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Abstract 

Comprehensive environmental models such as the Soil and Water Assessment Tool (SWAT) are 
becoming an integral part of decision making processes for effective planning and management 
of natural resources. Before their use as decision making aid, however, models must be properly 
evaluated to improve their prediction accuracy and reduce the likelihood of making decisions 
that could lead to undesirable policy outcomes. Model evaluation refers to practices such as 
quality analysis of input data, sensitivity analysis, calibration and verification, and uncertainty 
analysis. Many methodologies have been developed for model evaluations over the years. One of 
the major limitations of the existing model evaluation methods, in particular model calibration 
methods, is their computational inefficiency, especially when used to calibrate comprehensive 
watershed simulation models. It may take weeks to months of CPU time, depending on the 
problem size, to successfully calibrate a comprehensive watershed simulation model on a 
standard PC. In this study, two sensitivity analysis methods and four calibration methods are 
used to evaluate SWAT to improve its streamflow prediction accuracy for the Morro Bay 
watershed located on the central coast of California. Parameter sensitivity analysis was 
performed using step-wise-regression analysis and the one-factor-at-a time screening method. 
Calibration was performed using PEST, Genetic Algorithms, the Shuffled Complex Evolution, 
and the Dynamically Dimensioned Search using observed data from multiple sites in the 
watershed. The model evaluation methods are compared in terms of their computational 
efficiency as well as effectiveness to determine “accurate” results. The developed SWAT model 
can be used to evaluate effectiveness of the Best Management Practices installed in the Morro 
Bay watershed, and to also prioritize sites where BMPs may be implemented in the future to 
further improve ecological integrity of the Morro Bay Estuary, which is one of the most 
important wetlands in California as it supports wide variety of habitats including numerous 
sensitive and endangered plant and animal species.  

Introduction 

Watershed simulation models use coupled system of transfer functions that mathematically 
describe the hydrologic and water quality processes responsible for generating streamflow and 
contaminants of concern considering unique watershed and stream characteristics. These 
mathematical functions are defined in terms of measurable input variables as well as parameters 
that conceptualize some aspects of the watershed processes. The conceptual parameters are often 
not readily measurable and have to be determined via a series of model evaluation procedure 
based on observed data. Model evaluation refers to the process of determining model usefulness 
and estimating the range or likelihood of various outcomes (Matott et al., 2009) and includes 
procedure such as quality assurance of the input data, sensitivity analysis (SA), model calibration 
and uncertainty analysis. For model outputs to be useful for applications ranging from academic 

 



 

 

 

   
        

 

 

research to major policy analysis, models and modeling processes should be scientifically sound, 
robust, reproducible and defensible (U.S. EPA, 2002).  However, since every mathematical 
model undergoes some level of conceptualization and parameterization, models must pass through 
rigorous model evaluation procedure before they are utilized as decision making aid in the planning 
and management of water resources. Many methodologies have been developed for model 
evaluations over the years (Duan et al., 1992; Beven and Freer, 2001; Muleta and Nicklow, 
2005; Tolson and Shoemaker, 2007). The major limitation of the existing model evaluation 
methods is their computational inefficiency. Depending on the problem size, it could take weeks 
to months of CPU time to calibrate a comprehensive watershed simulation model thus 
threatening their practicality for day-to-day applications. 

This study explores the application of a comprehensive hydrologic and water quality simulation 
model known as Soil and Water Assessment Tool (Arnold et al., 1999) to control nonpoint source 
pollution of a sensitive freshwater estuary on the central coast of California. Sediment is the major 
contaminant of concern that has been threatening sustainability of the estuary. Two SA and four 
automatic model calibration methods have been applied to improve accuracy of streamflow predicted 
for the watershed draining the Bay using SWAT. The SA methods are compared in terms of 
computational efficiency, consistency of the identified sensitive parameters, and the quality of 
information available for the modeler to decide what parameters to include in the model calibration 
stage. The four calibration methods are also compared in terms of their accuracy in reproducing 
observed streamflow, and in terms of their computational efficiency. This comparative study can 
assist other modelers select effective and efficient SA and calibration methods among the methods 
tested in this study.  Furthermore, the developed model can be used to identify major sediment 
sources in the Morro Bay watershed, and to prioritize sites where BMPs may be implemented in 
the future to improve ecological integrity of the bay. In addition, the model can be used to assess 
effectiveness of the BMPs that have been implemented in the watershed since mid-1990 to 
control sedimentation of the bay. 

