Towards Bioregenerative Life Support for Extended Human Exploration: Experiment Development for Testing the Fitness of Algae in Space

Audrey Fry¹, R. Craig Everroad², Jessica E. Koehne³, Thomas E. Murphy, Brad M. Bebout²
1. Altimira Middle School; STEM Teacher and Researcher Program 2. NASA Ames Research Center, Exobiology 3. NASA Ames Research Center, Entry Systems and Vehicle Development

July 2015

Introduction
Food, fuel, and fresh air will need to be regenerated for astronauts during missions longer than a year. Microbes such as single-celled algae and bacteria have the potential to provide all of these necessities in a closed-loop bioreactor, or bioregenerative system.

The goal of this research project is to identify methods for growing and measuring the growth of the microalgae, Chlorella sorokiniana, on filter membranes. C. sorokiniana has proven spaceflight ability and is a nutrient dense “superfood.” Algae’s capability for photosynthesis also makes C. sorokiniana an important resource for gas exchange. Finally, growing this planktonic algae on membranes rather than in tanks significantly reduces the mass and water demands of a bioregenerative system, both of which are important constraints in extended space flight.

This experiment was designed such that it can be reproduced in the European Modular Cultivation System (EMCS), a piece of equipment designed to monitor plant growth aboard the International Space Station (ISS).

Why the European Modular Cultivation (EMCS) System?
The European Modular Cultivation System (EMCS) is the only piece of equipment that allows for the simultaneous testing of plant growth in microgravity and 1g controls on the ISS. Plant or algae growth is monitored by a camera placed within the EMCS. This project developed a method of controlling light conditions and analyzing photo data such that ground control growth and monitoring experiments could be replicated in classrooms, using simple materials such as foam core and free software.

Methods
Growing Algae in Systems Qualified for Spaceflight: Seed cassettes, Experiment Unique Equipment (EUE) approved for the EMCS Experimental Containers (EC) (left) contain membranes made of polyethersulfone (PES) risking membranes, Chlorella sorokiniana, a single celled algae (right), is pipetted onto the membrane.

Measuring Growth: Ideally, growth of the algae would be monitored by the linear distance they grow along a “racetrack” printed on the filter material (left). The EMCS also contains a RGB color camera that could be used to determine the biomass of algae on the filters through measurements of the green color value of the pixels. We used a webcam in a photo box with a lamp for this study (right), but the principle is the same.

Image Analysis: Software freely available on the Internet (Get RGB, Beckman Institute) was used to analyze photo box images.

Results: RGB Photo Analysis Can Be Used to Determine Growth

Chlorophyll biomass vs. normalized green pixel value

Graphs (a) and (b) represent triplicate data of both membrane types, while Figure (c) shows the normalized pixel value for a single replicate of PES.

Discussion
This work shows that C. sorokiniana growth on membranes can be monitored via image analysis. In Figure 1, F increases in value over time (a) just as normalized green pixel value decreases over time (c). Increases in F have been shown to correlate with increases in biomass. Here, decreases in normalized pixel value have been shown to correlate with increases in biomass as well (Figure 2). Further replication of this work is necessary, however, as Figure 1c represents a small sample size. Normalized green pixel analysis shows promise as a good estimator of growth for C. sorokiniana on membranes and is a potential method for monitoring growth in microgravity conditions aboard the EMCS. Productive algal growth in microgravity may provide consistent self-generation of food, fuel, and fresh air for future astronauts on extended space missions.

Acknowledgments
I would like to thank Angela Daneser and Adrian Lopez for their tireless patience and ready support in lab technique. Thank you to my co-authors and the entire Bebout Lab for encouraging me throughout this fellowship at times when I felt a bit like Athena cut out of water. This material is based upon work supported by the National Science Foundation through the Robert Noyce Teacher Scholarship Program under Grant No. 0934503. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This material is based upon work supported by a grant from the S.D. Bechtel, Jr. Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Foundation.

Bibliography

Ground-based Laboratory Verification of Spaceflight Measurements

An Imaging PAM fluorometer (left) was used to measure the photosynthetic efficiency (yield) of algae on the racetracks and to measure fluorescence, an indicator of biomass. These measurements can be used to optimize system performance.

Discussion
This work shows that C. sorokiniana growth on membranes can be monitored via image analysis. In Figure 1, F increases in value over time (a) just as normalized green pixel value decreases over time (c). Increases in F have been shown to correlate with increases in biomass. Here, decreases in normalized pixel value have been shown to correlate with increases in biomass as well (Figure 2). Further replication of this work is necessary, however, as Figure 1c represents a small sample size. Normalized green pixel analysis shows promise as a good estimator of growth for C. sorokiniana on membranes and is a potential method for monitoring growth in microgravity conditions aboard the EMCS. Productive algal growth in microgravity may provide consistent self-generation of food, fuel, and fresh air for future astronauts on extended space missions.

Acknowledgments
I would like to thank Angela Daneser and Adrian Lopez for their tireless patience and ready support in lab technique. Thank you to my co-authors and the entire Bebout Lab for encouraging me throughout this fellowship at times when I felt a bit like Athena cut out of water. This material is based upon work supported by the National Science Foundation through the Robert Noyce Teacher Scholarship Program under Grant No. 0934503. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This material is based upon work supported by a grant from the S.D. Bechtel, Jr. Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Foundation.

Bibliography

www.nasa.gov

Figure 1. Graphs (a) and (b) represent triplicate data of both membrane types, while Figure (c) shows the normalized pixel value for a single replicate of PES.