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Abstract 

With the prevalence of the information age, privacy and 
personalization are forefront in today's society. As such, 
biometrics is viewed as an essential component of current and 
evolving technological systems. Consumers demand 
unobtrusive and non-invasive approaches. In our previous 
work, we have demonstrated a speaker verification system 
that meets these criteria. However, there are additional 
constraints for fielded systems. The required recognition 
transactions are often performed in adverse environments and 
across diverse populations, necessitating robust solutions. 

We propose a multimodal approach that builds on our current 
state-of-the-art speaker verification technology. In order to 
maintain the transparent nature of the speech interface, we 
focus on optical sensing technology to provide the additional 
modality–giving us an audio-visual person recognition system. 
For the audio domain, we use our existing speaker verification 
system. For the visual domain, we focus on lip motion. 

The visual processing method makes use of both color and 
edge information, combined within a Markov random field 
(MRF) framework, to localize the lips. Geometric features are 
extracted and input to a polynomial classifier for the person 
recognition process. A late integration approach, based on a 
probabilistic model, is employed to combine the two 
modalities. The system is tested on the XM2VTS database 
combined with additive white Gaussian noise (AWGN) (in the 
audio domain) over a range of signal-to-noise ratios. 

1. Introduction 

There are two significant problem areas in current generation 
speaker verification systems. The first is the difficulty in 
acquiring clean audio signals without encumbering the user 
with a head-mounted close-talking microphone. Second, 
unimodal biometric systems do not work with a significant 
percentage of the population. To combat these issues, 
multimodal techniques are being investigated to improve 
system robustness to environmental conditions, as well as 
improve overall accuracy across the population. 

The use of multiple modalities to perform person recognition is 
not a new concept. However, work in multimodal automatic 
person recognition has recently gained a lot of momentum with 
the increasing processing power and storage available today. 
Two well-researched domains in person recognition are 
speaker and face recognition. However, face recognition does 
not provide the same dynamics as speech. In addition, the lip 
dynamics can aid speech recognition to provide liveness 
testing. Thus, lip tracking for person identification is gaining 
interest. A lip-tracking system must locate the lips in the video 

sequence and then perform the feature extraction. 
Subsequently, for a multimodal system, the two domains must 
be integrated, or fused. 

There are several methods for lip localization [1]. Deformable 
templates use geometric shapes that are allowed to deform and 
move in order to minimize an energy function. Template 
matching traditionally employs correlation to locate facial 
features. Knowledge based approaches, seen in earlier 
systems, use pyramid images to detect faces, and employed 
edge detection and subjective rules to find facial features. 
Visual motion analysis techniques rely on the use of difference 
images after filtering and thresholding, and it is implicitly 
reliant upon intensity information. 

There are also several types of features that can be employed 
for lip tracking [1]. With an image-based approach, the  image  
containing the mouth is used directly. With visual motion 
analysis (e.g., optical flow), it is believed that the visual 
motion during speech production contains relevant speech 
information. Approaches that rely on geometric features 
assume relevant speech information is contained within certain 
measures of the mouth geometry (e.g., height and width of the 
mouth opening). A model-based approach uses parameterized 
models of the speech articulators. 

The various methods of combining the modalities are as 
follows [2]. With the direct identification model, the classifier 
uses the multimodal data directly. With separate identification, 
or late integration, there is a separate classifier for each 
modality. The resulting outputs of each are fused. There are 
two forms of early integration. With dominant recoding, fusion  
of each modality precedes classification. With motor recoding 
each modality’s inputs are projected into an amodal common 
space related to the characteristics of speech gestures. Fusion 
then occurs within this common domain. 

The organization of the paper is as follows. In Section 2, 
feature extraction in the visual domain is discussed. The 
polynomial classifier and late integration approach is described 
in Section 3. The experiments with the XM2VTS database, 
along with the system performance, are presented in Section 4. 
Finally, Section 5 contains the conclusions. 

