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Abstract

We report seasonal variation in steroid hormone levels in blood samples from free ranging Western Diamond backed Rattle
snakes (Crotalus atrox), and the relationship between these hormones and events in the reproductive cycle. At a field site in the
Sonoran Desert of south central Arizona, we collected monthly blood samples over the course of two active seasons from 17 ra
diotelemetered females, and over three active seasons from 103 randomly encountered males. We used radioimmunoassay to
measure plasma levels of 17f estradiol, progesterone, corticosterone, and testosterone in samples from females, and corticosterone
and testosterone in samples from males. Non reproductive females have consistently low levels of circulating 17f estradiol, pro
gesterone, and testosterone throughout the year. In reproductive females, 17 estradiol levels increase dramatically and testosterone
levels increase modestly during vitellogenesis in April and May, while progesterone levels increase dramatically at ovulation in June
and then steadily decline until parturition in August. Corticosterone levels appear relatively constant in non reproductive females,
whereas reproductive females show increased levels at the end of gestation. Plasma testosterone levels in males are low in early
summer and are elevated during spring and late summer, corresponding to the two mating periods of C. atrox. Plasma cortico

sterone levels in males did not vary seasonally and were not related to testosterone levels.
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1. Introduction

Steroid hormones regulate many physiological pro-
cesses in vertebrates, including reproduction, growth,
and homeostatic mechanisms such as water and energy
balance. The roles of steroid hormones in reproduction
have been well-studied in many vertebrate taxa, and sex
steroids in particular are integral regulators of repro-
ductive behaviors and functions across vertebrates. In
many species, estrogens (e.g., 17p-estradiol, E2) stimu-
late sexual behavior and vitellogenesis in females, while
androgens (e.g., testosterone, T) stimulate sexual be-
havior and spermatogenesis in males (Norris, 1997).
Progestins (e.g., progesterone, P), secreted primarily
from the corpus luteum and placenta, function to

maintain pregnancy in viviparous taxa (Custodia-Lora
and Callard, 2002). The adrenal glucocorticoids (e.g.,
corticosterone, B) are elevated during reproduction in
some species, acting to mobilize energy for costly re-
productive behaviors (Moore and Jessop, 2003).
Studies of the interactions among steroids, behavior,
and reproduction have been instrumental in elucidating
many aspects of reproductive physiology, from under-
standing basic mechanisms to designing treatments for
reproductive dysfunction to broadening our knowledge
about the diversity of organism environment interac-
tions. Although the structures and many of the func-
tions of steroid hormones are conserved among
vertebrates (Norris, 1997), interspecific differences in
steroidal regulation of reproduction may reflect adap-
tations to different ecological pressures (Wingfield et al.,
1997). Knowledge of the mechanisms by which steroids
regulate reproduction aids in elucidating the ways that



taxa cope with diverse environmental pressures and
broadens our understanding of organism environment
interactions. While experiments that manipulate circu-
lating hormone levels are key to understanding the
mechanisms of hormone action, there is similar value in
conducting descriptive studies of diverse taxa because
they provide information about how endogenous hor-
mones regulate a myriad of reproductive strategies.
Relatively few studies have examined the relationship
between hormones and reproduction in snakes (re-
viewed in Moore and Lindzey, 1992). Descriptive studies
conducted on natural populations of snakes will provide
information essential to gaining a better understanding
of the diversity of mating systems and their physiologi-
cal regulation (Gans and Crews, 1992; Schuett, 1997). In
this study, we describe how seasonal variations in plas-
ma levels of several steroid hormones are related to
events in the reproductive cycle of free-ranging Western
Diamond-backed Rattlesnakes (Crotalus atrox). We
measured plasma levels of E2, P, B, and T in samples
from reproductive and non-reproductive females, and B
and T in samples from males. C. atrox is a good study
organism for examining hormonal regulation of repro-
duction for several reasons. First, they are abundant and
spend much of their time above ground, allowing for
sequential assessment of large numbers of individuals in
the natural environment. Second, female rattlesnakes
tend to exhibit less-than-annual reproduction (Klauber,
1972), allowing simultaneous comparison of steroid
levels in reproductive and non-reproductive individuals
occupying the same habitat. Finally, C. atrox has two
mating seasons per year but only reproduces once
(Aldridge and Duvall, 2002), permitting independent
examination of hormonal mechanisms regulating mat-
ing behavior from those regulating other physiological
processes such as gametogenesis or vitellogenesis.