The Watershed Simulation Model 

SWAT, a model developed at the USDA’s Blacklands research center, is a continuous-time, 
spatially distributed simulator developed to assist water resource managers in predicting impacts 
of land management practices on water, sediment and agricultural chemical yields. The model is 
well suited for large complex watersheds with varying soils, land use and management 
conditions over long periods of time (Nietsch, et al., 2001; Arnold et al., 1998; ASCE, 1999). 
SWAT makes use of watershed information such as weather, soil, topography, vegetation, and 
land management practices to simulate watershed processes such as surface and subsurface flow; 
erosion and sedimentation of overland as well as channel flows; crop growth for user specified 
agricultural management practices, and nutrient cycling for various species of nitrogen and 
phosphorus, among others. The model commonly operates on daily time scale. Spatially, the 
model subdivides a watershed in to subwatersheds, or subbasins, based on topographic 
information of the watershed. The subwatersheds could be further classified into spatial 
modeling units known as hydrologic response units (HRUs) depending on heterogeneity of the 
land uses and soil types within the subbasins. At the scale of an HRU, watershed variables such 
as soil types and properties, land use and related management features, weather, and topographic 
parameters would be considered homogeneous. As a distributed model, a major concern that may 
arise regarding the practicality of SWAT may be its data requirements. For the U.S., fortunately 
the minimum data required (e.g., soil, land use, topography, and weather) are commonly 

 



 

 

 
 

 

available from government agencies (Nietsch, et al., 2001). For watersheds that lack weather 
data, the model has a stochastic weather simulator that generates synthetic data based on monthly 
weather statistics derived from long-term records available from a station geographically located 
near the watershed. In addition, the model operates on an ArcGIS© platform, which greatly 
assists in the generation of model input parameters. All these comprehensive features make 
SWAT an ideal choice for use in integrative watershed management systems. 

The Study Watershed and Data 

The Morro Bay watershed located on the central coast of California has been used to 
demonstrate the SA and the calibration methods considered in this study.  Two creeks, Los Osos 
and Chorro, drain this 196 km2 watershed into the bay that supports a variety of marine habitats, 
commercial and sport fishing, shellfish harvesting and recreational activities.  The watershed 
consists of two urban areas, cropland, rangeland, and a wide variety of natural habitats including 
marsh, oak woodland, riparian, and dunes. The Morro Bay estuary has been impacted by NPS 
pollution including sediment, bacteria, metals, and nutrients (CCRWQCB, 2002).  Sediment has 
been identified as the major pollutant of concern.  To properly simulate hydrologic and water 
quality fluxes of a watershed, SWAT requires topographic, soil, land use and climate data in 
addition to observed streamflow and water quality data that is used for calibration. Accordingly, 
the data that have been obtained for the study watershed include daily rainfall for Morro Bay Fire 
station from the National Climatic Data Center and other climate data including daily minimum 
and maximum temperature, wind speed, humidity, and solar radiation obtained from California 
Irrigation Management Information System (CIMIS) for a station at California Polytechnic State 
University (Cal Poly) campus. A 10-m resolution DEM and 30-m resolution land use map were 
obtained from the United States Geological Survey (USGS), and 30-m resolution soil map was 
obtained from the Natural Resources Conservation Service (NRCS). In addition, streamflow data 
for three sites in the watershed were obtained from the San Luis Obispo County Public Works, 
and sediment concentration and streamflow data at additional two sites in the watershed were 
obtained from previous study conducted by the Central Coast Regional Water Quality Control 
Board and Cal Poly (CCRWQCB, 2002).  

Sensitivity Analysis Methods and Application Results 

For distributed watershed models like SWAT that are designed to account for spatial variability 
of watershed characteristics on hydrologic and water quality outputs, the number of conceptual 
parameters that need to be calibrated is substantially large, especially when compared to lumped 
conceptual models where model parameters are averaged over the watershed. The increase in the 
number of parameters makes calibration of distributed watershed models more challenging. 
Depending on the characteristics of the study watershed, however, streamflow and water quality 
outputs may not be equally sensitive to all parameters. SA, which refers to the process of 
determining the relative importance of individual model parameters on output uncertainty, is an 
essential component of model evaluation as it helps reduce the number of parameters that need to 
be calibrated. In this study, a modified form of one-factor- at-a-time (Morris, 1991) that has been 
implemented in SWAT (Griensven, et al, 2006) and a global SA method that uses sampling 
based multiple regression approach (Muleta and Nicklow, 2005) are compared in terms of their 

 



 
 

 

 
 

 
 

  

 

 
 

 
 
 

                                       

 
 

 

 

effectiveness in screening important SWAT parameters that need to be calibrated for the study 
watershed. 