2. Visual feature extraction 
In visual processing, the basic visual features of the lip are 
measured and fed into a classifier. The main problem is how 
we extract these features from the video sequence. 

We first locate the lip region using hue color due to the 
following considerations [3]: i) hue color reduces intensity 
dependency, ii) hue color for the lip region is fairly uniform, iii) 
hue has high discriminative power, and iv) hue is relatively 
constant under varying conditions and different human skin 
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Figure 1: General case of using color information to locate the lip region. (a): original image, (b) hue image, (c) resulting binary
 
image after thresholding, (d): detected lip region. 

color. In order to use hue, we require that saturation must 
exceed a certain preset value to eliminate the noise in the hue 
image [3]. To segment the lip, we use the following H and S 
constraints:

{1, H (x, y) > H , S(x, y) > S0 0 (1)BW (x, y) =  
0, otherwise 

where H0=0.8, S0=0.25 for H/S ∈ [0,1]. A typical case for 
using hue color to locate the lip is shown in Figure 2. Given  a  
color image of a talking person in Figure 2(a), we first derive 
the hue image from color space conversion (Figure 2(b)). 
Using equation (1), the binary image is acquired as shown in 
Figure 2(c). Then the lip region can be easily detected [3], 
which is shown as a white bounding box in Figure 2(d). 

In most of the cases this method works fine. However, 
complications can occur when a person has a very red face, or 

lip. The binary image after thresholding is shown in Figure 
2(c). The lip region can subsequently be derived as shown in 
Figure 2(d). 

Note that the procedures described above need only to be done 
once on the first image of a sequence. The lip region of the 
following frames is estimated from the segmented lip of the 
previous ones. 

Besides color information, edges characterize object 
boundaries and provide additional useful information for 
describing the lip. The definition of hue color used here and the 
edge detection [4] are described in [3]. In order to extract lip 
features from the image of a lip, we use a Markov random field 
(MRF) framework to segment the lip. It has been shown to be 
suitable for the problem of spatial statistical modeling [5]. 

In the MRF, the state of a site is dependent only upon the state 
of its neighbors. It can be modeled by a Gibbs distribution.

he is wearing a red shirt, scarf or tie. To eliminate distractions 
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Figure 2: Special case of using hue color information to locate the lip region. (a): Original image, (b): Resulting binary image after 
thresholding, (c): binary image after increased saturation constraint, (d): detected lip region. 



Figure 3: Lip segmentation. 

segmentation is imposed by assigning the clique potential Vc(x) 
as above, where β is a positive number. This potential 
assignment implies higher probability for pixel pairs with 
identical labels and lower probability for pairs with different 
labels, thus encouraging spatially connected regions. 

We formulate the lip segmentation problem as a site-labeling 
problem. Each site is assigned to a label xi from the set {lip, 
non-lip}, and bi from {edge, non-edge}. The maximum a 
posterior (MAP) criterion is used to formulate what the best 
labeling should be, with

p(x | y) ∝ p(y | x) p(x) 

Figure 4: Lip feature extraction. 

3. Classification 

3.1 Polynomial Classifier 

Polynomial classifiers have been used for pattern classification 
for many years [8][9], and have excellent properties as 
classifiers. Because of the Weierstrass approximation theorem, 
polynomials are universal approximators for the Bayes 
classifier [8]. 

The basic structure of our classifier is shown in Figure 5. The  
feature vectors, x1…xM, produced from feature extraction, are 
introduced to the system. A discriminant function [9] is applied 
to each feature vector, xk, using a speaker model, w, producing 
a scalar output, d(xk,w). The final score, s, for the speaker 
model is then computed.
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 Comparing the output score to a threshold, T, performs the  
accept/reject decision for the system. If s < T, then reject the 
claim; otherwise accept the claim. 

