ܮ	 length 

n Figure 2, where	 i. Cons ܹܮ 	the area ܣ	be 
 volume	have ܣ 	middle	The	.ݔ∆

force  	on  any  part  of  the  fluid.  Imagine  a  block	 of fluid	 of
irectionሻ and	 divided into l f thickness ∆ݔ in	 the ݔ direction, 

n the deckሻ. 	This is shown 
ayers o

ider 	three layers of 	the 	fluid 	ሺthree cards i
l layer	 3.	 All
 layer	 is	
the	 top	 layer	 is	 labeled	 1,	 the	 middle	 ayer	 2,	 and	 bottom	 

used	as	a	con r .	This	volume	is	 shown	in	 Figure	3.	 t ol	volume

 ݔ∆
ܹ

 ܮ

Figure	3:	Control	volume 

The	 control	 volume	 is	 delineated	 ሺin	 imaginationሻ	 from	 the	 rest of  the  fluid  layer  by  	 the  six  faces  of  the  
rectangular prism that is the middle layer. 	These six faces 	constitute	 t nt l	 ac .	 In	 steady	 state,	 the he	co surfro e
net	 force	 on	 this	 ሺor any	 otherሻ	 control	 volume	 is zero. This assertion	 requires	 justification.	 If layer	 thickness	 
 	 The	ሻ.ݑ velocity ሺ	 the same	 at	 moves	 all	 volume	control	 the	 then the fluid inside	 in Figure 3 is small enough ݔ∆
control 	volume itself 	can 	then be visualized as 	moving at 	that velocity, with 	the fluid inside stationary. If 	the 
velocity	 is	 constant	 the net	 force	 on	 this	 moving	 control	 volume	 must	 be	 zero,	 else the	 control	 volume	 would	 
accelerate.	 Subsequently	 it	 will	 be	 necessary	 to	 consider a control 	volume which does not have 	uniform fluid
velocity	 throughout,	 and then	 there	 is	 no	 single	 velocity that makes	 all	 the	 fluid	 inside stationary	with	 respect
to	 the	control	surface.	Then	 the 	control	volume	may	as well	be	 fixed	in	space,	with	the	fluid	flowing	through	it.	 
Steady  flow  still  requires  	 that  the  net  force  on  	 the  	 control  	volume	 be	 zero.	 The	 force	 balance	 must now	 be 
interpreted	 as momentum	 conservation.	 Net force equals	 the time 	 rate  of  	 change  of  	momentum.  	 Constant  
momentum  	 requires  zero  	 net  force.  As  fluid  flows  through  a  control  volume  fixed  in  space,  it  carries  
momentum  in  as  it  enters  	 and  out  	 as  it  	 exits.  In  	 steady  flow  the total	 momentum	 in	 the control	 volume	 
remains	 constant:	 the momentum	 flowing	 in must	 equal	 the momentum  flowing  out.  This  is  the  same  	 as  
asserting	 that the 	net force 	on	 the	stationary	control	volume	must	be	zero.	 

3.5	 Force	 balance 		We begin by identifying all the forces 	applied to 	the 	control 	volume. 	The forces are of 	two 
kinds: body	 forces and surface	 forces.	 Body forces are	 exerted	 on	 the	 interior	 of the	 control	 volume	 and are	 
due	 to	 fields,	 gravitational or	 electromagnetic.	 They	 are	 excluded	 ሺassumed	 zero	 or negligibleሻ	 in	 the	 
following.	Surface	 forces are 	exerted 	on the control 	surface 	by 	the 	surrounding 	fluid 	and are 	specified 	as force 
per	unit	area,	or	stress.	These	are	 the	forces included in	the	 present	 analysis.	Surface forces	are	of three	kinds:	
static  	 pressure,  	 dynamic  	 pressure,	 and	 shear	 stress.	 Static	 pressure	 and	 dynamic	 pressure are	 normal	
stresses:	force per	unit	area	acting	in	a	direction	perpendicular	to	the	 control	surface.	Shear	stress is	force	per	
unit 	area acting in a direction parallel to the 	control 	surface.	 Static	 pressure	 exists	 even	 in	 the	 absence	 of fluid	
motion 	ሺof 	course it also exists in a moving fluidሻ. 	Dynamic 	pressure 	and 	shear 	stress occur only n	 a	 moving i
fluid.	 To	 carry out	 a force	 balance	 on	 the	 control	 volume	 shown in	 Figure	 3,	 consider	 each	 of	 the	 six	 faces	 of
the	 control	 surface	 and	 ask: what	 is	 each	 of	 the	 three	 surface	 forces	 on	 each	 of these	 six	 faces? Set the	 vector	 
sum	of 	all	 these	 forces 	to zero 	to	 find	 the	 force	balance.	 Take 	each of the	three	kinds of 	surface	forces	in	turn.	 
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First, there is static 	pressure. 	This is the force per 	unit area exerted by 	the 	pressure of the surrounding fluid 
on 	the six faces of the control volume. The static 	pressure vector	 points	 inward,	 from	 the outside to	the inside 
of	 the	 control	 volume.	 In	 Couette flow	 the	 pressure	 is	 uniform	 throughout	 the	 fluid,	 and	 the	 six	 faces	 occur	 in 
pairs	 for	 which	 the	 pressure forces	 are	 equal	 and	 opposite,	 and thus cancel. This is shown in Figure 4. It is 	not 
necessary	 that static	 pressure forces	 cancel	 in	 steady flow.	 For	 example	 in	 the	 next system	 to	 be	 treated,	 
channel	flow,	they	will	not	all	cancel. 

Figure	4:	Static 	pressure	force	balance
 

Second,	 there	 is	 dynamic	 pressure due	 to	 the	 momentum	 of	

where ߩ   is  	 the  fluid  	 density  	 and ݑ   its  	 velocity.  	 There  is  a  f 
  

i
 ,	ଶൌ ݑߩ½  ௗ݌ s	pressure is
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ll.  	You  	mus
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	 the  le∆ݔ on  ܹௗ݌ orce	 

force	 associated with	 the	 momentum	 o
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t 
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ሺdownstreamሻ f f the	 control	 surface,	 pointing i It is a reaction	 to the 
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f

n	 the	 direction opposite to	 the flow.	 
ing	 the control	 volume.	 This reaction force is	 equal	 and opposite	 to	 the	 force	 on	 

ace,	 as	 shown	 in	 Figure	 5.	 These	 two	 f l	 each	 other.	 There	 is	 no	 dynamic	 pressure	 on	 
the	 control	 surface	 because	 those	 s 	no 

momentum	 o

the	 upstream
 
the	 other	 four	
 

orces	 cance

f
faces	 of

perpendicular momentum. 
llel to 	the flow direction, 	so there i
aces are 	para


Figure 	5:	Dynamic	 pressure 	force	balance 

We	 consider	 two	 kinds	 of	 fluids: incompressible	 liquids	 and	 ideal	 gases.	 The	 dynamic	 pressure	 forces	 on	 a 
control	 volume	 always	 balance	 in	 steady	 flow	 of	 an	 incompressible	 fluid	 in	 a	 channel	 of	 constant	 cross	 
section,  for  	which  the  	velocity  	profile  at  the  upstream  and  downstream	 faces	 of the	 control	 surface	 are the 
same.	 For a	 compressible	 fluid	 such	 as	 an	 ideal	 gas,	 however,	 these  forces  do  	not  	cancel.  	When  we  	come  to  
carry 	out the	 analysis of 	ideal	gas	flow we	will	find	that	there	is	a net	 force	 due	to	 dynamic	 pressure.	 

Third, 	there are 	shear 	stresses on the layers moving 	relative to	 each	 other.	 Only	 the top and bottom	 faces	 in	 
Figure 3 	are in motion 	relative to 	their 	neighbors; the other four	faces	 of	the	 control surface	 move	 at	 the	 same 
speed	 as	 the	 adjacent	 fluid.	 Therefore	 only	 the	 top	 and	 bottom	 faces	 experience	 shear	 stress.	 Consider	 again
Figure 2,	 which	 shows	 three layers  of  fluid  labeled  1,  2  	and  	3.  	The  	 three  layers  	move  at  different  	velocities,  
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fastest  at  the  	 top,  slowest  at  	 the  	 bottom.  The  
middle	 layer	 in	 turn	 exerts	 a force	 on	 the	 bottom	 

	in	Figure	6.	 shown.	The	force	balance	is ଶଷ߬ܣൌ െଷଶܨ 	is	equal	and	opposite:	 ddle	layer	that back 	on the	 mi
 

t 
op  
l 

.	 The	 ଵଶൌ ߬ܣ  ଵଶܨ ayer,  iddle	 l
layer	 exerts	 a	 reaction	 force 

layer  	 exerts  a  force  	 on  the  m
ayer,	 ܨଶଷ ൌ ߬ܣ  ଶଷ.	 The	 bottom	 

ଵଶܨ

ଷଶܨ

Figure	6:	Shear	stress	 force	 balance
 

The	 net f
 	 the  	 zero when  	must be  ଷଶ൅  	orce ܨଵଶܨ
same  	shear  stress  passed  from  the  top  layer  to  	the  m e  ayer  s  a e
bottom 	layer.	 Thus,	in	steady	flow	 the	shear	stress	profile	is	 constant: 

߬ ൌ  ߬ ௪.	 ሺ4ሻ 

This is shown in Figure 7. 	The 	shear 	stress profile is a 	consequence of 	the steady flow 	assumption, for which 
force	balance	ሺzero	net forceሻ	must	 apply	 at 	all	points in	the fluid. 

߬ 

flow  is  in  steady‐state,  thus  ߬ଵଶ ൌ ߬ଶଷ.	 This	 reveals	 that the 
iddl l 	i lso  	passed  from  	the  middl layer  to  	the  

 ݓ߬

 ݔ

 0 ܦ

Figure	7:	Shear	stress	distribution	in	

Couette	flow
 

In	 the foregoing,	 a force	 balance	 was	 applied	 to	 a layer	 of	 fluid	 of	 thickness	 ∆ݔ,	 located	 somewhere	 in	 the	 
middle  of  	 the  fluid  layer.  The  same  	argument  applies  to  the  	 total  fluid  layer.  In  Figure  1,  	 the  force  	per  	unit  
area  	 exerted  by  the  top  ሺmovingሻ  	wall  on  	 the  fluid  is  ߬௪,	 directed	 in	 the	 ൅ݖ direction.	 At steady‐state,	 this	 
force  must  	 be  balanced  	 by  an  	 equal  	 and  opposite  force  in  	 the  – ݖ   direction.  That  force  is  supplied  by  the  
bottom ሺstationaryሻ wall,	 which	 would be	 pulled	 in	 the	 ൅ݖ direction	 were	 it not fixed	 in	 place.	 The	 bottom	 
wall	 therefore exerts	 on	 the fluid	 layer	 a	 force	 per	 unit	 area	 equal	 to ߬௪ and directed in the – ݖ di tion. 	The 

,	where	 the	 stress	 ܦ 	 at ݔ ൌ same argument applies to any  layer  of fluid with  	 top  	 surface  
gure	8.	 iെ This	ሻ.ݔ is shown	in	F ܦ 	thickness ሺthus ܦ between	0	and	ݔsurface	at	any 

rec
is	 ߬ ௪,	 and	 bottom 
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߬௪ 
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ܦ ߬ሺݔሻ 
 ݔ

Figure	8:	Shear	stress	in	Couette	flow	is	

uniform
 

At 	the 	bottom surface of such a layer the stress is ߬ ሺݔሻ 	and force balance	 requires	 that	 ߬ ሺݔሻ ൌ ߬௪.	 This	 is	 true	 
for	 any	 value	 of	 ݔ;	 thus	 the	 shear	 stress	 is constant	 throughout	 the	 fluid	 layer.	 The	 foregoing	 illustrates	 that 
different  	 control  	volumes  can  	be  used  to  find  the  	 shear  stress  profile  in  	 the  fluid.  It  	 comes  from  the  steady  
flow	 condition,	which	is	 that	 there	is	zero net	force	 on	 any	control volume of	 the	fluid. 