2. Methods
2.1. Study site

The study site is a 1.5 x 1.0km area of upland Son-
oran Desert (elevation 800 900m) located approxi-
mately 33km NNE of Tucson, Arizona. The habitat
consists of rocky volcanic hillsides and sandy plains with
intermittent washes. The vegetation is dominated by
creosote, palo verde, and many cactus species.

2.2. Field monitoring and blood collection

Seventeen female C. atrox were implanted with 11-g
radiotransmitters (#SI-2T, Holohil, Carp, Ont., Can-
ada) and individually marked for identification with 12-
mm PIT tags (AVID, Norco, California, USA) and a
unique three-color code of acrylic paint injected into the

rattle string. Snakes were located several times per week
and bled at monthly intervals. Once located, snakes were
coaxed into a plastic tube and bled from the caudal vein
within five minutes of capture. This time interval is short
enough that plasma levels of B are unaffected by capture
stress (G. Schuett and E. Taylor, unpublished data).
One milliliter samples of blood were collected into
1.5mL plastic tubes and centrifuged in the lab within
24 h of collection. Within this time period, steroid con-
centrations in blood samples do not become altered
(Taylor and Schuett, 2004). Plasma was collected and
stored at —80 °C until radioimmunoassay. We were un-
able to obtain blood samples from each snake at every
month of the study because snakes were occasionally
inaccessible (i.e., underground), and snakes were sam-
pled for varying periods of time because of differences in
date of capture, death, and variable radiotelemeter life.
Also, snakes overwintered underground from October/
November through February, so we only obtained
samples from snakes during the active season. The mean
number of monthly blood samples collected from the 17
female snakes in this study was 8.3 + 3.7 samples, for a
total of 181 blood samples collected and analyzed dur-
ing two active seasons (4/00 to 9/01).

Since we wanted to relate steroid hormone levels to
events in the reproductive cycle, we monitored the re-
productive condition of snakes at monthly intervals
during the reproductive season using portable ultraso-
nography (Concept/MCV, Dynamic Imaging, Living-
ston, Scotland). We designated snakes as vitellogenic
(presence of yolked follicles clustered in a restricted
area), ovulated (presence of large yolked ova arranged
linearly throughout the caudal third of the snake),
pregnant (presence of fetuses), or non-reproductive
(absence of detectable follicles or the presence of small,
pre-vitellogenic follicles). Stage of pregnancy was esti-
mated by fetus size and proportion of yolk remaining.
To more closely evaluate peri-parturient hormone levels
and to collect reproductive output data, snakes were
captured and brought into the lab one to several weeks
prior to parturition. While in the laboratory, we took
blood samples weekly, and two days after parturition.
Snakes were released at the sites of capture along with
their neonates one week after parturition.

Male C. atrox were not implanted with radiotrans-
mitters; instead, we obtained blood samples from males
that we randomly encountered while radiotracking the
females. Males were marked and sampled in the same
manner as females. We obtained and analyzed 170
blood samples from 103 males during three active sea-
sons (4/00 to 10/02).

2.3. Radioimmunoassay

Plasma steroid levels in samples from female C. atrox
were determined following the methods of Moore et al.