The one-factor-at-a-time (OAT) method is a local SA method that uses the sensitivity 
index (S), described mathematically in Eq.(1), as a measure of parameter sensitivity. 

O(p , p2 ,..., p + Δpi , p ,..., pN )− O(p , p ,..., p , pi 1 ,..., p )1 i i+1 1 2 i + N 

O(p1 , p2 ,..., pi , pi+1 ,..., pN ) (1)=Si Δpi 

pi 

where O is the model output such as streamflow or sediment yield, Pi is model parameter, N is 
the total number of model parameters, ∆P is the perturbation of the individual model parameter, 
and i refers to the parameter for which the sensitivity index is being calculated. Morris (1991) 
introduced an OAT approach that analyzes sensitivity of an individual parameter over its entire 
range by repetitive application of local SA method.  According to the design, multiple parameter 
sets would be generated by randomly sampling an individual parameter, but keeping all other 
model parameters at their nominal values. Model outputs will be determined for each of the 
generated parameter sets and also by changing the parameter value by ∆P. Then the sensitivity 
index defined in Eq. (1) will be determined thus linking sensitivity of model output due solely to 
the individual parameter ignoring parameter interaction effects.  The design is a significant 
improvement over the local methods as it assesses output sensitivity over the entire range of 
individual parameter, not just around a nominal (local) value. The OAT implement in SWAT, 
known as LH-OAT, is similar with the design described by Morris (1991) except that it uses 
Latin Hypercube sampling instead of the random sampling used by Morris (1991) thus 
improving computational efficiency of the Morris method.  

For a model with N total parameters, LH-OAT (Griensven et al, 2006) divides each 
parameter in to user defined K intervals, and generates K Latin Hypercube sample points. Each 
one of the K Latin Hypercube samples would be altered N times, changing only one of the N 
parameters at a time. For a Latin Hypercube sample point m, a partial sensitivity index Si,m can be 
calculated for each parameter Pi , in percentage, as 

100 *

⎛
⎜ 
⎝
⎜

O(p , p ,..., p (1+ f ), p ,..., p )− O(p , p ,..., p , p ,..., p )1 2 i i i+1 N 1 2 i i+1 N ⎞
⎟ 
⎠
[O(p , p ,..., p (1+ f ), p ,..., p )+ O(p , p ,..., p , p ,..., p )] 21 2 i i i+1 N 1 2 i i+1 N 
⎟

 (2)i 

S = i ,m f 

where O refers to the model functions such as sum of square of errors between the simulated and 
the observed output, fi is the fraction by parameter Pi is changed and j refers to the Latin 
Hypercube point. Each sample point would require N+1 model runs. For a model with N 
parameters where each parameter is divided in to K Latin Hypercube intervals, a total of 
K*(N+1) model simulations would be needed. Final sensitivity index is calculated for each 

 



 

 

 

 

 

parameter by averaging the partial effect described in Eq. 2 over the K runs performed by 
changing only Pi while keeping all other parameters constant. The final effect is ranked in such a 
way that the most important parameter is ranked 1 and the least important parameter will take 
rank N. The attractiveness of the LH-OAT method used in this study is that it integrates the 
capability of Latin Hypercube sampling to efficiently sample the full range of model parameters 
with OAT design that ensures that change in model output is precisely attributed to the parameter 
that was changed. 

