
   
 

  
 

 

 

 

 
 

 

 

 

 

 

Bounding the Probability of Failure for Levee Systems 

Justin C. Hollenback  and Robb E. S. Moss 

ABSTRACT 


An exact solution for the probability of failure of large complex infrastructure 
systems is rarely obtainable; however the probability of failure can often be bounded. 
An example of this type of system is the levee system in the California Bay Delta. 
Large levee systems often consist of many components arranged in series and parallel 
sub-systems. There is the problem of defining component (or reach) length, and 
therefore the total number of components in the system where component length is 
dependent on failure mode. Methods of bounding probability of failure based on uni-, 
bi-, and tri-modal component probability of failure are discussed.  The bounds are 
highly sensitive to the total number of components in the system. Characterization of 
spatial variability using semi-variograms is used to define component length for 
various failure modes. Combining the statistically defined component length with 
system probability of failure bounds allow for a more accurate estimate of failure 
probability. Demonstration of these methods and results for specific levee systems in 
the California Bay Delta are shown in this paper. 

INTRODUCTION 

Society is dependent on a wide variety of complex systems (e.g., water and 
power distribution). As time progresses the likelihood that a system will be exposed 
to hazards increases. In general, a system’s ability to survive exposures decrease; a 
system tends to fatigue and degrade with time. Also with time a system can become 
increasingly complex. When a complex system is due for repair and improvements, 
constraints on logistics, resources, and funding make it nearly impossible for the 
entire system to be repaired at once. Thus, repair on specific components need to be 
prioritized so critical components get repaired first. This situation lends itself to the 
implementation of risk analysis; risk being the product of failure probability for a 
component and consequences of that failure, where failure probability is usually 
annualized and consequences are in terms of cost, lives lost, etc. The benefit of using 
risk to make critical decisions is in its ability to bring both the likelihood of 
component failure and the detrimental effects of component failure into one metric. 

Our research focuses on levee systems, specifically the California Bay Delta 
and its use as a water distribution hub. The Bay Delta consists of a network of 
channels confined by a system of more than 1700 km of levees. These levees protect 
a collection of 65 islands and tracts, many of which have landside elevations below 
sea level. This means levees surrounding these islands hold back water year round, 



 

 

 
 

 

 

 

 

 

even during dry periods. Roughly 25% of urban water used in the state is diverted 
through the Bay Delta. Approximately two thirds of the state’s population relies on 
the Bay Delta for some portion of their drinking water and nearly 3 million acres of 
farmland depend on the Bay Delta for some quantity of irrigation water. The Bay 
Delta is currently in a fragile state. A major earthquake in the bay area could result in 
the failure of hundreds of kilometers of levees. This would, among other things, result 
in saltwater contamination of fresh water in the delta, rendering it useless as a fresh 
water distribution hub for a period of months, possibly years (URS, 2008). 

Calculating the probability of failure for large complex systems, like the Bay 
Delta levees, is non-trivial and exact solutions are often unattainable for practical 
purposes. Bounding the probability of failure is a reasonable alternative to exact 
solutions. Probability of failure, exact solution or bounded, is sensitive to the number 
of components present in the system. Currently, the number of components in a levee 
system is not robustly defined. Here we review procedures for bounding the 
probability of failure for systems and present a method for statistically defining the 
number of components in a levee system. 

BOUNDS ON PROBABILITY OF FAILURE FOR LARGE SYSTEMS 

In civil engineering complex systems are generally composed of two types of 
idealized two-state sub-systems, parallel and series. A two-state system is either in 
survival state or failure state. Parallel systems, or redundant systems, are in failure 
state if all components fail. Series systems, or non-redundant systems, are in failure 
state if one or more components fail. Levees are predominantly series systems; if one 
section of a levee fails the system has failed. However, the state of any system 
depends on the definition of failure. Consider the Bay Delta’s function of protecting 
land against flooding; if any section of levee on any island fails the system has failed. 
For its function as a water distribution hub, saltwater contamination of fresh water 
that flows through the Bay Delta would constitute failure. There exist scenarios that 
would require multiple islands to fail in order for saltwater contamination to occur. 
The behavior of the Bay Delta as a system in such a scenario isn't purely series or 
parallel, but a combination of both. Here, parallel sub-systems need to be grouped so 
that the system is a series of parallel sub-systems, or cut sets (Figure 1). By 
decomposing the system in this way the probability of failure of the cut sets can be 
estimated and the remaining system can be treated as purely series. 