3.6	 Laminar	 flow When the fluid flows like a deck of cards, 	one layer sliding over the 	other without mixing, 
momentum is transferred from one layer to the next only by 	the sliding	 friction	 at	 the interface between the	 
layers.  The  shear  stress  is  then  given  	 by  ሺ1ሻ.  	 When  this  is  combined  with  ሺ4ሻ,  	 the  	 velocity  	 profile  is
determined: 

ݑ݀ ௪

ߤ
߬

ൌ 
ݔ݀

ݔܥ. ൅௪

ߤ
߬

ݑ ൌ  

ሺ5ሻ 

ሺ6ሻ 

first  	condition  determines  that  	The at	 ܦ.  ݔ ൌ  ௪There	are two	conditions imposed: ݑ ൌ 0 at	ݔ ൌ 0	and ݑ ൌ  ݑ
ൌ 0.	The	second	condition	is	that	 ܥ 

௪߬ܦ 
ൌ௪ݑ .	 ሺ7ሻ
 ߤ

The fluid velocity	ݑ is constrained	to be ݑ௪ at	 the	 top	 wall	 because	 the	 relative	 velocity	 must	 be	 zero—the 	no‐
slip	 condition. An	 external	 agent	 sets the	 top wall	 velocity	 to ݑ௪.	 In	 order	 to	 do so	 it	 must	 supply	 sufficient	
power  to  	 set  the  	 shear  	 stress  at  ߬ ௪.  There  is  	 perhaps  a  feedback  	 control	 mechanism monitoring the	 wall	 
velocity	 and	 governing	 the power	 applied	 to pull	 the	 wall.	 For	 given  velocity,  more  	 power  is  required  for  
fluids	 of greater	 viscosity.	 The	 velocity of the	 fluid	 between	 the	 two	 planes	 increases linearly	 from	 zero	 at the 
bottom 	plane	 to	 ݑ௪ 	at	 the top plane: 

ሺ8ሻݔ.௪

ܦ
ݑ

ݑ ൌ  

This	velocity profile	is	 shown	in	Figure	 9.	 
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Figure	9:	Velocity	profile in	Couette flow 

3.7	 Turbulent flow If the top wall velocity is high 	enough the flow will cease to be like a deck of cards. Instead 
the	 layers	 of	 fluid	 will	 mix;	 this	 is	 turbulent	 flow.	 Mixing	 means	 the	 cards	 emit	 pieces	 of themselves	 into	 the 
neighboring cards,	 and	 absorb	 pieces	 from	 the	 neighboring cards.  The  mixing  length  is  the  distance  	 over  
which	 two	 cards	 can	 exchange momentum,	 and	 is	 the thickness	 of a	 layer	 ሺa	 cardሻ.	 In	 steady	 flow	 the	 shear	 
stress  	 profile  is  still  constant  ሺit  must  	 be  in  	 order  	 that  the  net	 force anywhere in	 the fluid be zeroሻ.	 This 
requirement is independent of whether	 the	 flow	 is	 laminar	 or	 turbulent.  	 The  	 turbulent  	 velocity  	 profile,  
however,  	 need  no  longer  be  linear.  	 The  linear  velocity  	 profile  came from the	 laminar	 shear	 stress	 law	 ሺ1ሻ	 
which	 stipulates	 a linear	 relation	 between	 shear 	stress	and	 velocity	gradient.	This	 is valid	only	at	 low	 velocity.	 
At high velocity 	the 	non‐linearity of the true 	relationship between	 shear stress	 and	 velocity gradient reveals	
itself. 

The	 problem	 of	 understanding	 turbulent	 flow	 in	 a fundamental	 way  is  a  famous  one,  	 unsolved  at  present.  
Substantial  insight  is  gained,  	 however,  from  	 the  	 Prandtl  mixing  length	 model.	 According to	 this model,	 the	 
shear	stress	in	turbulent	 flow	is	 given	by 

ݑ݀ ݑ݀
ሺ9ሻฬ

where ߩ 

ଶ݈߬ ൌ ߩ ฬ
ݔ݀

i

,	
ݔ݀
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s the density	 o
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it  	 transfers  	momentum  in  	 the  direction  
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 	i
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layers, 	and 	thus exper
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 i
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;
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with	 exper

useful	insight.


itted from i
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l
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l  	provides 
  
i

i

s	 that simple	 and	 intuitively	 reasonable	 assumptions	 about the	 mixing	
 
ment.	 Although	 not	 fundamental	 in a reductive sense, 	 the  	Prandtl  mi 
x 


Take ሺ8ሻ	 as	 given	 and	 combine	 it with	 the	 shear	 stress	 profile	 ሺ4ሻ.	 If a further assumption	 about ሺfor ݈
example	 an assumed	 functional	 dependence	 on	 distance	 from	 the	 wallሻ	 be made,	 a	 differential	 equation 
results from which the 	velocity 	profile 	can 	be determined. This method	 is	 not here	 pursued	 for	 Couette	 flow	
but is	applied	to pipe	flow	in	subsequent sections. 

3.8	 Reynolds	 number As 	the fluid 	velocity increases, flow 	transitions from laminar	 to turbulent. The velocity 
at  	which  this  transition  	 takes  place  is  determined  	 by  a  dimensionless	 number	 that represents the ratio	 of
inertial 	to	viscous	force,	the	Reynolds	number:	

Inertial	force
ൌ ܴ݁

The	dimensions	of	inertial force	 are 

ሺ11ሻ.	ିଵ݉ݐݒൌܽൌ ݉ூܨ

The	dimensions	of	viscous	force	 are 
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݈
 ݑ݀

ൌ ߤ ൌܣ  ߬௏ܨ ൌ ߤ ܣ 
ݔ݀

ଷିݐଵ.	 ሺ12ሻ 

Thus:
 

ሺ13ሻ 
 ݈ݒ݉

ൌܴ݁ ଷߤ 
.	 

݈

Let	 ݒ be 	a	veloc
 	be a	length 	character ܦ ity	and 

The	 fluid	 property ߥ ൌ ߩ ߤ i iffusivity, also	 known as	 kinematic	 viscosity.  It  	 has  	 units  of⁄ s	 the	 momentum	 d
diffusivity	 ሺm2 s‐1ሻ,	 thus	 ݒ/ߥ has	 units	 of	 length	 ሺmሻ.	 The	 momentum	 diffusivity	 is	 a	 property	 of	 the fluid,	 the 
same	for any	geometry	 or flow	 conditions,	whereas	the	average	velocity 	depends	on	the	velocity	profile	which 
varies	 with	 geometry	 and flow	 conditions.	 For	 Couette	 flow	 between	 infinite walls,	 an	 essentially	 one 
dimensional	geometry,	it is 

஽

ሺනݔሻݔ݀ ݑ  
ܦ
1

ݒ ൌ  
଴ 

istic of 	the 	system	 under	 study;	for	 example	 in	 Couette	 flow	ݒ i
the	average	velocity 	and	ܦ 	is	the	distance	between	the	walls.	Then 

ܦݒ
ൌ

ߤ
 ܦݒߩ

ൌܴ݁
ߥ
.	 

s
 

ሺ14ሻ 

.	 ሺ15ሻ 

For	 laminar	 Couette flow,	 with	 velocity	 profile	 shown in	 Figure 	9, ݒ   ൌ  	 velocity	 the	 flow	 turbulent	 In	௪⁄2.ݑ 
profile,  	and  	hence  the  	average  	velocity,  is  different.  	The  	Reynolds number	 is	 a dimensionless	 version	 of	 the	 
average velocity. It is the same for 	dynamically similar flows, 	no matter 	what the fluid, 	whether liquid or gas. 
It	 is	 known	 empirically	 that	 there	 is	 a critical	 Reynolds number	 at	 which	 the flow	 transitions	 from	 laminar	 to 
turbulent,	and 	this	 critical value	is	 

ሺ16ሻൎ 2100.	 ௖ܴ݁

depends	only	on	veloc loc ing  	 to  ܴ݁ Note that	 for	given	fluid	and	geometry ity.  	The  	average  	ve ity  correspond
the	critical	Reynolds	number	is	

௖ܴ݁ൌ⁄ܦ  ݒ௖ߥ

3.9	 Channel f is
around	symmetrically	placed	walls	the	with	now	10,	Figure	in	ൌ ܴ ሺwhere ܴredrawn ܦ/ the	ݖ axis,	at ݔ ൌ േ

2ሻ.	 

.	 ሺ17ሻ 

low A  	 channel  is  like  Figure  	1,  except  	 that  both  	 top  	 and  	bottom  walls	 remain	 stationary.	 It	 


	ݔ 

Figure	10:	Channel	flow 

	ݕݖ ௖ݑ  ܦ

ݑ
൅ܴ 

െܴ 

In	 this	 system flow	 results	 not	 from	 a moving	 wall,	 but	 from	 a	 pressure	 gradient. If	 the	 pressure	 gradient	 is	 in	
the	 ݖ direction there	 will	 be	 flow	 in	 that	 direction. Since flow is from high to low pressure it is in the direction 

	 the channel	ሺݔ ൌ 0ሻ	the	 	walls the  	vel ity  is zero. At the  	center o. At the ,ent ݀݌⁄݀ݖ  െ  f	 the  	negative gradi
velocity	is	maximum.	The	velocity	profile	in	laminar	ሺlow	velocityሻ	flow	is	parabolic:	 

൨.
ଶ
ቁ
ܴ
ݔ

൤1 െ ቀ௖ݑ ൌ ݑ

f 
o 
 oc 


ሺ18ሻ 
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To 	prove 	that this is the case, first find 	the 	shear 	stress profile in the channel, 	then combine it with 	the law of
laminar	 shear ሺ1ሻ	to	 find	 the velocity	profile.	Find	the 	shear	 stress	 profile	from	 the	 steady	 flow	 condition:	 zero 
net	 force	 on	 any	 control	 volume.	 A convenient	 control	 volume	 is a	slab of thickness 	ݐ, centered 	on the flow ሺݖሻ 
axis.	The	 top	 of ⁄ 	and	 the	bottom	at	 ݔ ൌ െ 2 ݐ	the	slab	is	at	 ݔ ൌ ൅ 2 ݐ ⁄ .	Let	the	 width	be	ܹ 	in	the	ݕ direction	 and	 

n	the ݖ direction.	This	is	shown	in	Figure	11.	 iܮ length	 

	ݔ

൅ܴ 

 ݐ

 ܮ

െܴ 

൅ݐ  2⁄
	ݕ 
ݖ 

⁄െ ݐ  2

Figure	11:	Control	volume	for	channel	

flow
 

To 	perform 	the necessary force balance 	on thi
contribute. 	The 	normal stress is the stati

lume, note first	 that both normal	 and	 shear	 stresses 
he 	case of Couette fl it 	was 	assumed constant, but 

on.	This 	gradient is	denoted	by	݌ 

	vo

t


s control
nIc pressure. 

g irad ent
ow
 

for	 channel	flow	it	is 	assumed	to	have	a	co anst nt 	in	the	flow directi
 ᇱ:	
 
ᇱ݌ ൌ ݌݀⁄ݖ݀ െ ሺ19ሻ.	
 

ݖ ൅	is݌݀⁄ݖ݀ negative	a	s ݌ number;	 
es	“per 	unit	length.”	In	 the	 transverse	 directi

0.	 As	 was	 the	 case	 in	 Couette	 flow,	 the	 force	 balance	 on	 the	 control	
pressure,	 dynamic	 pressure,	 and	 shear	 stress.	 Because	 the	 fluid is
components	 on the upstream	 and	 downstream	 
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es  	 that  it  	points  in  the  – direction, opposing z
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ൌ ௗ൅݌ flow ܨ௨ܨ direction	due	to static	pressure	is	 
anced by	 the	 net shear	 force	 on	 the	 top	 and	 bottom	 faces	 ሺthe	 faces	 para

shown	in	Figure	12. 
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Figure	12:	Force	balance	for	 channel	flow
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the	 flow direction	 due	 to	 shear	 stress	 i i f  all  four  force  	 components  to  ng the  	 sum  o. Sett ൌܹܮ  െ2߬  ௕൅ 	s ܨ௔ܨ
zero	yields:

ଵ݌
ଶ

߬ ൌ  ሺ20ሻ.	|ݔ|ᇱݐ ݌ ൌᇱ 

The	shear	 stress	is	 zero	 at	the	 center of	 the flow	 and increases	linearly	toward	the	walls.	At	a	wall	it is	 

ሺ21ሻ ܴ,ᇱൌ ௪߬݌

thus	the	shear stress	profile	is	

|ݔ|
.	
ܴ

߬ ൌ  ߬ ௪ ሺ22ሻ 

This	is	shown	in	Figure	13.	 