The global SA method used here (Muleta and Nicklow, 2005) belongs to the sampling 
based SA methods and it applies a stepwise regression analysis on rank-transformed input-output 
data pairs to determine quantitative measures of sensitivity. Latin hypercube sampling is used to 
generate input data from the assigned distributions and ranges, and model outputs are generated 
by running SWAT for each input data set. All parameters were assumed to follow uniform 
distribution, and input ranges were assigned based on literature. Relative importance of 
parameters was determined by the order in which the parameter is selected and entered the 
multiple regression model, the R2 value contributed by individual parameters, and the absolute 
value of the standardized regression coefficient (SRC).  Stopping criteria used to limit the 
number of parameters to be included in the regression model (i.e., sensitive parameters) include 
the p-value that tests the significance of the additional parameter to the overall performance of 
the regression model and the improvement achieved in R2 value between successive regression 
models. A t-test was also used to test the hypothesis that SRC of the parameter last added to the 
regression model is different from zero. This global SA method will be referred to as LH-SMR 
(i.e., Latin Hypercube-Stepwise Multiple Regression) in the remainder of this paper. 

To compare the relative performance of these two SA methods, input data collected for 
the Morro Bay watershed were used. A total of 21 input parameters were considered for 
streamflow, and each parameter was divided in to 20 intervals thus requiring a total of 440 (i.e., 
21* (20+1)) SWAT simulation for the LH-OAT method. The number of Latin Hypercube 
samples used for the LH-SMR was kept at 440. For each SA method, SWAT was simulated to 
determine the sum of square of residuals between the simulated and observed streamflow at 
Canet Road for each of the 440 Latin Hypercube samples, and the input-output pair was analyzed 
to determine the relative importance of the 21 input parameters. For the LH-SMR method, the 
input-output pairs were rank-transformed and stepwise regression was performed on the 
transformed data.  

Results of the two SA methods for streamflow are given in Table 1. For the LH-SMR 
method, the Table provides the input factors selected at the final step of the LH-SMR model, 
along with the R2 of the regression model constructed using the input factor(s) selected at the 
final step, and the SRC and p-value of each input factor. The threshold values used as a 
stopping/parameter removal criteria for the difference in R2 of successive regression models, the 
p-value based on the test that considers all input factors included to that point (i.e., b = 0), and 
the p-value used to test significance of the individual input factors (i.e., bi = 0 ) were 0.1 percent, 
2 percent, and 5 percent, respectively. For these criteria, the LH-SMR identified nine parameters 
that play significant role in explaining the uncertainty of streamflow. The relative importance of 
each of these input factors could be judged using the order in which the parameters were 
selected, improvement in R2 that was achieved due to inclusion of the input factor into the 
regression model and the SRC coefficient of the input factor. For LH-OAT, Table 1 shows the 
rank each parameter is assigned, the mean and the variance of the sensitivity index calculated 
using Eq. 2. The rank is assigned based on the magnitude of the mean sensitivity index. For 

 



 

 

 
 

definition of the input parameters listed in Table 1 and their role in streamflow simulation, the 
reader is referred to Neitsch et al. (2005) and Muleta and Nicklow (2005). 

Comparison of the SA results given in Table 1 shows that overall the two SA methods 
produced consistent results. Eight of the nine input parameters selected by LH-SMR were also 
ranked in the top nine by the LH-OAT. However, there is noticeable difference in the relative 
importance of some of the parameters. For example, Alpha_Bf is ranked 1 by LH-OAT and 
ranked 9 by LH-SMR. This may be due to high variability of its sensitivity index as determined 
by LH-OAT (see Table 1). One of the drawbacks of the LH-OAT approach is that, the method 
generates only relative importance of the parameters. It lacks a quantitative measure that can be 
used to decide how many parameters to consider for the calibration step making the decision 
more subjective. LH-SMR overcomes this limitation as it uses several stopping criteria to help 
decide the cutoff point. Over all, this application results show that either of the two SA methods 
could be used to identify the most influential parameters that need to be calibrated to improve 
simulation accuracy of SWAT model. Based on these SA results, the top nine parameters 
identified by LH-OAT and LH-SMR (i.e., a total ten parameters) have been considered to 
calibrate streamflow for the study watershed.   