L
(x) V (x)=
p cT
 c∈C 

In equation (3), p(y|x) denotes the conditional pdf of the image 
given the segmentation, and p(x) is  the  a priori pdf, modeled 
by a Gibbs distribution. The image is modeled by a uniform 
mean [6], where xi is the label of site i, yi is the observed image 

data, µ and σ are the mean and variance of all pixels in xi xi 

the image with the region label xi. 

The maximization of the a posterior probability in equation (3) 
is equivalent to the minimization of the energy function in 
equation (4), which consists of two parts: one associated with 
the difference between the predicted image and the actual 
observed data, the other describing the interaction potential 
between neighbors. To minimize the energy function, we use 
the Highest Confidence First (HCF) algorithm [7]. HCF is a 
deterministic iterative algorithm finds the lowest energy. The 
main ingredient of HCF is the order in which sites are visited. 
Instead of updating the pixels sequentially, as in other 
methods, HCF requires that the site that is visited next be the 

Our pattern classifier uses a polynomial discriminant function, 

td (x, w) = w p(x) .  (6)  

The discriminant function is composed of two parts. The first 
part, w, is the speaker model. The second part, p(x), is a 
polynomial basis vector constructed from input feature vector 
x. This basis vector is the monomial terms up to degree K of 
the input features. For example, for a two dimensional feature 
vector, x = [x1 x2]t, and  K = 2, we have  

t2 2p(x) = [1 x x x x x x ] .  (7)  1 2 1 1 2 2 

Thus, the discriminant function output is a linear combination 
of the polynomial basis elements. Since w does not depend on 
the frame index, scoring can be simplified as follows: 

one that generates the largest energy reduction.

(yi − µx )
2 

(4) U (y | x) = λ 2 
i + Vc (x) 

i 2σ c∈Cxi 

Figure 3 illustrates the results of segmentation. The geometric 
lip features are derived from the segmented image. Typical 
features are the height and width of the inner and outer lip, the 
height and width of the mouth opening, and the visibility of 
teeth and tongue (Figure 4). 

Discriminant 
Function 

Feature 
Vectors 

Score 

Speaker 
Model 

Average 

Figure 5: Classifier structure. 
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Figure 6: Examples of feature extraction results from the XM2VTS database.
 

x=1 is x–1. Thus, we can approximate log(d’(x)) as
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 Mk =1 (13) d ( ) =  x1 
, 

p(ω j )k =1Only a single vector is required to represent the input speech, 
and a single verification transaction equates to computing an 

where we have dropped the –1, since a constant offset will be inner product. The number of floating point operations is 
eliminated in a log likelihood ratio function. (See [11] for 2Nmodel – 1,  where  Nmodel is the length of w. Thus for 12 
additional details.) features and a 3rd order (K = 3) polynomial expansion, w is of 

length 455, resulting in only 909 flops per transaction, and a 
model size of 1820 bytes for a floating point representation. 

An efficient method for training is given in [10]. 

3.2 Multimodal Fusion 

A late integration approach is used to fuse the audio and visual 
modalities. Thus, it is necessary that the classifier outputs 
represent class probabilities. We use an optimum Bayes 
approach; we first calculate p(x1,…,xM | ωj). We abbreviate this 
as ( 1 

Mp x )| jω . 

By assuming independence, we obtain 

M 
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Two simplifications are now performed. First, we consider the 
logarithm of the discriminant function,

M  
 
 
 


 
 
 
 


We now see that our scoring method is equivalent to 
computing a log probability. Thus, we can combine the 
classifier output from the audio and visual modalities by 
averaging the class scores. 

4. Experiments 

4.1 XM2VTS Database 

The XM2VTS database [12] is a large multimodal database 
created for automatic person recognition. In total, the database 
is composed of audio-only speech recordings, audio-visual 
speech recordings, and frontal and profile views (for face and 
mug shot authentication). For our task, only the audio-visual 
speech portion of the database is of interest. There are 295 
participants who each speak three sentences two times over 
four different sessions. Unfortunately, the distribution set of the 
audio-visual recording only contains the third sentence and 
only the first repetition from each of the four sessions. 