߬ 

߬௪ 

ݔ
െܴ 0 ൅ܴ 

Figure	13:	Shear	stress	distribution	in	
channel	flow 

The shear stress 	prof le 	has 	been 	derived 	on only one 	assumption,	 steady	 state, and	 is	 valid	 for both laminar 
and	 turbulent	 steady	 lows.	If 	we	further	assume	laminar	flow	the	velocity	profile	follows	by	 the	use of	ሺ1ሻ: 

|ݔ|
.	
ܴ

i
f

 ݑ݀
௪ൌ ߤ 	 ߬  
ݔ݀

ሺ23ሻ 

Integrating	 ሺ23ሻ and	 using	 the condition that	 the velocity	 is	 zero	 at	 the	 wall	 gives	 the	 expected parabolic	 
profile	ሺ18ሻ.	Further,	we	find	that the	center	velocity is	 

ଶܴ
ߤ
 ݌

ൌ 
ܴ
ߤ
௪߬ൌ௖ݑ

ᇱ 

ሺ24ሻ.	
 

The	average	velocity is	found	by	substitut
ଶܴᇱ 
.	

ߤ2
݌

ൌ௖ݑ
1
2

ݒ ൌ  

ing ሺ18ሻ	into	ሺ15ሻ	and	 carrying	out	 the integration,	with the result: 

ሺ25ሻ 

	term ଶܴ As	expected	the	average	velocity increases	with	pressure	gradient 	and 	decreases with viscosity. 	The 
emphasizes the 	role of the fixed 	walls: they 	are 	the 	source of losses	 in	 the	 flow.	 The	 farther	 the	 fluid	 can get 
from 	the	walls,	the	faster	it	can	flow.

4. PIPE	 FLOW 

Pipe	 flow is	 just	 like	 channel	 flow,	 if cylindrical coordinates be substituted for	 Cartesian.	 We consider	 a pipe 
of 	radius	ܴ centered	on	the	ݖ axis,	as	shown	in	Figure	14.	 
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 ܦ ݖ

 ܴ ݑ

 ௖ݑ

 ݎ

Figure	14:	Pipe	flow
 

A	force	balance	on	a 	control	 volume	of
 	shown	in	Figure	15.	 is ܮ 	radius	ݎ and	length 

௦ܨ 

௨ܨ  ௗܨ
 ݎ

 ܮ


ݖ 

Figure	15:	Force	balance	for	 pipe	flow
 

The	 f
negative s
direction	 due	 to	 norma
net	value	is	 zero.	Net 	dynamic	pressure	is also zero	 

At 	steady state, 	the 	net l itudi l
ൌݎܮ.߬ െ߬2ߨ ௦surface.	This	force	is	ܨ 

three	force	components	to	zero	yields	the	shear	stress:

ଵ݌.ݎ
ଶ

߬ ൌ  

on	 the upstream	 ଶݎߨ଴ൌ 	orces ܨ௨݌ are	 
s gn fi t	poiௗܨ ign	on	 i i es  	 that  i nts  i

ൌ ௗ൅݌  	is	stress	l ܨ௨ܨ

െ ሺൌ݌଴݌ െଶݎߨ௅݌ൌ െௗܨ ace and 
n  	 the  	 – ݖ   direction,  	opposing  the  fl

force	 i.	There	is	also	normal ଶߨܮݎ
for	incompressible	flow. 

orce 	has to be 	balanced	 by	 the	 net shear	 force	 on	 the	 cylindrica
	all	 	axis.	Setting the	sum	of 	ሺzሻ 	from the flow ݎ s the shear stress at	radius 

f
 ᇱ downstream.	 The	 ଶݎߨሻܮ 
ow.  	The  net  force  in  the  flow  
n	 the	 radial	 direction,	 but	 its 

l 

ᇱ 

l	f
ong na

The	shear	 stress	is	 zero	 at	the	 center of	 the flow	 and i

ଵ݌
ଶ

ൌ௪߬

norma
i

ᇱ ሺ26ሻ 

ሺ27ሻ

ncreases	linearly	toward	the	walls.	At	a	wall	it is	
 

ᇱܴ,

thus	the	shear stress	profile	is	 

߬ ൌ  ߬ ௪ ሺ28ሻ 
 ݎ
.	
ܴ

The	shear	 stress	profile	is	shown	in	Figure	 16.	It	is	valid for 	steady	 flow 	of	any kind, laminar or 	turbulent.	
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߬ 

߬௪ 

0

 ݎ

ܴ 

Figure	16:	Shear	stress	distribution	in	pipe 
flow 

.	The	center ݎ th ݔ replaced	by	 win ሺ18ሻ  inar	pipe	flow The	 laminar	velocity	profile	 is parabolic as  i4.1	Lam
velocity	is:

݌
ൌ
ܴ
ߤ
௪߬ൌ௖ݑ

ଶܴᇱ 

 ߤ2
.	 ሺ29ሻ 

The	average	velocity is	 
ோ

ݒ ൌ  
1

∙ݎ݀ݎ ߨ2  ሻݎሺන ܴߨଶݑ ଴ 
.	 ሺ30ሻ 

Using ሺ18ሻ	with	ݔ replaced	by	ݎ yields	 
ଶܴᇱ 
.	

ߤ4
݌

ൌ௖ݑ
1
2

ݒ ൌ  ሺ31ሻ 

Note that	 the center and average velocities	 for	 pipe flow	 are half	 the corresponding	 values	 for	 channel	 flow,	 a 
result	of	 going from a one 	dimensional	 to a	 two	 dimensional	 geometry.	 

fl ln	 laminar	
fl

ocity  	connects  pipe  
lation	 between	 power	 

ther	 as volume	 or	 mass	 

flow  to  	pressure  gradient,  leading	 to	 
lost	 and	 power	 transported	 in 

4.2	 Pipeline	 power	 
the resistance law f
a	 pipeline.	 The flow	 through the p

,	times	the	average	velocity ଶܴsectional	area	of	the	pipe,	ܣ ൌ  ߨ

ሶܸ

i
or pipe i

i

ow 	The  	average  	ve
ow. Th 	in turn leads 	to a re

pe is specified ei
s
 

flow. Volume	 flow is	 the	 cross‐
:	
 

 ൌ ሺ32ሻܣ.ݒ

ሺ33ሻ.	ሶܸൌ ߩ  

The	mass flow	is the	densi 	times 	the	vol flty :	ume	 ow

ሶ݉

The	pressure	gradient required	to	establish	a	given	laminar	volume	flow	is:	 

ൌ ൬
ߤߨ4 ሶ൰ ܸଶܣ

ᇱ݌ .	
 ሺ34ሻ 

f
i

 	is	low ݌
ssi

ᇱ ሶܸThe	 power	 per	 unit	 length	 of	 pipeline	 to	 maintain	 the	 
fluid	and	assuming	isothermal	conditions 	that	heat	is d

is ܮ The	total	power	lost	in	a	pipeline	of	length 

௟ܲ

. This 	power is lost: it 	heats the 	transported 
pated to 	the 	environment 	surrounding 	the pipeline.
 

ሶ ߤߨ4ܮ
ܮ ൌ ൬  ൰ܸଶܣ
ሶܸᇱ݌ ൌ	 ሺ35ሻଶ.	 

The power	 transported	is

,	ሶܸ݄ൌ ߩ  ሶ݉ൌ ݄௧ܲ

is	the	specif ic	enthalpy o i݄ where	 f combust
i lpy  	 dens l݄ߩ  ity  	 ሺentha

ሺ36ሻ 

py 	per 	unit 	massሻ of the fuel 	carried in the pipeline 	and 
umeሻ.  	 The  	 relation	 between	 power	 lost	 and	 power s  the  entha

transported is:	 
py  	 per  	 un 
i 


l
l

on 	ሺentha
t  vo
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 ܮߨ4
ൌ ଶܣ

ߤ
௟ܲ

group	Theܦସ 64/ܮ  ߨ
 	group	The	ሺpipeline.݄ߩଶሻ ߤ/

transmission	 l

 ܮ64
ൌଶ௧ܲଶሻ݄ߩሺ ସܦߨ

ሺ37ሻ
 ߤ

.	ଶ௧ܲଶሻ݄ߩሺ 

i

f

operate.  	 Th s  s  	 an  opt m ven  by  	 the  	 cost  o
diameter  is  always  	 one  	 that  results  in  flow  rates  that  	 are  f
pipelines	is 	always	 turbulent.	We turn	next	 to	 modifying the f

s	 a figure of merit	 with units m3 that	 characterizes	 the geometric structure of a given	 
is a fuel 	materials figure of 	merit, with 	units W m‐3.	 For any	 given	 fuel	 pipeline,

osses	 are	 minimized	 by	 maximizing these	 two	 parameters. This	 result,	 however,	 assumes	 
ሻ,	a	 ܮength	ሺ lሻ	and	 ௧ܲven energy	transport	rate ሺ n	practice.	For	a	gis	never	the case ilow,	which	 

d ts  n ower	 losses	 but	 costs	 more	 to	 build	 and	 	 be chosen. Larger  ሻ must ameterܦ  ሺ  i 	 l
i i i ization  	 problem  	 dri

i
laminar	 pipe	 
pipe  di  iameter  resul 


f  the pipeline.	 As	 it	 turns	 out, the optimal	 
ar  beyond	 the	 laminar	 flow	 limit.	 Flow	 in	 fuel	
oregoing	analysis	for 	the	case	of 	turbulent	flow.
 

4.3	 Friction factor 	 	 The  friction  factor  is  central  to  	 the  	 analysis  of  l
dimensionless	number	proportional	to	the 	pressure	 gradient.	It	 is	def

௪߬ൌ ݂

osses  in  	 turbulent  pipe  flow.  It  is  a 
  
ined	by	 

ൌ 
߬௪ 

ሺ38ሻଵ
ଶݒߩ

ଶ
ௗ݌

where	 ߬ ௪ i
The	 wall	 stress 

mes  wheflow  	 regi
gradient.	 As	 de

భൌௗ݌ s	the shear	stress at	the wall	and 
మ
 ଶݒߩ

is	 proportional	 to	 pressure gradient	 according	 to 	ሺ27ሻ; reca s equat on s va n a
ther  laminar  or  turbulent.  	 Therefore  the  friction factor is	 also proportional	 to pressure 

s	 the Darcy‐Weissbach‐Moody s	 the Fanning	 friction	 factor.	 An alternative i݂ ned above 
actor	 ߣ. The	two 	are	 related	by 

is	 the	 dynamic	 pressure	 ሺor	 kinetic energy	 densityሻ.	 
ll that 	thi i 	i lid i ll 

fi
 i

friction	 f


ሺ39ሻ.	݂ߣ ൌ 4  

Like  	 the  Reynolds  number  	 the  friction  factor  is  a  ratio  of  viscous	 to	 inertial	 forces. The	 Reynolds	 number	 is
proportional	 to	average	velocity,	 the	friction	factor	 to	wall	shear 	and hence	pressure gradient.

4.4	 Resistance law 		The 	relation between 	pressure gradient 	and 	average 	velocity is	 a relation	 between	 friction	 
factor	 and	 Reynolds	 number.	 This is	 the fundamental relation,	 the	 resistance	 law	 that we	 need	 to	 analyze	
losses  i i 	 fl 	 It  is  	 the  	 equi lent  of  	Ohm’s  l for  the  flow	 of	 lectric current.	 Graphically	 the law	 is 

ߣ ܴ݁ vs. most o

n p pe  ow.  va
ften 	presented as a log‐log plot of

17,	a	schematic	version of	 a	 Blasius‐Stanton‐Moody	 diagram.	 
;
 i s	shown n Fi. Th ܴ݁ log og ߣ vs. that 
aw  
is, as 	a plot of	l

e
s i i gure
 


	ߣ 

10଴ 

10ିଵ 
 ௖ߣ

10ିଶ 
 ௧ߣ

10ିଷ 

௖ܴ݁ ௧ܴ݁

10ଶ 10ଷ 10ସ 10ହ 10଺ 10଻ 10଼ 

Figure	17:	Blasius‐Stanton‐Moody
diagram 

l,	the	critica ௖ܴ݁ .	௧ܴ݁ 	and ௖ܴ݁ There	are	two	breakpoints	in	the curve with	corresponding Reynolds	numbers 
,	 the transition	 ௧ܴ݁ mes.	 Its	 value	 is	 2100. flow regi  

ܴ݁ 

Reynolds  	 number,  divides  	 the  laminar  and  turbulent  
Reynolds 	number, divides 	the 	turbulent flow regime i
dominated by	 wall	 roughness	 at	 sufficiently	 high	 Reynolds	 number. 	The 	wa

	the 
,	the	rms	value	of	the	deviat 
	ratio of i

the	wall	surface rom	 ݁ length parameter	 
character zed by 

f i
i th s 	parameter 	to the p

determined 	by	this parameter;	a formula	will	be	subsequently	derived.	