(1991). Briefly, samples, including those containing un-
labeled steroid (Sigma Chemical, St. Louis, MO) for
internal standards, were allowed to equilibrate overnight
with 2000 cpm of each radioactive hormone (P: ICN,
Costa Mesa, CA; T, E2, B: New England Nuclear,
Boston, MA) for determination of individual recoveries.
Each sample was extracted twice with 2.0mL of ethyl
ether. Ether phases were pooled, dried under nitrogen,
and resuspended in iso-octane containing ethylene gly-
col. To separate hormones from each other, and from
neutral lipids that may interfere with the radioimmu-
noassay, all samples were subjected to column chro-
matography using celite columns (3g celite:l mL
ethylene glycol:propanediol mixture (1:1) over 3 g cel-
ite:1 mL water). Purified fractions were dried under ni-
trogen and resuspended in assay buffer. An aliquot of
each sample was removed for estimating recovery, and
the remaining volume was assayed in duplicate. Assay
values were corrected for plasma volume and individual
recoveries following chromatography. Samples from
individual snakes were analyzed in eight separate assays
(four for P, T, and B, and four for E2). Mean percent
recoveries were 88% for P, 89% for T, 80% for E2, and
72% for B. The mean intra-assay coefficients of variation
(CVs) were 16% for P, 13% for T, 13% for E2, and 12%
for B. The inter-assay CVs were 17% for P, 24% for T,
10% for E2, and 16% for B.

Plasma T and B levels were determined in samples
from male C. atrox using the same methods, except that
an ether ethanol hexane extraction was used to purify
samples instead of column chromatography. Prior to
using this method, we demonstrated parallelism between
standard curves and serial dilutions of pooled plasma
samples for T and B. Following extraction in 3mL ethyl
ether, the ether fractions were removed and dried with
nitrogen gas, and the samples were resuspended in 1 mL
90% ethanol and refrigerated overnight. Samples were
then extracted with 2mL hexane, the ethanol fractions
were removed and dried with nitrogen gas, and the
samples were resuspended in assay buffer. Assay values
were corrected for plasma volume and individual re-
coveries. Samples from individual snakes were analyzed
in two separate assays for T and a single assay for B.
Mean percent recoveries were 65% for T and 66% for B
(these were lower than female percent recoveries due to
the dual extraction). The intra-assay CVs were 13% for
T and 13% for B. The inter-assay CV was 3% for T.

2.4. Data analysis: females

In order to distinguish seasonal hormone profiles of
females in years that they reproduced from those when
they did not, we designated each female snake as either
reproductive or non-reproductive for a twelve-month
period. If a snake reproduced, it was designated as
reproductive for the month of parturition (usually

August) and each of the preceding eleven months. If a
snake did not reproduce in the summer, it was desig-
nated as non-reproductive for that August and each of
the preceding eleven months. In months when multiple
blood samples were obtained from a single female, we
averaged the values from all the samples for that month
to obtain one value. Using SAS (SAS Institute, version
8.2), we analyzed mean monthly B, E2, P, and T levels
using repeated measures analyses of variance (RMA-
NOVA) with reproductive state as the between-subjects
factor, time as the within-subjects factor, and hormone
level as the dependent variable. The fact that snakes
were at times inaccessible led to missing data. Since
standard RMANOVA techniques (e.g., the GLM pro-
cedure) require complete data, we used the MIXED
procedure (Littell et al., 1996). PROC MIXED infer-
ences for B, E2, and P were made using the compound
symmetry covariance structure, and inferences for T
were made using the autoregressive covariance struc-
ture, because these structures minimized Akaike’s In-
formation and Schwarz’ Bayesian Criteria (Littell et al.,
1996). Post hoc comparisons of hormone levels between
reproductive and non-reproductive snakes at each
month were made with ¢ tests adjusted for an experi-
mentwise Type 1 error rate of 0.05. The adjusted alpha
for controlling Type 1 experimentwise error is 0.05/n,
where n=the number of time periods (.05/7 =0.007).
Sample sizes of reproductive and non-reproductive
snakes at each month are shown in Table 1; post hoc
comparisons in the months of March and September
must be interpreted with caution because there is only a
single sample from reproductive snakes in these months.