It is a seemingly difficult task to accurately calculate the probability of failure 
for a single levee reach. Simply defining the length of a single reach is not 
straightforward. For a complex levee system, even if the assumed number of 
components and their respective failure probability estimates are accurate, calculating 
the probability of failure is non-trivial. We will demonstrate that even if the system is 
entirely parallel or series, quantifying the probability of failure is no small task. 

Series Systems. Let us first consider series levee systems (e.g. an island in 
the Bay Delta). Let event Ei, denote the failure of the ith component. As stated before, 
failure of a series system is achieved if at least one component fails. The probability 
of failure of a series system is the union of all component failure probabilities. In set 
theory notion the probability of failure of a series system of n components is: 
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The exact solution to the probability of the union of n events can be obtained using 
the inclusion exclusion rule, equation 2. 
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The inclusion exclusion rule requires knowledge of all individual event probabilities 
and knowledge of probabilities of intersections of all possible combinations of events.  
If failure of each event, Ei, is statistically independent from all other events the 
probability of all intersections simplify to the product of their individual event 
probabilities. If failures are mutually exclusive (i.e. events cannot occur 
simultaneously) all intersection terms dropout. Unfortunately when dealing with 
levee systems rarely, if ever, are individual component failures statistically 
independent or mutually exclusive. Mutual exclusiveness of failures is obviously not 
a realistic assumption. One component failure doesn't rule out the possibility of 
another. Lack of statistical independence stems from inherent characteristics of 
levees: materials that levees are built on and with are spatially correlated, as are loads 
applied to levees (flooding, seismic, etc). 

Figure 1: Schematic of different kinds of systems or sub systems. 

The exact solution of the union of events lacks practical application. Since no 
simplifying assumptions apply to levee systems, alternatives are necessary. Bounding 
the probability of system failure can be a useful tool. Bounds on probability of failure 
make use of information that is reasonably obtainable, such as uni-, bi-, and tri­
component probabilities of failure. Take an arbitrary system of n components for 
example. Uni-component probability of failure is that of any individual component, 
Ei, bi-component probability of failure is the joint probability of failure of any two 
components EiEj, and similarly tri-component probability of failure is the joint 
probability of failure of any three components EiEjEk. For series systems the 
narrowest possible uni-component probability bounds are: 

n n 

max Pi d P(�Ei ) d min(1,¦ Pi )  3 
i i 1 i 1 

These bounds were derived by Boole (1854) and proven to be the narrowest possible 
by Fréchet (1935). For large component probability of failure and large number of 
components (e.g. P(Ei) > 0.05 and n> 20) the upper bound will reduce to 1. Having 



 

    

  

  

 

 

 

  

      

 

 

   
 

   

 

      

 

 
 

 

an upper bound of 1 for probability failure gives no insight to a specific system. For 
most practical applications these bounds are too wide. Narrower bounds can be 
achieved by utilizing higher-order component failure probabilities. 
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The bounds in equation 4 incorporate both uni-component and bi-component failure 
probabilities. These bounds were developed through work done by Kounias (1968), 
Hunter (1976), and Ditlevsen (1979). They have gained wide use (e.g., Song and Der 
Kiureghian 2003), unfortunately they are dependent on the ordering of bi-component 
failures. Often, the order that maximizes the lower bound doesn't necessarily 
minimize the upper bound. Additionally these bounds have not been proven to be the 
narrowest possible for the information used. With that said, these bounds do offer 
narrower bounds than equation 3 (Table 1). 

¦ 

Zhang (1993) took the theoretical bounds in 4 and generalized them for still 
higher-order component failure probabilities. Below, in equation 5, are bounds that 
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utilize tri-component failure probabilities. Bounds that used quad-component failure 
probabilities were also developed but are not shown here. 
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Like equation 4 the tri-component bounds also depend on ordering of joint 
component failures. These bounds are still narrower (Table 1) than the bi-component 
bounds. It should be apparent that achieving narrower bounds increases 
computational effort significantly. 