,	the	typical	range for	 ௧ܴ݁ ൐ ܴ݁ ng case	is	 
est  	 and  also  instructive  to begin	 with the 

Reviewing ሺ28ሻ	to	ሺ31ሻ,	one	observes	that the	average	velocity is	direct y	related	to wall	shear	stress: 

nto smooth wall	 and	 rough	 wall	 domains. All	 flows	 are
ll roughness is 	characterized 	by a 
ts	 average level.	 The	 roughness	 is	 
	trans 	The .ߝ ݁/ܦ ൌ 

ion	 of
ipe diameter
:
 ition Reynolds 	number i

In	 developing 
.	௖ܴ݁ ൏ ܴ݁ aminar range, 

s
 

For	 power	 engineers	 the most interesti

the  resistance  law,  however,  it  i i 


fuel	 pipelines.	 
ls  	 eas 


l
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߬௪ ൌ
 ݒߤ4
.	

ܦ

	to	obtain /4/ܦݒߤ and	ܴ݁ ൌ ߣ	 ݂ ߩ ൌ 	this in	ሺ38ሻ	and	use the	definitions Substitute 

ߣ ൌ  
64 
.	 

ܴ݁

ሺ40ሻ 

ሺ41ሻ 

ሻ	for	laminar	flow.	In	a ܴ݁ent ሺߣሻ to	fluid	velocity	ሺ This	is the Hagen‐Poiseuille	law 	that relates pressure 	gradi
Blasius‐Stanton‐Moody	 diagram	 such	 as Figure 17 it appears	 as a straight	 line with	 slope ‐1.	 Compare the 
same	law	written	in	dimensional	 form: 

ൌ ൬
ߤ16

ሺ42ሻ൰ .ݒ  ଶܦ
ᇱ݌ 

in  dimensional  form  	 the  direct  proportionaliIt  is  striki 
 ient  and 
  ng  	 that,  	 whereas  
stand	 in	 ܴ݁ s	 evident,	 their	 dimensionless	 surrogates	 ߣ and	 average	 velocity i

because	 the	 Reynolds	 number	 is	 directly	 proportional	 to	 the	 velocity,	 whereas	 the	 frict
proportional	 to	 the	square of the	 velocity.	 This	 gives	 Figure	 17	 a non‐intuitive	 character: the	 pressure	 drop	 

increaሻܴ݁as	the flow	rate parameter	ሺ ses

	f ing 	procedure note 	that the res

ty  	 between  	 pressure  	 grad
inverse	 relationship.	 
ion	 f


It	 is	 
actor	 is	inversely 

parameter	ሺߣሻ	decreases .	
 

istance law was	 obtained by 
in turn	 came	 from	 the	 

;
ocity ሺݒሻ and wall	 shear	 stress	 ሺ߬௪ሻ	 which	 
is	 fundamental to an 	 analysis  of  flow  phenomena.  	 Therefore  	 turn  
in	all	pipe flow 	regimes:	a	universal	velocity profile.	 

orego
4.5	 Universal velocity profile Review 	the 
finding	 the relation	 between average vel
velocity	 profile ሺݑሻ.	 The velocity	 profile 

ng	a	velocity	profile 	valid attention to derivi


Before	deriving it	we	state	the	result:	 

െ ݐ  ܴ൏ݎ or 0 ൑  f൰ 	
ܴ ݎ െ

ln ൬ 
1
 ߢ

ۓ

ܴ ଶ
ቁ

∗

ܴ
ݎ
ݕߛ

൤1 െ ቀ 
 ∗ݕ

ݑ
 ∗ݑ
ൌ ሺ43ሻ 

ە
۔ ൑ ݎ ൏ ܴ. െܴ forݐ   ൨  

The	 cross‐section	 of 	the	 pipe	 is divided 	into	two	regions, 	as shown	in	Figure	18.	
 

0 ܴ 
ݐ  ݎ

Figure	18:	Turbulent	core	with	annular	

laminar	layer
 

The  pipe  	radius  i 

the	 wall	 is	 the l


l
l
l
l

െ ݐ  ܴus  . An  ܴs
aminar layer.	 The	 laminar	 layer	 thickness	 is	 ݐ. 

over	 the	 entire	 cross‐section	 of	 the	 pipe	 and	 there	 is	 no	 turbu
to the	 critical Reynolds	 number	 ሺܴ݁௖ሻ  the  turbulent  core  beg

er as the 	average ncreases. At hi
t 	approaches 	the s

	inner  circle  of  radi 
  i 
 t 
s 
  
laminar f
 	the l
 i

i
n
l

he  turbulent core,	 and	 an outer	 annulus	 bounded	 by 
am nar layer 	extends ܴ ow ݐ ൌ I l
oc i

;

l
i

to	 the	 transition	 Reynolds	 number	 ሺܴ݁௧ሻ.	 From	 that	 point	 on	 wall	 roughness	 dominates	 the	 
layer	 ceases	 to	 shrink as	 the	 velocity increases;	 it remains	 fixed	 at a value	 on	 the	 order	 of	 the	 wall	 roughness.	 

ve sts of 	two pi : in the l i 	layer 	and 	one in the turbulent core. 
ust the 	parabo

ent 	core. 	At an 	average 	ve

ins  to  develop.  	 The  lam 


gh velocity, it 	shrinks 	to a th


ty 	correspond ng 
nar  layer  	 thickness	 
in layer 	next to 	the 

ሻ.	The	average	velocity then	corresponds	 ݁rms roughness	ሺ 
flow.	 The	 laminar 

becomes sma

ll. 	Eventua
wa


fluid 	velocity i
i f the 	way
 i
 ll
ze o


The universal
The pi in 	the 
Prandtl’s	logarithmic	profile.	 

ity 	profile 	consi
aminar layer i jece
 
l
l
oc

s
 
eces one am nar 
lic 	profile 	we already	 know.	 The	 piece	 in	 the	 turbulent core	 is 
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4.6	 Logarithmic	 velocity profile 		This is 	derived from Prandtl’s mixing length 	model of turbulent	 shear	 stress	 
ሺ9ሻ	combined	with	the	following	assumption	about	 the mixing	length:	 

ݎ ܴඥ݈ ൌ ݕߢ ܴ⁄1 െ ඥൌݕ ݕߢ  ⁄ 

is	the	radia from	the	wall	rather	than	the	center of ݎ െ ܴ where	ݕ ൌ 
i 	In devel i

ሺ44ሻ 

l	
 wall distance	 ሺradial distance measured	 
ሻݎ	ݕ	is more	suitable	than	the radial	center	distance	ሺ 

uenced by 
ics o turbu

	the 
ent 
	wa
flow 
l l i

f l
l . Prandt assumes	 that near the wall,	 the mi ng	 length	 

increases	 linearly	 going	 away	 from	 the	 wall	 ሺtoward the	 centerሻ.	 The	 proportionality	 s	 ߢ, the	 Kármán 
le	near	the	wall ݈constant, a  dimensionless number. 	  	The assumpt

unct	near ሺthe 	but 	not too ൎ 1ሻ, ܴ⁄ݎ ሺwhere	
profile	 all	 the	 way	 to	 the	 pipe	 center.	 The	 Prandt

⁄ ሺthus	 creat
is no	 on	 
ݎ ܴඥlength	ݕߢ with	the factor	 

the p peሻ. 
because turbul

op
ence i

ng 	the mechan
ly infls strong
 x


factor	 i
ii 
on 
 ൌ ݕߢ   gives  a  l

on has a si l ilog f

ogarithmic	 velocity prof
ty a 	zeroሻ. 	Prandtl 	then extrapolates 	thi

lent 	to augmenting 	the linear mi
ng	 length	formulaሻ	 as 

t
ar
 s
i ngu
l	 extrapolation i

ng	a	 non‐linear	 mi i
t except	 that 

i
 xing
 
is 	an
 

s equ
va

i
 in	 ሺ44ሻ above. 	This
x


justificati

ustificati 


for	 i
 i
ad	 hoc	 assumption:	 there 
For  present  purposes  	 that  is  j
von Kármánሻ to replace 	this assumpt

ength that 

t results	 in	 good	 agreement with experiment. 
on  	 enough.  	There  	 are  	many	 attempts	 in	 the	 literature	 ሺstarting with 
th one that 	has 	a more satisfactory	 theoreti l	 justification.	 But no	 
s 	both s

ion wi

i
theory of the Prandtl mixing l

yet emerged.	

ca
imple 	and in agreement with experimental	 observations	 has	 

Combining ሺ9ሻ,	ሺ28ሻ,	and	ሺ44ሻ	the	result is:	 

.	 ሺ45ሻ 
ݑ݀
൬ଶݕଶൌ ߢߩ  ௪߬ 

ଶ

൰
ݕ݀

It	is	natural	to normalize	the 	velocity	ݑ 	in	this	equation	using	the fri ti n l ty	 ଶ,	that	c ve ߬ 	by	defined	 ∗ݑ	 ௪ ൌ o∗ݑߩ oci
is	 

 ሺ46ሻ 	.ߩ⁄ൌ ඥ߬௪ ∗ݑ

A	corresponding	natural	length 	measure	for	normalizing distances	 is 	the	fri ti le gth	defined	by	 c non

∗ݕ ൌ ߥ  ሺ47ሻ 	.∗ ⁄ݑ 

Recall that ߥ is the momentum diffusivi

ߣ ∗ݑ 8ඥൌ2⁄݂ඥൌ
 ݒ

⁄ ,	 

ൌ
2⁄݂

1

ඥܴ݁ 
ൌ∗

ܦ
ݕ

ty 	ሺalso 	known 	as kinematic	 viscosityሻ	 with	 units	 m2 s‐1.	 Use	 ሺ14ሻ,	 ሺ38ሻ	 
and	thus	express	the	 fricti length	 ௪,	and	ߣሻ to	eliminate	߬ ݂ ,ܴ݁ and ሺ39ሻ	ሺthe	definitions	of on	 velocity and	 in

the alternative forms: 

ሺ48ሻ 

1 

⁄ 
.	 ሺ49ሻ

ߣ 8ඥܴ݁

th 	these normaliz ng 	factors 	the	dimensWi
 i
 ionless velocity and radial	wall	distance	are:	
 

⁄

ାݕ ൌ ݕ ∗ ⁄ݕ 

ାݑ ൌ ݑ  ሺ50ሻ ∗ݑ 

.	 ሺ51ሻ 

In	terms	of these	dimensionless	variables	ሺ45ሻ	is 

ା݀ݑ 

ା݀ݕ
1

ൌ 
1
ାݕ
.	 ሺ52ሻ

 ߢ

The	solution	is	 

ାݑ ൌ ߢ
1
ln ାݕ ൅ .ܥ  ሺ53ሻ 

Let ݕ଴ 	be the distance from the wall at 	which ݑ 	would 	be zero if the logarithmic profile	 continued that far. Let 
 :zero‐distance	normalized	the	be ߛ

ߛ ൌ  ሺ54ሻ 	.∗ݕ⁄଴ݕ 
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In	terms	of this	parameter,	the	turbulent piece	of 	the	velocity 	profile	is 

 ା ൌݑ
ߢ
1
ln ൬
ݕ
ߛ
ା൰. ሺ55ሻ 

This	is	valid	in 	the	 turbulent	core,	 ߙ ൏ ݕା ൏ ܴା,	where	

ߙ ൌ ݐ  ∗ ⁄ݕ

∗ൌ ܴ ାܴ⁄ݕ

The	centerline	ሺmaximumሻ	velocity	is	 

ାܴln ൬ 
1
ߢ

ൌ௖ାݑ  ߛ
൰.	 

ሺ56ሻ 

.	 ሺ57ሻ 

ሺ58ሻ 

The velocity	 at	 the boundary 	of the laminar	layer	is 

 ௧ା ൌݑ
ߢ
1
ln ൬
ߙ
ߛ
൰.	 ሺ59ሻ 

The	logarithmic	velocity 	profile	is	shown	in	Figure	19.	 

 ݑ

4.7	 Parabolic	velocity profile 		As is	 already 	known,	 the	laminar	piece	of 	the	velocity	profile 

൤1 െ ቀ 
ݎ
ܴ
ቁ
ଶ
൨ ൌ ݑ  

 ݕ

௟ 	is	the	laminar	center	velocity 

ൌ 
߬௪ܴ ܴߩ

 ߤ
ൌ ଶ∗ݑ

ܴ
 ߥ
ൌ ∗ݑ

ܴ
∗ݕ
.	 