2.5. Data analysis: males

There was no relationship between plasma T level
and SVL (Fis» = 0.111,p = 0.74,R*> = 0.001) or mass
(Fio1 = 3.106,p = 0.08, R?> = 0.033). There was also no
relationship between plasma B level and SVL (Fj g =
1.046,p = 0.31,R> = 0.013) or mass (F g = 0.494,
p=0.48 R> =0.005). We In-transformed B data and
square root-transformed T data to meet the assumptions
of normality and homogeneity of variances; however, all
data in figures are shown back-transformed to original
values. The fact that we re-captured and therefore re-
sampled some of the males can lead to pseudoreplication
if samples from these males are treated as independent
samples. Therefore, we randomly selected one sample
from each male (n = 103) and used these values for
analyses (the results were similar when all samples were
included). We analyzed mean monthly transformed B
and T levels using the GLM procedure to perform
analyses of variance (ANOVA) with month as the factor
and B or T level as the dependent variable, followed
by Tukey’s HSD tests to determine in which months
the snakes had different hormone levels. Finally, we



Table 1

Mean monthly steroid hormone levels (ng/ml+ 1 SEM) of female (reproductive and non reproductive) and male Crotalus atrox

Month Sex/condition N 178 estradiol Progesterone Corticosterone Testosterone
March Reproductive female 1 3.04 0.29 10.98 2.62
Non reproductive female 11 0.15+£0.02 0.14+£0.02 41.81 +£3.82 0.18 £0.02
Male 9 — — 35.86 +£1.67 34.68 +2.70
April Reproductive female 4 26.00 £+ 5.00 1.17+0.43 5891 +£11.20 4.14+1.54
Non reproductive female 14 0.16+0.02 0.69+0.12 32.96+1.37 0.73+£0.09
Male 23 — — 36.90 £1.09 14.10£1.10
May Reproductive female 4 32.25+1.00 3.63+0.73 17.80 +£4.35 13.94+3.37
Non reproductive female 11 1.98 £0.58 0.35+0.05 32.03+4.18 0.824+0.21
Male 10 — — 24.82+2.49 1.924+0.26
June Reproductive female 6 2414£0.17 27.62+2.28 28.48 £3.33 0.18+0.03
Non reproductive female 6 0.42+0.11 0.42+0.14 21.62+1.30 0.34+0.09
Male 18 — — 29.27+2.34 7.80£1.32
July Reproductive female 15 0.93+0.07 17.85+1.14 82.32 +4.61 0.38 £0.02
Non reproductive female 14 0.98 £0.18 0.324+0.03 26.10+£2.35 0.78 £0.08
Male 25 35.46+1.98 30.05+1.45
August Reproductive female 12 0.30 £0.04 9.47+0.66 127.01+4.61 0.294+0.02
Non reproductive female 15 0.45+0.05 0.21+£0.02 14.72+0.96 0.67£0.05
Male 24 — — 19.13+£0.59 59.40+1.64
September Reproductive female 1 0.21 0.74 39.63 0.28
Non reproductive female 11 0.13+0.01 0.60 £+ 0.08 65.38 +£5.38 0.234+0.03
Male 46 31.124+0.95 38.65+1.18
October Reproductive female 0 — — — —
Non reproductive female 0 — — — —
Male 12 — — 33.19+2.19 36.97+4.76

Cells where hormone levels were not measured are designated with « .

performed a linear regression analysis using untrans-
formed hormone levels to determine whether T and B
levels were correlated.

3. Results
3.1. Female reproductive cycle

Using ultrasonography, we found that reproductive
female C. atrox at our field site showed the first visible
evidence of vitellogenesis in April (follicles echogenic
and >10mm). By May, reproductive snakes showed
highly enlarged, yolked follicles, which they then ovu-
lated in June, as evidenced by the posterior movement
and linear alignment of ova. In July, fetuses were visible
as yolk steadily became depleted. In August, there was
very little yolk present, and fetal heartbeats were often
visible. Parturition in a given year predominantly oc-
curred over a short period (three weeks) in August.

3.2. Female hormone levels

The mean monthly steroid levels (ng/ml +1 SEM) for
reproductive and non-reproductive female C. atrox are
shown in Table 1.