Table 1: Sensitivity Analysis Results for LH-SRM and LH-OAT Methods 

LH-SMR Results LH-OAT Results 

Parameter SRC P-Value R2 Parameter Rank Mean Variance 

Cn2 0.7236 0.0000 

0.7073 

Alpha_Bf 1 1.26563 26.10857 
Esco 0.2670 0.0000 Cn2 2 1.25889 1.84401 
Sol_z -0.2192 0.0000 Sol_z 3 0.95305 4.69416 
Sol_Awc -0.1994 0.0000 Esco 4 0.48438 0.49405 
Sol_k 0.0940 0.0004 Sol_Awc 5 0.36604 0.02375 
Gwqmn -0.1005 0.0002 Sol_k 6 0.11986 0.00260 
Slope 0.0656 0.0133 Slope 7 0.11195 0.00180 
Blai -0.0619 0.0192 Revapmn 8 0.07873 0.12218 
Alpha_Bf 0.0517 0.0494 Blai 9 0.06924 0.00586 

Ch_k2 10 0.05013 0.03874 
Epco 11 0.04558 0.00493 

 Canmx 12 0.04502 0.00026 
 Gwqmn 13 0.02827 0.01568 
 GW_Revap 14 0.01490 0.00105 
 GW_Delay 15 0.00783 0.00019 

Surlag 16 0.00453 0.00009 
 Biomix 17 0.00299 0.00001 

Sol_alb 18 0.00177 0.00001 
Ch_n2 19 0.00105 0.00000 
Tlaps 21 0.00000 0.00000 
Slsbbsn 21 0.00000 0.00000 

 



 

 

Calibration Methods and Application Results 

Calibration refers to the process of identifying the “best” set of model parameters that would 
closely match the model simulated outputs and the observed data. Calibration is commonly 
performed using trial-and-error process where the modeler changes input parameters one-at-a-
time and then compares model output with observed data. This manual calibration procedure is 
time consuming and is less likely to identify optimal set of parameters. To overcome the 
limitation of this manual procedure, automatic calibration in which optimization algorithms are 
integrated with simulation models and used to thoroughly search for optimal parameters, is 
increasingly being used to calibrate comprehensive watershed simulation models such as SWAT 
(Duan et al. (1992), Muleta and Nicklow (2005), Tolson and Shoemaker (2007)).  In this study, 
four optimization methods: Genetic Algorithms (Holland, 1975), Shuffled Complex Evolution-
University of Arizona (Duan et al., 1992) as currently implemented in SWAT, Parameter 
ESTimation (PEST) (Doherty, 2004), and Dynamically Dimension Search (DDS) (Tolson and 
Shoemaker, 2007) have been used to automatically calibrate streamflow for the Morro Bay 
watershed. The methods are compared in terms of their effectiveness in improving accuracy of 
the simulated output and in terms of their computational efficiency.  The four optimization 
methods have been selected because of their popularity in calibrating watershed simulation 
models and based on results of comparative studies that have been reported in the literature.  

Genetic Algorithms (GAs) are heuristic search algorithms that apply the principle of 
genetics and the Darwinian theory of natural selection and survival of the fittest to optimization. 
As a subset of evolutionary computation, GAs require no derivative information about the 
objective function or constraints and has been practically proven to work well on nonlinear, 
nonconvex, and multimodal problems.  Though not ultimately guaranteed to locate global 
optima, GAs search a wide portion of the solution space and, thus, have a better capability of 
locating optimal solutions. In fact, the majority of GAs literature consistently demonstrates an 
ability to identify global or very near global optima for a range of complicated problems. GAs 
have been successfully applied to optimization of hydrologic models (Wang (1991), Muleta and 
Nicklow (2005)). In this study, continuous GAs have been developed and integrated with SWAT 
for calibration of streamflow.   

Shuffled Complex Evolution-University of Arizona (SCE-UA) (Duan et al., 1992) is 
probably the dominant automatic calibration algorithm for hydrologic models during the past 
decade. The SCE-UA currently implemented in SWAT starts by randomly generating initial 
population of potential solutions from the feasible parameter space. The initial population is then 
partitioned into complexes, each containing 2N+1 points, where N is the number of parameters 
to calibrate. The Simplex method (Nelder & Mead, 1965) is used to evolve and guide each 
complex independently to locate potential optimal solutions. The population from all complexes 
is periodically shuffled and new complexes are formed so that the information gained by the 
previous complexes is shared. The evolution and the shuffling steps continue until prescribed 
convergence criteria are reached. The default stopping criteria implemented in SWAT is used in 
this study. 