In	dimensionless	form the	 parabolic	piece of 	the	velocity	pro

ା ൌݑ  ା ቀ2 െݕ
 ݕ

Figure	19:	Logarithmic 	velocity	profile 

ݕ
0 ܴ  ଴ݕ

 ௖ݑ

 ݐ

 ௧ݑ

is 	parabolic.	It is
 

ሺ60ሻ 

ሺ61ሻ 

ݑ ൌ ௟ݑ  ቂ ቁቃ	
ܴ
ݕ

ቀ2 െ 
ܴ௟ 

where	ݑ



ݑ௟  ߤ
ൌ
߬௪
ߩ

file	is	
 

൰. ሺ62ሻ
ାݕ൬2 െ ାቁ ൌ ݕ  

ܴ ାܴ

This  is  valid  in  	 the  laminar  layer,  0  ൏  velocity	 centerline	 laminar	The 	.ߙ ା ൏ݕ   	 ሺan  imaginary  	 construct  in
turbulent	flowሻ	is	the	value	ݑା 	would	 achieve	if	the	laminar	 layer	reached	to	the	center	ሺݕା ൌ ܴାሻ:	 

௟ା ൌݑ ܴା.	 ሺ63ሻ 

The velocity	 at	 the boundary 	of the laminar	layer	ሺݕା ൌ ሻߙ  is  

௧ାݑ ൌ ߙ ൬2 െ  
ߙ
൰.	 ሺ64ሻ
ାܴ

The	parabolic	 velocity	profile	is	shown	in	Figure	20.	 
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ݑ 

Figure	20:	Parabolic	velocity	profile 

ݕ
0 ܴ  ݐ

 ௧ݑ

 ௟ݑ

4.8	Turbulent 

ାݕ൬2 െ ାۓݕ
ାܴݑା ൌ 

ance	law The	complete	 universal 	velocity	profile	is	
 smooth	wall 	resist

൰ 	for 0  ൑ ା ൏ݕ  ߙ  

ሺ65ሻ1
۔
ە ߢ
ln ൬
ݕ
ߛ
ା൰ 	  for ߙ ൑ ାݕ ൏ ܴା. 

	was 	presented in ݎ It	is shown in	Figure 21. 	An un‐normalized version in terms of the center 	radial distance 
ሺ43ሻ. 

 ݑ

 ௟ݑ

௖ݑ
 ௧ݑ

 ݐ0

ݕ 

ܴ 

Figure	21:	Complete	velocity	profile
 

The	 average	 velocity of the	 universal	 profile	 is	 well‐approximated by averaging f
additi l  	 assumption  that  the  	 vel ity  is  zero  from ݕ   ൌ  0  to .ݐ   That  is,  	 the  	 vel i

ith	 the
 w ܴ rom	ݕ ൌ 0	 to	 
in  the  laminar  layer  is

f interest thi
s 	not 	hard, 	but do

oc 
ona
assumed	 zero f

l

oc ty  
ince	 the	 laminar layer is thin i

in the average 
n cases o
i

s
 
simplification 
so	leads 	to	 a	 more	complicated 

ோశ 

൰
ߛ

2
ൌା݀ݕା∙ ݕߨ2  

శோ1
ൌାݒ

ାݕln ൬ ାන ݕ
ା
ଶܴߢାන ݑ

ା
ଶܴߨ ఈ ఈ 

or	 purposes	 of computing the	 average.	 S
eads to little 	error. Including 	the 	paraboli

formula and	 the	extra complexity adds	no 	value.	The approximate	average	is	 
c 	velocity 	profile
 i
ng
 

,ା݀ݕ ሺ66ሻ 

thus 

ାܴln ൬ 
1
ߢ

ൌ	ାݒ  ߙ
൰. ሺ67ሻ 

The	resistance	law	follows	directly	from	this	expression	by	using	ሺ48ሻ,	ሺ49ሻ,	ሺ56ሻ	and	ሺ57ሻ	to un‐normalize	it:

ሺ68ሻ൰,	 
 ܦ

ln ൬ 
1
ߢ

൰ ൌ
ܴ

ln ൬ 
1
ߢ

ൌ 
∗ݕߙ2 ݐ

ݒ
 ∗ݑ

ߣ⁄ 8ඥܴ݁
ln ൭ 
1
ߢ

ൌ	
⁄ඥߣ 8  ߙ2

൱. ሺ69ሻ 

19	
 

1 



	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	

		 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	

	

	

	 	

	

	 	 	 	 	 	 	 	 	 	 	 	 	
	

	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	
	

	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	

	

	

This is the resistance law for 	turbulent smooth wall flow. The experimental	 fact is that ߢ and ߙ are universal 
constants,	 independent of flow	 conditions	 ሺas 	specified 	by	 the	 variables	ܴ݁ 	and ߣሻ.	Their	values	 are 

  ሺ70ሻ	ൌ 0.40, ߢ

  ሺ71ሻ	ൌ 0.51. ߙ

These	values	and	the	value	for	ߚ 	to	be	presented	subsequently	are	derived	from	the	chart of	L.	F. Moody	ሾ1ሿ.	

The  fact  	 that  the  values  of  of ߢ   	 and ߙ   	 are  	 on  the  order  of  	 one  gives	 the Prandtl	 model	 the ring	 of	 truth.	 It
suggests that the normalizing	 quantities ݑ∗ ൌ ඥ߬௪⁄ߩ 	 and ൌ ∗ݕ  ߥ  appeal	 intuitively	 are	 which	ing, are ⁄ , ∗ݑ 
indeed	 the right ones	 with which	 to	 measure	 turbulent flow;	 and that the notion	 of a mixing length on the 
order	 of 	magnitude	of	 ݕ∗ 	is	a	valid	way	to	understand	 turbulent	momentum	transport. 

4.9	Plug	flow The 	laminar 	layer 	becomes thinner	as the 	average	velocity	increases: 

⁄ ൌ ݁ି఑௩శ.	 ሺ72ሻ
 

interest 
  

ݐ ܴ

For	 high	 Reynolds	 number	 f
pipelineሻ	 the	 l

	 ሺthe case  ௖ܴ݁≳ 2 ܴ݁ lows,	 viz.	 
aminar layer thickness	 is	 much	 less than	 the	 pi

profile	ሺ62ሻ	is	approximately	linear:	 

≅ ାݑ  	.ାݕ2

for  all  fl 

pe	 radi :
 

in  fuel  transport  by  
.	 Then the parabolic velocity	us


ows  of
≪  ݐ⁄ܴ 1

ሺ73ሻ 

The	velocity 	at the	laminar	layer	boundary	ሺ64ሻ	is	 

≅ ௧ାݑ .ߙ2  ሺ74ሻ 

Using ሺ58ሻ,	ሺ59ሻ,	ሺ67ሻ	and	ሺ74ሻ	the	average	velocity	can	expressed

ାݒ ൌ ௖ାݑ െ ௧ାݑ ≅ 	 ௖ାݑ  െ  ሺ75ሻ .ߙ2

This 	reveals that if the laminar layer is thin 	ሺ1 ≫ ߙሻ, the average velocity	 is only a little less	 than the center	 
velocity—the	 flow	 has	 a	 nearly	 flat	 velocity	 profile.	 A	 flat	 velocity	 profile	 is	 called	 plug	 flow;	 turbulent	 pipe 
flow	 approximates	 closely	 to	 plug	 flow.	 The	 turbulent	 core	 occupies 	most of 	the pipe, 	and 	moves like a solid
plug—except	 that the churning	fluid	of	which	it	is	composed	dissipates	energy 	due	to	friction	losses	as	it	goes.	 
The  laminar  layer  is  	thin,  like  a  layer  of  lubricating  oil  	between	 the	 turbulent core	 and	 the	 wall.	 Within	 this	 
layer there is a 	kind of 	Couette 	flow, 	the 	edge of 	the 	turbulent	core “plug” 	being 	the 	moving	wall, 	the pipe wall	 
the stationary 	one.	 

Un‐normalizing	ሺ69ሻ	gives	 

,	
݀
ߤ
௪߬െ	௖ൌ ݑ	  

݀
ߥ

ଶ
௖ൌ	െݑ∗ ݒݑ ≅  ௖ െݑ 

ݑ2
∗ݕ
 ሺ76ሻ ݐ∗

i If the	 velocity	 pro ile	 is	 approximated	 in	 piecewise‐linear ൌ  f	 thickness.	 double	 the laminar	 s	where ݀ ݐ2
fashion,	 as	 a	 flat	 piece in	 the turbulent	 core and	 a linear	 constant‐slope	 piece	 in	 the	 laminar layer,	 the	 double 
thickness	 is a better	 estimate of	 the laminar	 layer	 extent	 than is  the  thickness.  	Compare  	ሺ76ሻ  	and  	ሺ7ሻ;  not

.݀ s	 spaced by  d stance  
travelling ݀ െ ܴ ow at high Reynolds 	number can be v f	radius	 
i

e
,ߤ/  ݀௪ൌ ߬ௗthe “plug	wall,”	  ݑ

i thin	 the	 plug the	 velocity 
it	decreases	 linearly	from	 ݀ ective	thickness	 

	decreases 	as the ሻ݀ሺckness of the l 	layer 

that the velocity	 of	

Turbul i 	fl

at	 ve


ent p pe 
locity	 ݒ with	 a laminar	 layer of	 effect

is	 constant in	 the	 radial	 direction. Wi

	 is  like  	 Couette  flow  between  wall
isualized as	 a	 turbulent	 plug	 o
between	 it and	the	wall.	Wi݀ ve thickness	 
f ffe
thin	 the	 laminar layer	 o

The effective thi	 wall.	 the	 to the moving core to zero at	 next ݒ
velocity	 of the plug	ሺݒሻ increases.	 

aminar
 

4.10 	Rough 	wall	resistance law 		Figure 	17 shows that 	as	the Reynolds 	number	 increases in	 the	 turbulent	range 
it  	reaches  a  	transition  at  	which  	the  friction  factor  	becomes  constant. Ref i to	 ሺ49ሻ note	 that the f iction	 

ሻ.	 At	 high	 ܴ݁ሻ	 decreases	 with	 Reynolds	 number	 ሺ ∗length	 ሺݕ 
replaced	with	the	wall	roughness	݁. 	In	place	of 	ሺ56ሻ,	ݐ ൌ ݕߙ∗,	we	have	 

ݐ݁. ൌ ߚ  

err ng r
flow	 velocity	 the	 friction	 length	 ݕ∗ 	 must  be  

ሺ77ሻ 

The	dimensionless	average	 velocity	 then	 becomes 
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ݒ
ߢ ∗ݑ

ln ൬ 
1

ሺ78ሻ
ߝߚ2
൰	 

ܴ 
ln ൬ 
1
ߢ

൰ ൌ
ܴ

ln ൬ 
1
ߢ

ൌ 
1

൰ ൌ
 ݐ݁ߚ

where	the	relative	wall	roughness	 ߝ based	 on	pipe	 diameter	is
݁ 

ߝ ൌ

Converting 	this	to	 a 	resistance	law	using ሺ48ሻ	gives	 

1 

⁄ 
ൌ	 
ߢ
1
ln ൬ 

1
ሺ80ሻ

ඥߣ 8 ߝߚ2
൰	 

or 

௧ ൌߣ 	 ଶߢ8  ൤ln ൬ 
1

.	 ሺ81ሻ
ߝߚ2
൰൨
ିଶ 

In 	turbulent 	rough 	wall flow, the friction factor is constant ሺindependent of Reynolds	 numberሻ.	 To	 emphasize 
this	 it	 has	 subscript ݐ ሺfor	 transitionሻ	 in	 the	 foregoing equation. The	 transition	 friction	 factor	 ߣ௧ depends	 only	 
on	 a pipe	 property ሺwall	 relative	 roughness	 ߝሻ	 and	 not on the	 fluid	 properties.	 The	 transition	 Reynolds	 
number	 at which	 ሺ81ሻ	 becomes	 valid	 is	 that at which	 the	 laminar layer 	thickness for smooth 	wall flow 	equals
that for 	rough 	wall	flow: 

ሺ79ሻ 
݁ 

ൌ
ܦ

.	
2ܴ

,݁ൌ  ݕߙ∗௧ߚ

 ݁ߚ
ൌ௧∗

ܦ
ݕ
	. ߙ

ܦ

ሺ82ሻ 

ሺ83ሻ 

Using ሺ49ሻ:	 

1

ߙ ሺ84ሻൌ ߝߚ  

8⁄௧ߣඥ௧ܴ݁

ߙ12
ൌ௧ܴ݁ ൤

 ߝߚ2
ln ൬ 

1
ሺ85ሻ

ߝߚ2 ߢ
൰൨. 