Our final system is only able to use 261 of the 295 speakers 
due to either incorrectly labeled data, or corrupt audio or video 
sequences. The spoken phrase is “Joe took fathers green shoe 
bench out.” The audio sequences are recorded at a sampling 
rate of 32 kHz with a resolution of 16 bits. The video is 
captured at a color sampling resolution of 4:2:0, and it is 
compressed at the fixed ratio of 5:1 in the DV format. 

The evaluation protocol for the XM2VTS database is given in 
[13]. There are two preferred configurations for training the 
system, determining parameters, and testing the performance. 
Configuration I provides for good expert training, but poor 
fusion training. Configuration II provides for good fusion 
training at the expense of poor expert training. Since only the 
first sentence of each session is available on the audio-visual 

M (12) distribution of the database, we only consider Configuration II, log( '( )) log d =  
x1 p(ω j ) and we are limited to only half of the data. Thus, training of the k =1 

expert classifiers is expected to be difficult. In this 
Using Taylor series, a linear approximation of log(x) around configuration, data from the first two sessions is used to train 
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Figure 7: Performance of audio-visual speaker verification in noisy conditions. 

the clients’ models. The system threshold is set from 
evaluation data composed of the third session of the clients’ 
data and all four sessions of the evaluation impostors’ data. 
The final performance test uses data from the fourth session of 
the clients and from all four sessions of the test impostors. Our 
experiments use the same client, evaluation impostor, and test 
impostor populations as defined in [13]. 

4.2 Results 

This database provides more than a thousand video sequences, 
which cover a large amount of population among male/female, 
young/old, and with various skin color. In addition, the same 
person might attend four sessions with a different appearance, 
including hairstyles, with/without glasses, with/without beard, 
and with/without lipstick. Our scheme proves to be robust to 
all these variations. Examples of visual feature extraction 
results from the database are shown in Figure 6. 

We use two classifiers, one per modality, each trained as a 3rd 

order system [10]. For the audio modality, each feature vector 
is composed of 12 cepstral coefficients and one normalized-
time index, for a total vector length of 13. The visual feature 
vectors are of length 9, and consist of inner and outer lip height 
and width, mouth opening height and width, presence of teeth 
and tongue, and a normalized-time index. The normalized-time 
index makes implicit use of the knowledge that the verification 
phrase is constant. It is computed as i/M, where  i is the current 
frame index, and M is the total number of frames. For text-
prompted or text-independent applications, this feature is not 
used. 

The pooled equal error rate (EER) threshold is determined 
from the evaluation set and used against the test population to 
determine the system performance. In addition, the audio 
modality is subjected to additive white gaussian noise 

(AWGN) at various signal-to-noise ratios (SNR). As is 
illustrated in Figure 7, the performance of the audio modality 
degrades as the relative noise level increases. This figure 
shows the False Reject Rate (FRR) and the False Accept Rate 
(FAR) for each modality independently, as well as for the 
fused system. Both curves are of interest since the threshold is 
determined with an evaluation population separate from the 
test population. It is reasonable that the FRR and FAR curves 
for the test population do not follow each other exactly, but 
that they are close. 

As indicated by the error rates of the different systems (single 
modal and fused), the performance of the fused system is 
degraded when the performance of one of the modalities is 
very poor. This type of behavior in integrated systems is seen 
quite often, leading to the conclusion that multimodal solutions 
should incorporate confidence measures for each of the 
modalities to control the integration. A simple scheme might 
incorporate a weighting function, which has not been examined 
for the system presented in this paper. 

5. Conclusions 

We have demonstrated an audio-visual multimodal system for 
person recognition. The audio-processing portion builds from 
our previous work in speaker recognition. The visual domain 
uses recent developments in lip feature extraction techniques 
using color information. The resulting performance of the 
multimodal system is shown to perform well in all conditions. 
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