3.2.1. 17p-Estradiol
The RMANOVA on E2 levels revealed significant ef-
fects of reproductive state (Fjo4 =221.87,p < 0.0001),

time (Fg 74 = 93.32,p < 0.0001), and a time by treatment
interaction (Fs74 = 87.59,p < 0.0001). These results in-
dicate that E2 levels were different between reproductive
and non-reproductive snakes, varied over time, and
changed differently over time in the two groups (Fig. 1A).
Circulating levels of E2 were non-detectable or low in
non-reproductive snakes throughout the year. Levels
were also low in reproductive snakes in July through
September, periods corresponding to gestation and post-
parturition. E2 levels peaked in reproductive snakes in the
months of April and May, the period in which mating and
vitellogenesis occurs. Post hoc tests showed that repro-
ductive snakes had significantly higher E2 levels than
non-reproductive snakes in March, April, May, and June.

3.2.2. Progesterone

The RMANOVA on P levels revealed significant ef-
fects of reproductive state (Fj = 11.46,p = 0.002),
time (F574 = 5.26,p = 0.0001), and a time by treatment
interaction (Fg74 = 5.40,p =0.0001). These results in-
dicate that P levels were different between reproductive
and non-reproductive snakes, varied over time, and
changed differently over time in the two groups (Fig. 1B).
Circulating levels of P were low in non-reproductive
snakes throughout the year. Levels were also low in
reproductive snakes during March, April, and Septem-
ber, but were significantly higher than those of non-
reproductive snakes from May to August. Levels peaked
in June, after ovulation occurred, and remained elevated
throughout gestation until parturition.
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Fig. 1. Monthly plasma levels of (A) 17 estradiol, (B) progesterone, (C) corticosterone, and (D) testosterone in reproductive (black circles, solid
lines) and non reproductive (white triangles, dashed lines) female Crotalus atrox. Hormone levels in non reproductive snakes were relatively low
throughout the year, but were high in reproductive snakes at certain times in the reproductive cycle (significant differences are marked with *, see text

for details). Values are presented as means + 1 SEM. Approximate timing of spring mating, vitellogenesis (

the bars above the graphs.

3.2.3. Corticosterone

The RMANOVA on B levels revealed no effect of
reproductive state (Fj.4 =0.76,p = 0.39), a significant
time effect (Fg74 = 3.17,p=10.008), and a significant
time by treatment interaction (Fs74 = 5.57,p < 0.0001).
These results indicate that B levels varied over time and
changed differently over time in the two groups
(Fig. 1C). Circulating levels of B were relatively constant
in non-reproductive snakes throughout the year. In re-
productive snakes, B levels rose in July and were sig-
nificantly higher than those of non-reproductive snakes
immediately prior to parturition in August. Reproduc-
tive snakes also showed a smaller elevation of B in April
(Fig. 1C); however, the difference is not significant due
to high variability in B levels among reproductive snakes
in this month.

3.2.4. Testosterone

The RMANOVA on T levels revealed significant ef-
fects of reproductive state (Fj.4 = 15.02,p = 0.0007),
time (Fs75 = 12.03, p < 0.0001), and a time by treatment
interaction (Fg73 = 11.53,p < 0.0001). These results in-
dicate that T levels were different between reproductive

vitell.), and gestation are indicated in

and non-reproductive snakes, varied over time, and
changed differently over time in the two groups
(Fig. 1D). Circulating levels of T were non-detectable or
low in non-reproductive snakes throughout the year.
Levels were also low in reproductive snakes except in
April and May, the time period coinciding with vitello-
genesis; however, there was no significant difference in T
levels between reproductive and non-reproductive
snakes in these months due to substantial variability in
T levels among reproductive snakes. Reproductive
snakes had significantly higher T levels than non-re-
productive snakes in March, but this may be an artifact
of the small sample size of reproductive snakes in
March.