 	It is	chart ሾ1ሿ.	Moody	the	from	 derived	be	can	for it	value	A	constant.	universal	a	is	 ,ߙ	like	 ,ߚ

  ሺ86ሻ	ൌ 0.15. ߚ

This  	 value  is  far  	 enough  from  	 unity  to  call  into  	 question  its  interpretation  as  	 the  laminar  layer  	 thickness  
normalized	 by	 the	 wall	 roughness.	 Its correct interpretation	 is left  for  others;  we  	 accept  it  as  an  empirical
fitting 	parameter.	

Rms	 surface	 roughness	 lengths	 for	 the	 materials	 of	 which	 pipes	 are  made  	 range  from  0.1  μm  for  	 drawn  
tubing, to 5 	μm for commercial 	steel 	or wrought	iron, to 	20 μm for	cast iron,	 to	 200	 μm	 ሺor	moreሻ for	 concrete	 
and	riveted	 steel.	A	roughness	length	 of	10 	μm	and	pipe 	diameter	 of	0.1 	m	results	in	a	roughness	parameter	of
ߝ ൌ  1  ൈ  10ିସ.	The	corresponding 	limiting	friction	 factor for high	 Reynolds number	turbulent	flow	is	 

 ௧ ൎ 0.012 ሺ87ሻߣ

or 

ሺ88ሻൎ 0.003.	 ௧݂

These	are	convenient numbers	to	use	as	typical	of	flow in	fuel‐carrying	pipelines.	They	are	valid	for	ܴ݁ ≳ 10଺.	 

4.11 	Complete resistance	law 		The	resistance	law	in 	all	three	flow	regimes	is	summarized	as follows:	 

ሺ89aሻ ܴ݁⁄ߣ ൌ 64 :	௖ܴ݁ ൏ ܴ݁

R c൏ e൏ e :	e R tR
1
 ⁄ 

൱	
ߣ 8ඥܴ݁

ln ൭ 
1
ߢ

ൌ	
⁄ඥߣ 8  ߙ2

ሺ89bሻ 
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ሺ89cሻ	.	 
1

൤ln ൬ ଶߣ ൌ ൏݁:ߢ8 ܴ௧ܴ݁ ߝߚ2
൰൨
ିଶ 

	 on the order o  f ri ion  is a constant 	  ܴ݁ For high Reynolds number  flow,  with  	 106 	 and  	 greater,  the  f ct 	 factor  
determined	by	the	wall	roughness	 of 	the	pipe	and	independent of 	the 	fluid	properties.	For	such	 flows	 a	typical 
Fanning	friction	factor	for	the	kind	 of	pipe 	expected	in	long	 distance	fuel	pipelines	is	 ௧݂ ൎ 0.003.	 

5.		 

5.1	Friction	factor	for	gas	vs. l

have  	 the  	 same  limiting  frict 

viscosity	 is	 to	 determine	 how	 high	 the	 average	 velocity must	 be to	 achieve	 a	 given	 Reynolds	 number;	 this	 is	
what differentiates	 the different	 fluids.	 The momentum	 diffusivity  ሺߥሻ  is  	 much  larger  in  gases  than  it  is

⁄ and	 although	 viscosity ሺߤሻ	 and	 density	 ሺߩሻ	 are	 both	 smaller	 for	 gases than f
arger	than	 ,	the Reynolds number	 ܦ⁄ߥൌ  ince ܴ݁ ݒ

flow	 velocity.	 I

i
i
quid 		It	is	striking	that	gases	and	liquids	of	low	and	high	density 	and	 viscosity	all
 
factor  for  pipe  flow  at  high  Reynolds  	 number.  	 The  effect  of  density  and 
on 
  

or
 liquids,	 because	 ߥ ൌ ߩ ߤ
liquids, the 	density is m 	smalvery	 ler. Such
for	 liquids	 in pipelines	 of	 

for	 gases	 will	 be l

given	 diameter	 and	 n	 pipelines	 carrying	 a gas	 the velocity	 w

typically	 be	 higher	 than	 in	 pipelines	 carrying a liquid,	 but not	 enough	 to	 compensate for	 the	 very	 much	 l
momentum	 diffusivity.	 Therefore	 the	 Reynolds	 number	 for	 gas‐carrying pipelines	 is	 typically	 higher	 than 
liquid‐carrying pipelines.	 Nevertheless,	 both	 typically	 exceed	 the transition	 Reynolds	 number,	 which	 
determined	only	by	the	pipe	properties	and	not 	by	 the	 fluid	properties.	 

ons  	 ሺ27ሻ  and  	 ሺ38ሻ  	 are  va
ds 	the genera

ill	
 
arger	 
for	
is
 

5.2	 Pipeline	 power	 in	 turbulent flow 	 	 Equat
turbulent, 	smooth wall or 	rough 	wall. 	Combi
and	 average	velocity	 for any pipe	flow:
 

ing 	them yiel
i
n

d
l
li 	 for  	 any  flow  condition:  laminar or	 
relation	 between	 pressure	 gradient 

if	 one	 concluded 
 ; ݂ as	goes	ݒ/1

ݒ	 have a  	and  ݂ ow  

ሺ90ሻᇱ݌ .	ଶݒ
ߩ
ܴ
݂ 

ൌ 

In	 general,	 the	 friction	 f


l
i

actor	 ሺ݂ሻ	 depends on	 the	 velocity	 ሺݒሻ,	 so	 ሺ90ሻ	 could	 be	 misleading	 
64/ܴ݁ ൌ 	݂ from	it	that	the 	pressure	gradient goes	as	the	square	of the	velocity.	In laminar	 low	

and	 the pressure	 gradient	 is	 just proportional	 to the velocity. ent  smooth  wall  fl
licated 	relationship. 	But in turbulent rough wal ch we 	are 	most 

pe only	and	not	of	the	 ,	a	constant that ௧݂ ൌ ݂ on	becomes	simple:	 
flow	rate. 	In	 turbulent	rough	wall	flow	the 	pressure	 gradient	does indeed go	 as 	the	square	of 	the	velocity.	 

f

In  turbul
gh fl

s	 a	 property	 o
flow 	ሺhi 	in whi
comp

the	 relati 
ow 	rates
 
f	 the pi


interestedሻ 
fluid  	or  it 
s 
  

Using ሺ32ሻ,	 the	 pressure	 gradient required	 to	 establish	 a given volume	 flow for	 turbulent rough wall	 
conditions	is 

 ௧݂ߩ
ൌ ሺ91ሻᇱ݌ 

ሶܸ

ሶ ଶ.	 

ᇱ݌ The	power	per	length	required	to 	maintain	this flow	is	 

ܸ ଶܴܣ

ଶ ܸߩ
ܮ
ܣ
௧݂

ܴ
ൌ ሶ 

the	power	 lost is	 ܮ .	For	a	pipeline	of	length 

ሺ92ሻ௟ܲ
ଷ.	 

Using ሺ36ሻ	the	relation	between	power	lost and	power	transmitted	 is 

1 1௧݂ܮൌ .	ଷ௧ܲ ଶܨଶܴܣ௟ܲ ሺ93ሻଶ

1
ܩ

ൌଷ௧ܲ ଷ݄ଶߩ 

௟ܲ The	factor	relating 

ܦ2
ඨܣ ൌ 

ܮ
ܴ

௧݂
ඨܩ ܣ ൌ

 ߣ௧ܮ

i ivi into two  	groups, one  	dependent  	on ic	d f	the	ଷ
௧ܲ 	 to  s  d ded  ly  on  	geometr imensions	 o

pipe	ሺincluding	wall	roughnessሻ,	 one	 only	 on	fluid properties.	 The	geometric	factor	is	 

ሺ94ሻ 

with	units m2. The	fluid	 factor	is 

ܨ݄√݄ ൌ ߩ  

	should	be	maximized	to	minimize	losses. ܩ 	and ܨ .	Both	‐2	W	m with	units 

ሺ95ሻ 

22	
 



	

	 	 	 	 	 	

	 	 	 	 	 	 	
	

	

	 	 	 	 	 	
	 	 	 	

	

	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	
	 	

	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	

	 	 	 	 	
	 	

	

	 	 	 	 	 	 	
	 	 	 	 	 	

	 	 	 	 	 	 	
	

	 	 	 	 	
	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	

	
	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	

	 	

	 	
	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	

5.3	 Ideal gas	 flow Isothermal  flow  with  constant  pressure  	 gradient  in  	 the  direction	 of	 flow	 and	 uniform	 
pressure	 in	 the	 transverse	 ሺradialሻ	 direction	 has	 been	 tacitly	 assumed	 in	 the	 foregoing.	 The	 density	 ሺߩሻ	 has	 
been assumed constant.	 Constant density	 is what	 defines	 an	 incompressible	 liquid,	 and	 is a good	 first‐order 
model	for	any	liquid.	On	the	other	hand a	good 	first‐order 	model	for	any	gas	is	an	ideal	gas,	for	which	 

	constant.  	 the  	gas  ܴ its temperature,  	and  l	aw; ܯ 
it i

 ܯ
ߩ ൌ  .݌
ܴܶ

ሺ96ሻ 

This	 is	 the	 ideal	 gas	 
states	 that density	 is	 proportiona

ܶ the	gas,  is	the	molecular	weight	of	
l	 to pressure.	 Under	 isothermal	 conditions	 

It
s	 convenient	 to	 write this	 law	 

as
 

ߩ ݌⁄݁	, ൌ  

	ൌ݁ where ܴܶ⁄ܯ
show that	 the	 fluid	 

ሺ97ሻ 

i


encountered	 i

ሶܸ 

ሶܸ	barሻ and 	pressure ሺ1 s the standard ௦݌ where	 ௦
ሶ

flow	 f

s	 a specific	 energy	 ሺenergy	 per	 unit massሻ	 with	 units	 J	kg‐1.

fn	ሺ95ሻ	remains valid	 defined	 iܨ igure	of	merit 
n	 pipelines	 if we	 use	 as density the	 average or	 operati

the	operating pressure	of the	pipe	as	specified	by	ሺ97ሻ.	

The	relat

.	௦ܸሶ
௦

݌
 ݌

ൌ

In 	this section we 	are 	going to 
or	 gaseous	 fuels	 under	 conditions 

ng	 density	 in	 the	 pipe	 corresponding	 to	 

ion	between	volume	and	 mass	 flow 	rates	for	 an	 ideal	gas	can	be	written	
 

ሺ98ሻ 

is the standard 	volume flow 	rate, 	which is in fact a mass 
ൌ 298.15	Kሻ.	For	steady	 ௦ܶሺty at standard pressure 	and 	temperature ܸ rate:	 

ndependent	 of distance ሺݖሻ	 along	 the	 pipe.	 If	 the	 pipe	 has	 constant cross 
sectional	area	ሺܣሻ 	then	the	pressure‐velocity 	product 	is also	 constant: 

ሺ99ሻ௦ܸ௦݌ ൌ ݒ݌

	i
 fl

fl

ow
 
ow
 ௦ ൌ ሶ݉ ⁄ߩ௦ 	and ߩ௦ is the densi

the mass	 flow rate is	 a	 constant	 i

.	
ܣ

Compressible	 fluids	 such	 as	 ideal	 gases	 have	 an	 additional	 term 	 that  must  	 be  accounted  for  in  	 the  force  
balance	that led	 to	 ሺ27ሻ.	 That 	term	 is	 due	to	the	 variation	 in	 dynamic	pressure	 from upstream	to	downstream.	 
The	dynamic	 pressure	is

భൌௗ݌ మ
  ሺ100ሻ	ଶ.ݒߩ

To	 appreciate the	 difference	 between	 compressible	 and	 incompressible flow,	 first review the force balance 
for	 incompressible	 flow	 shown	 in	 Figure	 15.	 The	 upstream	 face	 of  the  control  volume  is  on  	 the  left,  the  
downstream	 face	 is	 on	 the right.	 The	 left‐to‐right	 flow is	 caused by	 a	 static pressure gradient:	 the static
pressure	 on	 the	 upstream	 face	 is	 greater	 than	 that on	 the	 downstream	 face.	 Because	 the	 fluid	 is	 moving,	 there	
is	 also	 dynamic	 pressure	 on	 these	 two faces;	 but if the	 fluid	 is	 in	 steady	 flow and	 is	 incompressible,	 the 
dynamic pressure 	on the two faces is 	equal 	and 	opposite, 	and 	can	 be ignored.	 This is	 the assumption	 that	 led 
to ሺ27ሻ.	 Note that	 there are two factors in	 dynamic	 pressure:	 density	 ሺߩሻ and	 velocity ሺݒሻ.	 In	 Figure	 15	 the 
density is the same at 	the two faces 	ሺsince it is constant for an incompressible fluidሻ 	and 	the velocity is also 
the	 same	 ሺbecause	 the	 fluid	 is	 in	 steady	 flow,	 so	 as	 much	 must leave	 as	 enters	 in	 any	 given	 timeሻ.	 The	 force	 on	 
the	upstream face	of 	the	 control 	volume	is	in	the	flow	direction;	 that	 face	is	“catching”	the	impinging	fluid.	 The	 
force	 on	 the	downstream	 face	 is	 opposite	to	the	flow	direction. It	is the 	reaction force to the 	momentum of the 
fluid	 leaving the	 control	 volume: the	 downstream	 face	 is	 “throwing” the exiting fluid.	 Hence the two	 force 
components	 on the	 control	 volume	 due	 to dynamic	 pressure	 are	 equal	 and	 opposite.	 There	 is	 no	 gradient of	
dynamic	pressure	for	steady	flow of an 	incompressible	fluid.	 