Parallel Systems. The exact solution for the failure probability of a parallel 
system is the intersection of the failure of all its components. Let event Ei be the 
failure of the ith component. Using set theory notation the probability of failure for a 
parallel system of n components shown in equation 6.  If individual events are 
statistically independent from one another than this simplifies to equation 7. 

n 

P(FailureSystemparallel) P(�Ei )  6 
i 1 
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This results from the fact that the probability of the intersection of statistically 
independent events is the product of the individual event probabilities (Benjamin and 
Cornell, 1970). If the events are not statistically independent and the system has a 
large number of components (e.g., >4) then the probability of their joint occurrence 
can be difficult and impractical to quantify. As stated earlier, individual component 
failures in levee systems are rarely statistically independent. In addition, depending 
on how reach length is defined, the number of components in a levee system can be 
relatively large.  Boole (1854) derived uni-component bounds on the probability of 
failure of a parallel system: 
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These are the narrowest bounds possible if the only available information is uni­
component failure probabilities (Fréchet, 1935). Examining the left side of this 
inequality for low uni-component probabilities of failure and large n (e.g., P(Ei) < 
0.05 and n > 20) the lower bound will often be 0. A lower bound of 0 for the failure 
probability of a system is hardly useful. For most practical applications Boole's uni­
component bounds for parallel systems are too wide. There exist no theoretical higher 
order bounds for parallel systems (Song and Der Kiureghian 2003). However, using 
De Morgan's Rule (equation 9) higher order bounds can be developed: 

n n 

P(Failure Systemparallel ) 1� P(�Ei ) 1� P(�Ei ) 9 
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SPATIAL VARIABILITY AND REACH LENGTH IN LEVEE SYSTEMS 

It is worth noting here that all of the exact solutions and bounds presented 
above are sensitive to the number of components present in the system. Intuitively, 
this is expected. Increasing the number of components in a series systems leads to 
more opportunities for failure. Additional components in parallel systems increases 
redundancy, which reduces chances of failure. In any case, defining the number of 
components in a robust repeatable manner is important to the integrity of a 
probability of failure analysis. Generally in large levee systems, the number of 
components, or reaches, is inconsistently defined. Either through subjective 
examination of soil properties and levee geometries (URS, 2008)or with an arbitrary, 
predetermined, reach length that is not specific to a project or depositional 
environment (van Manen and Brinkhuis, 2005).  Neither of these methods are ideal 
when considering sensitivity of failure probability estimates to the number of 
components.  Here, we attempt to statistically define the number of components in a 
levee system based on geotechnical properties that control the probability of failure 
(e.g., strength, permeability, etc.).  Since properties that control failures depend on the 
failure mode (e.g., seepage failure controlled by permeability, stability failure 
controlled by strength), reach length should be defined for each failure mode of 
concern. This concept will make the task of defining levee sections less arbitrary and 
subjective, and more robust. 

Spatial variability is prevalent in geotechnical properties. For example, 
normalized tip resistance in a layer of sand will vary with depth, or permeability of a 
sandy layer will vary laterally. A semi-variogram is a tool used to quantify spatial 
variability. This study utilizes this tool to estimate lateral spatial variability of 
properties of interest to define levee reach length, and thus number of components in 
a levee system. Semi-variograms are used prominently in petroleum and mining 
exploration and have found favor in geotechnical engineering because of their 
applicability, and ease of use (e.g., Thompson et al. 2007).  Semi-variograms are 
graphical tools that display how much data varies as a function of separation distance. 
They are used for continuous types of data such as, shear strength, grain size, 
permeability, etc. Conceptually, they are based on the idea that data collected at two 



 

 

 
    

    

      

 
 

 

 

 

 

 

relatively close locations is more likely to be similar than data collected at two 
relatively far away locations. 