Dynamically Dimension Search (DDS) (Tolson and Shoemaker, 2007) has been 
developed to improve computationally efficiency of calibrating comprehensive watershed 
simulation model. DDS is a simple stochastic search method that starts by globally searching the 
feasible region and incrementally localizes the search space as the number of simulation 
approaches the maximum allowable number of simulation. Progress from global to local search 

 



 

 

 

 

is achieved by probabilistically reducing the number of model parameters modified from their 
best value obtained thus far. New potential solutions are created by perturbing the current 
solution values in the randomly selected model parameters only. The perturbations magnitudes 
are randomly sampled from a normal distribution with a mean of zero. Tolson and Shoemaker 
(2007) compared DDS and SCE-UA to calibrate SWAT and found that DDS required only 10-
15% of model evaluations for the same level of performance. In this study, source code of the 
DDS algorithm described in Tolson and Shoemaker (2007) has been obtained from the first 
author and has been integrated with SWAT to calibrate streamflow for the study watershed. 

PEST (Doherty (2004), Gallagher and Doherty (2007)) is a gradient-based optimization 
method that uses the variant of Gausse-Marquardte-Levenberg to identify optimal solutions. 
When compared to global optimization methods such as GAs and SCE-UA, PEST generally 
requires fewer model runs to solve a minimization problem, but is more susceptible to be trapped 
at a local minimum. This problem may be minimized by starting several Gausse-Marquardte-
Levenberg calibration runs from different points in parameter space which are selected in a 
manner that minimizes the chance of finding the same local minimum twice (Skahill and 
Doherty, 2006). PEST is becoming increasing popular for calibration of hydrologic model partly 
because it is a model-independent parameter estimator as it communicates with the model being 
calibrated through the model’s own input and output files without requiring any coding or 
changes to the model.  Such standardized input/output approaches to model evaluation tools are 
regarded as the future of models and model evaluation tools (Mattott et al., 2009). In this study, 
inputs and outputs required by PEST were prepared and used to calibrate SWAT for the study 
watershed. 

The four optimization methods were used to calibrate streamflow for the Morro bay 
watershed. For GAs, SCE-UA, and the DDS algorithms, a maximum of 5000 model evaluations 
was used. PEST does not use maximum iteration as stopping criterion. Five calibration runs were 
made for each of the four methods which is a total of twenty calibration runs. Cognizant of the 
fact that performances of the calibration methods largely depend on values used for the user 
specified parameters of the respective algorithm, all such parameters were set to their default or 
commonly used values. Sum of square of residuals between model simulated and observed 
outputs was used as objective function. Daily streamflow from 1995-1998 collected at two sites 
in the watershed were used to calibrate the model, and a warm up period of six months (07/1994-
12/1994) was used to diffuse the effect of initial conditions. Calibration results obtained by the 
four methods are summarized in Table 2.  Graphical comparison of the results obtained using 
PEST for Canet Road, one of the two stations, is given in Figure 1. Table 1 shows that PEST and 
DDS outperformed SCE-UA and GAs in terms of effectiveness as well as efficiency. PEST 
needed only 120 evaluations to produce the results shown in the table. DDS was the second 
efficient as it needed less than 2000 simulation to converge. Based on these results, one can 
conclude that PEST is by far the most efficient and it also performed better than GAs, SCE-UA 
and DDS. All four methods produced good results compared to past attempts at modeling 
watersheds in arid and semi-arid regions using SWAT (Van Liew et al., 2007). More detailed 
comparative study is being done to confirm the results reported here.  
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 Figure 1: Comparison of Simulated and Observed Streamflow for Canet Road 

 
Table 2: Calibration Results Obtained Using Four Optimization Methods 

Statistics GAs SCE DDS PEST 
Mean Sum of Square 3542.98 4022.1 3420.62 3419.0   of Residuals 

Average Ef 0.5272 0.5657 0.5419   0.5466    

 
 
Conclusions 
 
This study presents model evaluation steps that have been undertaken to simulate streamflow for 
Morro Bay watershed using SWAT. Two sensitivity analysis methods, LH-OAT and LH-SMR, 
have been used to determine the most influential parameters of SWAT that need to be calibrated.  
LH-OAT and LH-SMR identified similar parameters as influential parameters with the same 
number of model evaluations indicating that both methods can be used for such applications. 
Four automatic calibration methods have also been compared in terms of their efficiency and 
effectiveness. The calibration comparison shows that PEST, a gradient based local search 
method outperformed global optimization methods including GAs, SCE-UA, and DDS. More 
detailed comparative study will be needed to confirm the results reported here.  
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