3.3. Male hormone levels

3.3.1. Testosterone

Testosterone levels varied significantly among months
(n=103, F=17.34,df =7, p < 0.0001). Testosterone
levels are high in early spring, drop during late spring
and early summer, and peak in late summer (Fig. 2A).
Tukey post hoc tests reveal that T levels are highest in
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Fig. 2. Monthly mean plasma levels of (A) testosterone and (B) cor
ticosterone in male Crotalus atrox. Testosterone levels are high in early
spring and late summer, and are low in late spring. Corticosterone
levels are uniform throughout the year. Months with significantly
different mean hormone levels are designated with different letters.
Values are presented as means+ 1 SEM. Sample sizes are listed in
Table 1.

August and lowest in May, with intermediate levels at
all other months. The spring and late summer peaks in T
correspond temporally to the two breeding seasons ob-
served in C. atrox at our field site.

3.3.2. Corticosterone

Corticosterone levels did not vary among months
(n=103,F = 1.61,df =7,p = 0.14; Fig. 2B). There was
no relationship between T and B levels in male C. atrox
(n=103,F = 1.236,p = 0.27,R* = 0.01).

4. Discussion

The reproductive cycle of C. atrox at our field site
resembles those reported from other areas inhabited by
this wide-ranging species (Aldridge and Duvall, 2002).
Snakes were observed mating during two periods: the
end of the monsoon season (late August to early Octo-

ber) and upon emergence from overwintering (March to
April). Females mating in the late summer may store
sperm through the winter until ovulation the following
June (Schuett, 1992), and may also mate again in the
spring. Females at this site do not initiate vitellogenesis
in the fall as observed in many species of rattlesnakes,
including C. atrox in parts of its range (Aldridge and
Duvall, 2002; Rosen and Goldberg, 2002). Instead, fe-
males show no evidence of vitellogenesis in March, ini-
tiate vitellogenesis in April and May, ovulate in June,
and give birth from late July through early September.
No female reproduced in both years of this two-year
study. Less-than-annual reproduction is commonly ob-
served in rattlesnakes (Klauber, 1972), including C. at-
rox (Rosen and Goldberg, 2002), although some
populations show annual reproduction (Fitch and Pi-
sani, 1993). Frequency of reproduction in many snakes
is strongly affected by the rate of energy accumulation
(Aubret et al., 2002; Bonnet et al., 1994), and thus en-
vironmental differences (i.e., prey availability) rather
than physiological differences may explain the intra-
specific and interspecific variation in reproductive fre-
quency.

Seasonal steroid hormone profiles of female C. atrox
resemble those of other reptiles. Levels of the three sex
steroids examined (E2, P, and T) were low and did not
vary seasonally in non-reproductive snakes, whereas
they peaked during vitellogenesis and the spring mating
period (E2, T) or gestation (P) in reproductive snakes. In
non-reproductive females, B levels were fairly constant
throughout the year, whereas reproductive snakes
showed peaks during vitellogenesis and at the end of
gestation.

Seasonal increases in the sex steroid E2 occur in a
variety of reptiles for two main reasons. First, E2 is the
primary hormone responsible for stimulating the liver to
produce vitellogenins, or egg-yolk proteins (reviewed in
Ho et al., 1982), and increases in E2 are correlated with
vitellogenic activity in turtles (Ott et al., 2000), alligators
(Guillette et al., 1997), lizards (Edwards and Jones,
2001; Radder et al., 2001; Rhen et al., 2000), and snakes
(Bonnet et al., 1994; Whittier et al., 1987). Second, in-
creases in E2 commonly occur during the mating season
because E2 can stimulate attractivity or receptivity of
female reptiles (Rhen and Crews, 2000; Whittier and
Tokarz, 1992). In our study, increases in E2 occurred in
April and May, supporting a role of E2 in vitellogenesis.
However, E2 may not be an important stimulus of
attractivity or receptivity since C. atrox mate in both
spring and fall, yet E2 is elevated only during the spring.