Now	 assume	the	fluid	is	compres i .	Then	neither	the	density 	nor	the	velocity	is	 necessarily	 the same	on	 the s ble
upstream	 and downstream	 faces	 of	 the control	 volume;	 consequently  	 there  	 can  	 be  a  dynamic  pressure  
gradient.	 The	 force	 balance	 on	 the	 control volume	 is	 determined 	not 	by the static pressure alone, 	but 	by the 
to 	pressure:	 tal

ሺ101ሻభൌ ݌ ൅  ௗ݌ ൌ ݌ ൅  ௧݌ మ
 	.ଶݒߩ

This  is  true  for  	 the  incompressib e  fluid  also,  but  then  	 the  	 total	 and static pressure	gra i nt 	are  	 the  	same,l d e s
since	 only	 the static	 pressure	 varies.	 For	 compressible	 fluids	 the	 dynamic	 pressure	 also	 varies.	 Working	 
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through	the revised	force balance	reveals	that	the	modification	required is	that total
ሻ.	Then	ሺ27ሻ	becomes	 ݌ሺ	static	pressure 

ᇱ

place of

௧݌
ଵ
ଶ

ൌ௪߬

ሻ	be	used	in ௧݌ሺpressure 

ሺ102ሻ ܴ,

where
 

ଵቀ݌ ൅ 
ݖ݀

݀
ൌ െ ቁ.ଶݒߩ

ଶ

݀ 
ൌ െሻௗ݌ ݌ ൅ሺ

ݖ݀
ሺ103ሻ௧

ᇱ݌ 

Now  invoke  	 the  	 assumption  that  	 the  fluid  is  an  ideal  	 gas  in  steady	 flow.	 Substitute ሺ97ሻ through	 ሺ99ሻ into	
ሺ100ሻ	to	obtain:	 

ௗ௦݌௦ൌ ݌݌ௗ݌ ሺ104ሻ 

where
 
ଶ

.	 ሺ105ሻቇ௦
ܣ

ሶܸ
ቆ௦ߩ

1
2

ൌௗ௦݌

ሺ105ሻ	 tells	 that for	 an ideal	 gas in	 steady	 flow	 the	 product of the	 static	 and	 dynamic	 pressures	 is	 constant.	 
Then	the	 total 	pressure	 gradient	is 

݀ 
ൌ െ  ௗ௦݌௦݌ ൬݌ ൅ 
௧ݖ݀

ᇱ݌ 

Combine	 ሺ102ሻ	 and	 ሺ38ሻ	 to	eliminate	 ߬ ௪ 	and 	obtain the relation 	between 	total 	pressure gradient and 	dynamic
pressure: 

൰ ൌ ݌  
݌

൰.	ௗ௦
ଶ

݌
݌
௦݌ ൬1 െ ᇱ ሺ106ሻ 

ሺ107ሻ௧
ᇱ݌ 

to	this	Reduce ݌ and ݌ an	equation	 in	
differential	equation 	that	can	be 	solved	 for	the	static 	pressure	ሺ݌ሻ:	 

ଶ
௦݌ ൰ ൌௗ௦݌

݌
௦݌ ൬݌ െ 

௟ܼ

.	ௗ݌ 
݂
ܦ
4

ൌ 

ᇱ:	 yields a and	then	substitute	ሺ104ሻ	and	ሺ106ሻ.	This ݌ multiply	ሺ107ሻ	by	 

 ᇱ ሺ108ሻ݌

where
 

௦݌ܦ 
ൌ .	

ௗ௦݌ߣ௟ܼ

 	that	Recall ݌

ሺ109ሻ 

	and i

ଶ
௅െ ଶ݌

଴݌ቆ௦
݌  ܮߣ

൰ ൌ଴݌ቇ െ ln ൬  
ଶ݌௅ܦ

௦݌ௗ௦݌ 

ଶ

൰
݉
ܣ
ሶ

ൌ ൬ ∆̅݌2݌

ൌ ݌݀⁄ݔ݀ െ
 
.	The	result ܮ 	ݖ ൌ low	pressure	side	at


1
2 

ᇱ line length from the high 	pressure side 	at ݖ ൌ 0 to 	the ntegrate 	ሺ108ሻ 	over the 
is	 

ሺ110ሻ 

ܮߣ
݁ ൤  ଴݌൅ ln ൬  
ܦ ௅݌

൰൨	 ሺ111ሻ 

	is	the	average	pressure	in	the	pipe	and	∆݌	is	the	pressure	drop	 ݌ ̅In	ሺ111ሻ	 
ଵൌ̅݌
ଶ
ሺ݌଴ ൅  	௅ሻ݌

from	 inlet 	to	outlet:	
 

ሺ112ሻ 

ሺ113ሻ.	௅െ ݌∆ൌ݌଴݌

l
I

5.4	 Approximations	 for	 fuel	 pipelines ሺ110ሻ	 or	 ሺ111ሻ	 is a fairly	 complicated	 expression	 relating mass	 flow	 to	 
inlet	 and	 outlet	 pressures	 for	 steady	 flow	 of	 an	 ideal gas	 through	 a pipe.	 The	 complexity comes	 from	 the	 

uid.	 Natura gas pipelines	 are	 operated	 at high pressure	 to	 
of	gas	pipeline	between	two	compressor	statܮ f	a length	 .ܨ factor	 

ሻ	and the	pressure	drop between	the	stations is	small	compared	to that average ݌at high	average	pressure	ሺ 

compressibility of	 the	 fl

thus	 maximizing	 the fluid
 

increase	 the	 fluid	 density, 
ions	 is	 operated	
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	inlet and outl
et pressures are near
e. Let us denote the average pressure, wh

ሻ	and	the logarithmic	term௅ൎ same	݌଴݌ ሺthe ly	theሻ then ݌ ̅൏ ∆݌pressure	ሺ 
pressure,is	negligibl ich is	what we mean by operatingሿ௅݌ ଴݌ሺሾln ⁄ ሻ

by	݌୭୮.	Then	 

ሶܮߣଶ௦݌ 
ଶ

௦ሶ ݉
ൌ ൬  

݌୭୮2ܦ݁
ቇ
ܣ
ܸ

≅ ቆ ∆݌

As	a	 further	approximation valid	for the	 low‐loss conditions of interest to	 power	 engineers	 it may be	 assumed	 
ong the	line.	Then	and	thus	the	pressure	gradient	is approximately	constant al୭୮݌ ≫ ݌that ∆ 

 ߣ
.	
݌୭୮2ܦ

ሺ114ሻ 
ଶ ܮߣ݁

൰
ܣ

.	
݌୭୮2ܦ

ሶ ∆݌
≅

ଶ

൰
݉
ܣ

≅ ൬  
ܮ

 ᇱ ሺ115ሻ݌

ሶܸൌ ߩ  

∙ 

ሶܸൌ ݌  

ଶ.	 

ሶ݉Now	 

ଶܣ
௧ߣ

ܦ2
≅ᇱ 

୭୮ൌ ߩ  ݁⁄୭୮݌ Note	 that	
incompressible	 fluid.	 I

ሶ୭୮݌
∙ ܸ 

݁
ሺ116ሻ 

is the average gas density in the pipe. It is constant, just like	 the	 density	 of an
ndeed,	 ሺ91ሻ	 and	 ሺ116ሻ	 are	 the	 same.	 An	 ideal	 gas pipeline	 operated	 at high pressure	

and	 with relatively	 small	 pressure	 drop	 between	 compressor	 stations	 behaves	 just like an	 incompressible	 
.	For	gases	the	pressure	at	which	the line	 ݄√݄ൌ  s ܨ ߩ

s number. Thi
u
i

 ݌

liquid pipeline. In both cases the fl
should be used in computing th

mum pressure. The opt

id factor i
 is	 operated	
 

presumably be an opti
losses	 i

s may not be the maximum	 possible	 pressure,	 but	 will	
imum may be lower than	 the	 maximum	 possible	 to	 minimize	 

ncurred	 in	 compressing	 and	 then	 expanding	 the	 gas.	 Probably	 more significant	 is the effect	 of	
limited	primarily	 byሻ	 is	୭୮݌ሻ,	 operating	pressure	 ሺ ܦke	pipe	diameter	 ሺi 

ൌ 50 bar.୭୮݌ increases.	 A	 typical	 value for existing	 gas	 pipelines	 is	
iate formula for the fluid factor of a gas‐

construction and	 operating costs.	 L
cost: costs	 rise	 steeply	 as	 pressure	
Replacing	 average density with	 operating pressure gives	 the appropr
carrying	pipel

୭୮݌ 
ܨ ൌ

ine:
 

ሺ117ሻ 
݌୭୮ܯ

ൌ݄√݄ 
݁

.	݄√݄ 
ܴܶ

It should be born
 
compress them, un


i
l

5.5 Fuel power density and fuel energy veloci
fi f	merit f

n mind that gaseous fuels suffer an additional loss	 penalty	 since	 power	 is	 required	 to	 
ess provision is made to recover this power at the receiving end	 of	 the	 pipeline.	 Even	 with

such	 provision,	some	 additional	loss	in	inevitably	incurred	in	 the	 compression/expansion cycle.	 

fuel	may	be	called	the	 ܨ The	fluid	factor	y power	
f

den
gure	 o or	 ranking	 the	 suitability	 of	 different uels	 as	 energy	 vectors	 for low‐loss	 long‐distance	 power	
transmission.	 The	 larger	 is	 this	 figure	 of merit,	 the	 more	 suitable	 is	 the	 fuel.	 It	 is	 composed	 of	two	 sub‐factors:
density	and	 specific	 enthalpy.	 For	an	 incompressible	 liquid	 the fuel	power	density	 is	an	 intrinsic	 property.	For	
a gas	 it can be	 increased	 by compression;	 but then	 means	 to	 recover	 the	 power	 required	 for	 compression	
should	 be	 provided,	 and	 losses	 associated with	 the	 compression/decompression	 cycle	 must be	 accounted f

f

sit I iy tt
 s	a	
.	
 

ne e

f
f

The fuel power density clearly reveals the e
losses	 are	 minimized	 by	 using a high‐density	
being equal.	 

has units ms‐1,	and	may be	called	the	fuel	 velocity݄√The	factor rgy	 .	 The	 specific enthalpy	 of combustion	 
,	 a	‐1ሻ	 is	 on the	 order	 of 10	 km	s ݄√uel	 energy velocity	 ሺf f

or.	
f fuel properties	 on	 transmission	 losses.	 Transmission	

luid.	 Liquid fuels	 are	 therefore	 preferred	 to gas,	 other	 things	
t
ec
 	o


f
or	
 uels	 is	 on	 the	 order	 of 100	 MJ	kg‐1,	 thus	 the	
thousand times higher	than a typical average fluid velocity ሺݒሻ of 10	m	s‐1.	The transported power	density	is 

ൌ݄,ݒ ߩ ௧ൌ⁄ܣ  ܲᇱᇱ
௧ܲ

is 	the piܣ where 
energy	 density wi

ሺ118ሻ 

ional
  andareaߩ݄
i

	power	density.	Whereas	ݒ determines	power	actually	
s	a	 figure of	merit characterizing	 the capability f	 a	 fuelo 	to	 carry	power.	 

is the fuel energy	 density	 ሾGJ	m‐3ሿ.	 Just	 as	 combining	 the	 
elds	 the transported	 power	 density,	 combining the energy density

l 

pe cross sect
th the fluid	 velocity ሺݒሻ y

,	thus	୭୮݌ ,	and	݌ ൎ ݁⁄ 

,	the	fue ݄√݄ሻ	yields	ܨ ൌ  	the	ሺenergywith	velocity√݄ ߩ
i݄√carried	by	a	fuel	in	a pipeline,	 
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relates	power	 ܨ The	fuel	power density 
i losses	 f

the  vi

f

loss	 due	 to friction	 ሺviscous	 lossሻ	 to	 transported power. 	The larger it
f	 power	 transmitted.  It  is  striking  	 that  thi 	 fi f  	 merit  is

ch ܨ  
ll 

s,	 the less	 the 
independent  of
derives.  It  i  

or	 a given	 amount o s  gure  o
scosity  of  the  fuel,  despite  	 the  fact  that  viscous  loss  is  the  	 cost  function  from  whi

	 ሺwa	 app  l es  	 to a  flow  	 regi 	 is determ ned  	 by the pipe s ܨ  because  
roughnessሻ  	and  not  	 the  fluid,  and  the  actor ߝ   character ncorporated	 ሺvia ߣ௧ሻ	 in	 the 

 	to	factor	companion ܨ geometric	the	factor , ܩ	.