Semi-variograms plot semi-variance versus separation distance and can 
generated as experimental semi-variograms (equation 10) or model semi-variograms 
(equation 11). Experimental semi-variograms are constructed from data pairs, zi and 
zj, sampled at discrete separation distances, hij. Model semi-variograms are 
continuous functions that describe spatial structure observed in the experimental 
semi-variogram for all distances, h. Experimental semi-variograms need to be 
constructed from data that exhibits first and second order stationarity. First order 
stationarity implies that the mean of the sample data doesn't vary with location. 
Second order stationarity implies that semi-variance is only dependent on separation 
distance and not absolute location. Functions used for model semi-variograms must 
be positive definite. There are several reasons for this requirement; the one most 
relevant to this study is that this maintains positive variance between points 
(necessary for variance cannot be less than zero). 
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Figure 2 shows an example of a model semi-variogram. Inspection of the 
model semi-variogram reveals some general characteristics. At small separation 
distances the semi-variance is small and increases as separation distance increases. At 
zero separation distance there is a small offset in the semi-variance. This is known as 
the nugget effect and is generally attributed to measurement error. There are two 
categories of model semi-variograms: transitional models, and non-transitional 
models. In a transitional model, as h increases, semi-variance either, asymptotically 
approaches a plateau, known as the sill, or reaches a plateau and remains constant. In 
theory, the sill of a transitional model equals the sample variance of the data set 
(Clark, 2001). The separation distance at which the sill is reached is referred to as the 
range. For transitional models that are asymptotic (e.g., the exponential model) the 
range is defined as the separation distance at which 95% of the sill is achieved. The 
model in figure 2 is an example of an asymptotic transitional model. In non-
transitional models semi-variance continues to increase with separation distance and 
does not plateau. Generally speaking, non-transitional models imply that the data 
used are not stationary on some level. 

The range of the model semi-variogram is used to define the reach length of a 
levee. Range defines the distance at which maximum statistical independence of data 
is achieved (i.e., distance where correlation is minimized). Data that is separated by 
distances larger than the range no longer have any spatial correlation. This is not to 
say that data is not correlated. Rather, correlation is no longer influenced by 
separation distance. However, for data that is spaced at distances less than the range, 
correlation is dependent on separation distance. In this case, estimates of how data are 
related are refined with information provided by the model semi-variogram. 



 
 

  

 
 

  
 
 

 

 

Figure 2: Conceptual diagram of a model semi-variogram.  This is a generic, 
asymptotic transitional model with the sill, range, and nugget labeled. 

Example.  Consider a single 20 km long levee. If liquefaction of a sandy layer 
in the levee foundation is of concern a model semi-variogram could be constructed of 
tip resistance data in the critical layer. Assume the model reveals a reach length of 
800 m (i.e., 25 components). For the simplicity of the example the following 
assumptions are made: if liquefaction is triggered in a component it will fail, CSR is a 
deterministic value and a constant of 0.15, CRR for all components follows a joint 
lognormal distribution with identical marginal distributions with mean = 0.25 and 
c.o.v. = 0.25, CRR for components follow a Dennet-Sobel (1995) class correlation 
matrix. The various bounds on the probability of failure of our example system were 
calculated using these assumptions and a Dunnet-Sobel (1955) one-dimensional 
integral to calculate the bi- and tri-component probabilities of failure (Pij and Pijk). 
Results are presented in Table 1. The calculations were repeated for two additional 
cases in which a model semi-variogram reveals reach lengths of 2000 m and 400 m. 
This demonstrates sensitivity of bounds to number of components. 

Table 1: Sensitivity of number of components and order of probability bounds. 
Components N=10 N=25 N=50 

Bound Lower Upper Lower Upper Lower Upper 
Uni 0.0255 0.2550 0.0255 0.6374 0.0255 1 
Bi 0.0570 0.2112 0.0570 0.5207 0.0570 1 
Tri 0.0913 0.1861 0.0913 0.4486 0.0913 0.886 

CLOSING REMARKS 

A conceptual framework of system reliability for levee systems has been 
discussed. Though bounding the probability of failure is more accessible than an 
exact solution, in most cases formulas to calculate bounds are still computationally 
nontrivial and require higher-order failure probabilities (Song and Der Kiureghian, 
2003). Higher mode component failure probabilities need to be defined in a manner 
consistent with the spatial variability.  Conceptually, this is straightforward for bi­
component failure probabilities, however, that is not the case for higher-order 
probabilities.  In addition most failure modes depend on more than one variable while 
semi-variograms are determined from only one variable.  Experimental semi­
variograms can be constructed from data of the property thought to be most critical. 
Alternatively, experimental semi-variograms can be constructed for all properties 
effecting failure and the property with the shortest range could control reach length. 
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