Progesterone levels increase during gestation in a
variety of vertebrates for the general purpose of preg-
nancy maintenance (Custodia-Lora and Callard, 2002).
However, the exact role of P, as well as interspecific
variation in this role, is not well understood. The
pregnancy maintenance properties of P in viviparous



vertebrates include inhibition of follicular growth and
oviductal contractility (Guillette et al., 1981) as well as
maintenance of oviductal vascularity (Mead et al.,
1981). Our results mimic those of a previous study
(Bonnet et al., 2001) where P peaks early in gestation
with a slow decline until parturition, suggesting that
parturition may be stimulated by a drop in P levels.
Supporting such a role for P, Guillette et al. (1991)
showed that administration of exogenous P delayed
parturition in a viviparous lizard. However, similar ex-
perimental administration of P to pregnant aspic vipers
did not delay parturition (Bonnet et al., 2001).

An alternate hormonal stimulus of parturition in C.
atrox might be B. While B is typically considered a “‘stress
hormone” (Greenberg and Wingfield, 1987), its produc-
tion by the adrenal cortex can occur in response to many
factors including reproduction (Romero, 2002). Increases
in circulating B during the mating period and vitello-
genesis have been noted in many reptile species (reviewed
in Moore and Jessop, 2003; Romero, 2002), and this in-
crease in B may involve its role in energy mobilization for
vitellogenesis (Grassman and Crews, 1990; Wilson and
Wingfield, 1992). However, other squamate species show
peaks in B during the later stages of gestation (Dauphin-
Villemant et al., 1990; Guillette et al., 1997). In mammals,
plasma B is elevated during the late stages of gestation
because glucocorticoids are key components of the
physiological changes leading to parturition (Gibb and
Challis, 2002). In reproductive female C. atrox, B may
have a combined role in mobilizing energy for vitello-
genesis and in preparing for parturition, as B levels in-
crease slightly during the spring mating/vitellogenic
period and peak at the end of gestation.

Since we brought snakes from the field to the labo-
ratory several weeks prior to parturition, it is possible
that the peak in B during the late stages of gestation
reflects adrenal activity in response to capture stress
rather than reproductive events (Greenberg and Wing-
field, 1987). However, this is unlikely because the in-
crease in B occurred immediately prior to parturition
despite the fact that snakes were brought into the lab at
varying time periods before parturition. Snakes kept in
the lab one month before parturition did not show an
increase in B earlier than snakes caught one week before
parturition (Fig. 3). The B levels of reproductive snakes
when they first arrived in the lab were similar to those of
the non-reproductive snakes that were still in the field.
Corticosterone levels rose within a week before partu-
rition in most snakes, even though snakes were brought
to the laboratory a variable number of days before
parturition. Furthermore, B levels plummeted at par-
turition (Fig. 3), whereas if they had increased due to
capture stress, they likely would have remained elevated.
This suggests that the peak in corticosterone is physio-
logically related to parturition rather than capture
stress.
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Fig. 3. Change in corticosterone levels in six reproductive female
Crotalus atrox prior to parturition. The first sample point for each
female represents corticosterone levels in the field at the time of cap
ture; all subsequent points are from samples taken in the laboratory.
Levels of corticosterone are shown from six representative snakes in
order to simplify the graph, but all snakes showed similar corticoste
rone profiles around the time of parturition.

We observed a modest increase in T during May,
when reproductive snakes were undergoing vitellogene-
sis. This increase in T during vitellogenesis may simply
occur because T is a precursor to E2 in the biosynthetic
pathway (Staub and De Beer, 1997). Alternatively, T
may interact with E2 in regulating synthesis of vitel-
logenins (reviewed in Callard et al., 1990). The function
of T in female reptiles is poorly understood (Staub and
De Beer, 1997). An increase in T is evident in females of
many taxa during the mating/vitellogenic period (turtles:
Hamann et al., 2002; Ott et al., 2000; alligators: Guil-
lette et al., 1997; tuatara: Cree et al., 1992; lizards: Ed-
wards and Jones, 2001; Rhen et al., 2000; and snakes:
Saint-Girons et al., 1993; Whittier et al., 1987), but the
function of this increase is unknown.