5.6	 Pipeline	 design	 for	 energy	 transport Design	 of	 pipelines	 
amounts 	to choos ng the opt	ܩ ng . Optim ܩ and ܨ values 	for i

as 	sma l݁ 	shou ld be 	as l ible and ܦ ሻ. ݁roughness ሺ 
cost  of  	 the  pipeline.  	 The  	 opt
savings	due	to	reduced 	losses	during the	life	o

	a	given	fluid	and is	not	often	considered.	Usually	a	pipeline	is	built	to	transport ܨ 	optimizing The	possibility	of
consideration is	 not	 given	 to choice	 of	 fluid.	 If	 the	 goal,	 however,	 is to transport	 a	 given	 energy	 per	 unit	 time,	 

s an actor ܨ   

i 
 i i i oss 
  me  n  	 wh
i i
ch  
ng  pipe roughness	 is	 
v scous  l 
 i 


i
z


f

i


ing optimal 

f between	 initial cost and	 the	 energy 

izi
 l	

or	 energy	 transport requires	 select

ሻ and	rms	surface ܦvalue	of pipe	diameter ሺ ma
as	 possible,	 but	 both	 of	 these	 goals increase	 the	 

ned  	 as  a  tradeof
the	pipeline.	 

l

i

the	 choice	 of	 fuel	 to	 carry	 that energy may remain	 open.	 When	 that  is  the  	 case,  	 the  fuel  f
important	 figure of	 merit.	 It	 tells	 us	 that	 density	 and specific enthal ll‐important, and 	that v

uels	 have a	 very	 

arge as 	poss

imum  	 value  i 
s  determ

f 

i

i
iscos
ty i
s
py 	are a

irrelevant.	 Given	 similar	 specific	 enthalpies,	 fuel	 density	 is	 the crucial	 characteristic. Liquid f
large  advantage  over  gas  fuels  since  	 their  	 densi 	 is  orders  ofty  magnitude higher.	 This	 is	 a conclusion	 one	 
might come to	 intuitively	 without the foregoing	 analysis.	 The irrelevance	 of viscosity,	 however	 is	 not	 so	 
obvious.	 Further,	 the	 analysis	 enables	 one	 to	 check whether	 the flow conditions	 ሺReynolds	 numberሻ	 do in	 fact 
enable  viscosity  to  	 be  ignored.  	 Most  important,  	 the  	 analysis  enables  the  liquid  	 vs.  	 gas  	 advantage  	 to  be  
quantified.  This  	 enables  	 one  	 to  assess  the  	 economic  viability  of	 energy	 projects	 such	 as gas‐to‐liquid	 
processes	 for monetizing stranded 	natural 	gas. 

5.7	 Fuel as	 a chemical energy	 vector As	 an	 example	 we	 compare	 several renewable	 and	 fossil	 fuels	 for their	 
suitability as chemical energy 	vectors in pipelines. 	Table 1 	exhibits 	the 	properties of 	the 	selected fuels, all at 
25°C.	 The	 gases	 hydrogen	 and	 methane	 are	 at a pressure	 of 50	 bar; 	the high vapor pressure liquids 	ammonia
and  propane  are  at  a  	 pressure  of  	 10  bar;  	 the  low  	 vapor  	 pressure  liquids  	 methanol  and  octane  	 are  	 at  a  

f 1 bar. 	The 	corresponding 	densities 	are listed, 	as are	 higher	 and	 lower	 heating	 values	 at	 STP.	 The 
ሻ,	୐݄uel	 energy density ሺߩ 

୐݄݄ߩ ܨ

pressure o
lower	 heating	 value ሺ݄୐ሻ	 is	 used	 to	 calculate f
power	density	ሺܨሻ.	 

ሻ	and	 fuel ୐݄ඥpower	velocity	 ሺ fuel	 

Table	1:	Figures	of	merit for	representative	fuels	 

 Formula	Nameܯ݌ ߩ ୌ݄ ୐ ݄ඥ ୐

g/mol	 bar	 kg/m3 MJ/kg MJ/kg GJ/m3 km/s TW/m2 

Hydrogen H2ሺ݃ሻ	 2.02	 50	 4.06 141.80 120.97 0.49 11.00 5.41 

Methane CH4ሺ݃ሻ	 16.04	 50	 35.85 55.50 50.01 1.79 7.07 12.68 

Ammonia	 NH3ሺ݈ሻ	 17.03	 10	 681.90 22.50 18.65 12.71 4.32 54.90 

Propane	 C3H8ሺ݈ሻ	 44.10	 10	 507.70 50.35 46.36 23.54 6.81 160.24 

Methanol CH3OHሺ݈ሻ	 32.04	 1	 791.80 22.66 19.92 15.77 4.46 70.40 

Octane C8H18ሺ݈ሻ	 114.23 1 688.00 47.89 44.43 30.57 6.67 203.73 

Compare	 the	 f
fuel 	power 	dens

i

figures	 of merit:	

least 	useful


ሻ,	and	 ୐݄ሻ,	energy	density	ሺߩ ୐specific	energy	ሺ݄ 
, 	over‐estimating the	 value	 of the	 two gaseous	 fuels.	

imates 	the value of the two gases. 	The fuel power density gets	 it 
ul	 relative ranking.	 From it	 one	 concludes,	 in	 accordance	 with 

i

uels	 based	 on	 three	 different 

i ic	energy ሻ. Spec ܨሺty f is the 
s more 	useful, 	but underEnergy 	densi

right:	 i
t
 t
y
 ‐es


f
t	 gives the most	 balanced	 and	 use
common	 knowledge,	 that	 liquid	 hydrocarbons	 are	 the preferred	 fuels,  	 and  	 hydrogen  is  the  least  	 preferred.  
The	 fuel	 power density shows	 that among the	 renewable	 fuels	 ሺhydrogen,	 ammonia	 and	 methanolሻ,	 the	 liquid	
fuels	 ammonia	 and	 methanol	 are better	 than	 the gas hydrogen	 by more  	 than  an  	 order  of  magnitude.  	 The  
relative rankings	of	methane,	 ammonia	and	 methanol	 are also	 noteworthy. 	Ammonia is four and 	methanol six
times	 better	 than	 methane as	 fuels	 for	 transport	 in pipelines.	 Gas‐to‐liquid	 conversion	 of	 natural	 gas	 to 
ammonia	 and	 methanol	 carries with	 it significant transport and storage benefits, as is known. 	The fuel power 

26	 



	

	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	
	 	 	 	 	

	 	
	 	 	 	
	

	

	
	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	
	 	

	 	 	 	 	 	 	 	
	 	 	 	 	

	 	 	 	
	 	 	 	 	

	 	 	 	 	
	 	 	 	

	 	 	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	

	 	 	
	 	 	

	 	 	 	

	

	 	

	
	 	 	 	
	 	 	 	 	 	 	

	 	 	 	 	
	

	 	
	 	 	 	 	

	
	

	 	 	

	

	

density	 helps to	 quantify	 these benefits.	 t suggests	 that natural	 gas should be	 used	 as	 a	 fossil	 energy	 urc ,	I so e
but not used	 directly	 as an	 energy vect l I i l	 to	or ሺfue ሻ.	 nstead,	 t should	 be converted to	 ammonia	 and	 methano
facilitate trade.	 When natural	 gas	 is	 converted	 to ammonia,	 an additional	 advantage accrues	 from	 the
possibility	 to implement carbon	 capture	 sequestration	 and	 sale	 in	 large‐scale	 concentrated	 operations 
conducted	 at the	 point	 of fuel	 production	 rather	 than at the	 distributed	 points	 of fuel	 use.	 The	 fuel	 power	
density	 will	 prove	 useful	 in	 analyzing	 under	 what	 conditions	 this	 conversion reduces	 greenhouse	 gas
emissions,	 lowers	 the	 cost of energy	 and	 stabilizes	 supply	 to consumers,	 and	 creates	 competitive advantage	
for	natural	gas	producers. 

6.	SUGGESTIONS FOR FURTHER STUDY 

Anyone	 interested	 in	 pipe	 flow	 should	 read	 Moody’s	 classic	 paper	 on	 the	 friction	 factor	 ሾ1ሿ.	 This	 paper	 is	
widely	 cited	 and	 often	 reproduced	 in	 textbooks.	 It	 is	 the	 principal	 source	 of	 the	 Blasius‐Stanton‐Moody
diagram	 illustrated	 in	 Figure	 17.	 Moody	 provides	 a	 data benchmark against which	 any	 theoretical	 model	 can
be compared. He does not, however, offer much in the way of insight	 into	 the	 physics	 of turbulent pipe	 flow.
This is	 a topic that has attracted a	 great	 deal	 of sophisticated	 investigation,	 resulting in	 a research record	 that
is quite daunting to the non‐specialist. There seems to be no review	 article,	 monograph,	 or	 textbook	 that	 has 
summarized	 this	 body of	 knowledge	 in	 a form	 that is accessible	 to those outside the field. The present article
does not fill that gap. Instead, I have sought only to present the	 Prandtl	 model,	 developed	 almost	 a century
ago.	 This model	 is simple and	 insightful,	 and sufficient to the electric	 power	 engineer	 seeking	 an
understanding of flow	 phenomena relevant to	 energy transport by pipeline. Even the very modest goal of 
presenting the Prandtl model in a concise and accessible way required	 considerable	 development	 beyond	
what I could find in the literature. To those wishing to pursue this	 topic	 further	 I	 recommend as a	 starting
point references	 ሾ2‐4ሿ.	 Prandtl’s	 textbook ሾ2ሿ	 is	 a classic,	 and	 still	 the	 best source	 for	 his	 view	 of turbulent	
flow.	 Schlichting ሾ3ሿ	 provides	 in	 Chapters	 19	 and	 20	 a summary	 of and	 literature references	 to	 the	 classic	
experiments	 and	 theories	 of	 turbulent pipe	 flow,	 most notably	 the	 experiments of Nikuradse	 and	 the	 theory
of von	 Kármán.	 Bakhmeteff’s	 book ሾ4ሿ	 is	 based	 on	 lectures	 given at Princeton	 in	 1935.	 His	 view	 of the	 subject	
is	 dated;	 for	 example	 the	 seminal	 paper	 of Millikan	 ሾ5ሿ presented	 in	 1938 was unknown	 to	 him.	 Nevertheless,	
Bakhmeteff’s	 book	 is	 highly recommended,	 especially	 for	 non‐specialist	 readers new	 to	 the subject.	 He 
provides a view of turbulent pipe flow accessible to those with no prior knowledge of fluid mechanics, and
emphasizing physical insight over	 mathematical formalism.	 Books devoted to pipeline engineering can be
consulted	 for	 further	 development.	 The	 textbook by	 Benedict ሾ6ሿ is	 recommended	 for	 pipelines	 in	 general.	
For	 fuel	 pipelines	 in	 particular see	 the	 textbook by	 Vincent‐Genod	 ሾ7ሿ	 ሺespecially	 section	 2.3,	 “Calculation	 of 
absorbed	 power”ሻ	 and	 the	 monograph	 by	 Mohitpour	 ሾ8ሿ.	 Transport	 of renewable fuels in pipelines as an
alternative	to	electric	power	transmission lines	is	discussed	in	ሾ9ሿ.	 
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