Functional response of protected larval delta smelt
Carrie Fong¹, Lindsay Sullivan², Wim Kimmerer²
¹California State University Channel Islands, Camarillo, CA USA
²Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA USA

Background
Delta smelt (Hypomesus transpacificus) is a small (<10 cm) fish that is endemic to the San Francisco Estuary. Historically they were one of the most abundant fish in the estuary, but recently delta smelt populations have steeply declined. In 2010, delta smelt were listed as endangered under the California Endangered Species Act. Many factors have contributed to their low numbers, such as alterations to their habitat, predation, water diversions, and prey abundance. This study aims to better understand the feeding rate of delta smelt when given specific prey concentrations of the copepod, Limnoithona tetraspina. This study is part of a larger study that also used the copepod, Pseudodiaptomus forbesi as a prey item, in order to compare feeding rates among copepod species.

Objective
• Study the functional response of lab raised, larval delta smelt (132 dph) to determine their maximum feeding rate.

Methods
• Larval delta smelt were placed in buckets for 2 hours and given different prey densities of L. tetraspina.
• When feeding was terminated, fish and uneaten copepods were placed in small vials in 10% formalin.
• Uneaten copepods were counted.
• Fish stomachs and intestines were dissected to determine how many copepods each fish ingested.
• All data was then put into an excel spreadsheet to graph the feeding rate.

Results
• The feeding rate of delta smelt decreases with age.
• The max feeding rate at 132 dph is less than 1 copepod per hour.
• Delta smelt had a higher feeding rate when given P. forbesi.

Conclusion
Delta smelt are prey limited in the wild. In these experiments the maximum feeding rate of delta smelt was at a prey density that is higher than what is found in the the San Francisco Estuary (Figure 3). This suggests that reintroducing delta smelt as a recovery method may not work because there are not enough copepods to support them. It is possible that the lab raised delta smelt may prefer different food sources than L. tetraspina and P. forbesi. Future research should further investigate the feeding relationships of delta smelt to better understand their life histories and find ways for conservation.

Figure 1. Feeding rates of larval delta smelt at 15 dph, 30 dph, 60 dph, and 132 dph. Prey: L. tetraspina

Figure 2. Feeding rates of larval stage delta smelt at 15 dph, 30 dph, 70 dph, and 120 dph. Prey: P. forbesi

Figure 3. Frequency distribution of densities of L. tetraspina in the San Francisco Estuary.

Acknowledgments
I would like to thank everyone at the Romberg Tiburon Center for their support and guidance: Lindsay Sullivan, Wim Kimmerer, Tony Ignoffo, and Anne Slaughter. Special thanks to my other fellow STAR interns that I shared the lab with: Brooke Bemowski, Trisha Huynh, and Carrie Ann Shariit.

Prey:
Figure 3.
Frequency
Distribution of L.
tetraspina