We found that T levels in male C. atrox were elevated
during the two breeding seasons (late summer and
spring), a trend also observed in two other species of
viper with the same mating seasons (Agkistrodon con-
tortix, Schuett, 1997; Crotalus scutulatus, Schuett et al.,
2002). Elevation of T during the mating season is
commonly observed in vertebrate taxa, since T promotes
male mating behaviors such as mate-searching and
courtship (Agmo and Sodersten, 1975; Balthazart et al.,
1985; Lindzey and Crews, 1986). Testosterone levels
were lowest in C. atrox during May, a time when no
mating activity is observed. Testosterone levels may be
elevated in the late summer because male rattlesnakes
undergo sperm formation at this time (Schuett, 1992).
During sperm formation, the renal sex segment, which
supplies the sperm with nutrients, become hypertro-
phied under androgenic control (Prasad and Sanyal,
1969). Males store sperm produced in the late summer



for use during the following spring mating period
(Schuett, 1992). Thus, the elevation in T in C. atrox
coincides with their two mating periods in the spring
and late summer, as well as with the physiological pro-
cess of sperm formation in the late summer.

Many species show correlations between T and B
levels (Moore and Jessop, 2003). Negative relationships
between T and B are present in many species because B
can suppress sex steroid levels (Greenberg and Wing-
field, 1987). However, positive correlations between T
and B occur in species that experience high energetic
demands during the breeding season, where high T levels
promote reproductive behaviors and high B levels pro-
mote energy mobilization (Moore and Jessop, 2003). We
found that there was no seasonal variation in B levels in
male C. atrox during the active season, and B levels were
not related to T levels. This suggests that B does not
have a strong negative effect on T levels, a pattern also
seen in male garter snakes (Moore et al., 2000). The lack
of a positive correlation between B and T levels suggests
that energetic requirements in male C. atrox may not be
substantially increased during the breeding season.
However, male rattlesnakes exhibit increased activity
during the breeding seasons because they often travel
long distances in search of females (Duvall and Schuett,
1997; Klauber, 1972). Low basal metabolic rates and
energy requirements of rattlesnakes in comparison to
other reptiles of similar size (Beaupre and Duvall, 1998)
may allow male C. atrox to meet increased energy de-
mands without a concomitant increase in energy mobi-
lization by B; however, this hypothesis remains to be
tested experimentally.

In summary, the hormonal profiles of male and fe-
male C. atrox resemble those of many viviparous ver-
tebrates. In females, maximum elevations occur in E2
during vitellogenesis, P during gestation, and B imme-
diately pre-parturition, while in males T is maximal
during the mating seasons. The strong similarities in
seasonal levels of steroid hormones across broad taxo-
nomic groups reflect the critical role of these hormones
in regulating reproductive events. However, finer-scale
interspecific differences may be evidence of plasticity in
the reproductive cycle to adapt to ecophysiological
pressures. Of particular interest in C. atrox are seasonal
differences in the association of hormone profiles with
reproductive events. Crews (1984) and Crews et al.
(1984) categorize reproduction in vertebrates as either
“associated” (mating behavior coincides with gonadal
activity) or ‘“‘dissociated” (mating behavior does not
coincide with gonadal activity). In C. atrox, females
show an E2 peak during the mating/vitellogenesis period
in the spring, but have no increase in E2 during the fall
mating season, indicating that E2 is probably associated
with vitellogenesis and not with mating in C. atrox.
Males exhibit increased T twice in a single annual cycle,
once during simultaneous spermatogenesis and mating

behavior (fall) and once during mating behavior alone
(spring). These results indicate that the reproductive
cycle of C. atrox, like that of another species of rattle-
snake (C. scutulatus; Schuett et al., 2002), cannot be
categorized as either “dissociated” or “associated.” The
temporal differences in the timing of physiological and
behavioral events suggest considerable complexity
among hormonal, gonadal, and behavioral cycles of C.
atrox, and suggest that the reproductive cycle is regu-
lated not only by direct hormonal actions, but also by
complex hormonal interactions with other hormones or
environmental cues. Experimental manipulation of
hormone levels and environmental conditions would be
a powerful adjunct in elucidating the regulatory mech-
anisms of the reproductive cycle and the functional
significance of differences in seasonal hormone levels
among species.
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