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ABSTRACT 

The comprehensive and systematic management of watersheds is essential for reducing the adverse	 

environmental impacts arising from anthropogenically caused erosion and subsequent	 

sedimentation. This paper describes a computational methodology that is designed to serve as a 

watershed decision support system and is capable of controlling environmental impacts of non-point 

source pollution resulting from erosion. In the decision process, the methodology also accounts for	 

other inseparable objectives such as economics and social dynamics of the watershed. This decision 

support tool was developed by integrating a comprehensive hydrologic model known as SWAT and 

state-of-the-art multiobjective optimization technique within the framework of a discrete-time 

optimal-control model. Strength Pareto Evolutionary Algorithm (SPEA), a multiobjective optimizer 

based on evolutionary algorithms, has been used to generate Pareto optimal sets. For demonstration 

purposes, the tool was applied to the Big Creek watershed located in Southern Illinois. Results 

indicate that the methodology is highly effective and has the potential to improve comprehensive 

watershed management. 
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INTRODUCTION 

Soil erosion is a natural phenomena that involves the 

processes of detachment of sediment particles from a 

larger soil mass and subsequent transport and deposition 

of those particles on land surfaces and in water bodies. 

Most river reaches are naturally balanced with respect 

to sediment inflow and outflow (Morris & Fan 1998). 

Today, however, human activities such as deforestation, 

cultivation, overgrazing, construction and other practices 

have increased erosion beyond its natural rate. These 

aggravated rates are responsible for many on-site and 

off-site impacts. Ritter & Shirmohammadi (2001) indicate, 

for example, that erosion is the source of 99% of the total 

suspended loads in the waterways of the United States. 

The same authors estimate that approximately five billion 

tons of soils eroded every year in the United States 

reach small streams. This sediment has a tremendous 

cost associated with it in terms of stream degradation, 

disturbance to wildlife habitat, and direct costs for 

dredging, levees and reservoir storage losses. Sediment is 

also an important vehicle for the transport of soil-bound 

chemical contaminants from nonpoint source areas to 

waterways. According to the U.S. Department of 

Agriculture (USDA), soil erosion is the source of 80% of 

the total phosphorus and 73% of the total nitrogen loads 

in U.S. waterways (Ritter & Shirmohammadi 2001). 

Attempts that target reduction of sediment yield from a 

watershed could therefore prevent a significant amount of 

nutrients from entering water bodies. Proper management 

of activities in a watershed is the primary key to reducing 

these adverse impacts, especially those arising from 

anthropogenic activity. 

Any attempt to control erosion and sediment yield 

should emphasize the three critical stages of these pro­

cesses: detachment of soil particles, transport of the 



detached soil particles and deposition. These three stages 

of erosion are, in one way or another, affected by 

environmental factors such as geology, slope, climate, 

drainage density and patterns of human disturbance. 

While humans have little or no control over some of 

these factors, other imbalances can be positively 

impacted with proper planning and management. 

Mechanisms that aid in reducing levels of soil distur­

bance and degree of detachment (e.g. tillage practices), 

that cut long steep slopes and reduce transporting 

capacity of surface runoff (e.g. structural measures), and 

that do not expose the soil to the direct impact of 

falling precipitation (e.g. vegetation) are some available 

management techniques. While many researchers agree 

that there is no single dominant factor that explains the 

wide variability of erosion, using data from 61 gage 

stations in Southern Kenya, Dunne (1979) demonstrated 

that land use is a dominant factor explaining variability 

in sediment yield. This finding indicates that the role of 

vegetation in reducing erosion and sedimentation is 

multi-faceted. Vegetation can absorb kinetic energy of 

the falling rain and reduce its detaching potential. 

Through its root system, vegetation can bind soil masses 

together and increase the soil’s resistance to detachment. 

Vegetation also increases soil roughness and reduces 

transporting capacity of overland flow. These aspects 

are likely to be the reasons why Morris & Fan (1998) 

concluded that ‘land use improvement is the best and 

probably the only feasible method’. This study explores 

the potential role of vegetation and management combi­

nations in addressing the global scale threat posed by 

erosion. Emphasis herein is specifically placed upon 

agriculturally dominated watersheds. 

Land use management decisions should not only 

account for a singular objective of reducing environ­

mental impacts of erosion, but also should integrate the 

feasibility of the designed policy from the socioeconomic 

perspective of the watershed. With regard to an agri­

cultural watershed with multiple landowners, a likely 

stakeholder concern may be the economic benefit that 

he/she may generate from his/her farm. A systematic 

method of including this individual owner’s perspective 

into a decision support system is crucial for successful 

implementation of the policy. To address this critical 

socioeconomic factor, a farm-scale policy that integrates 

both economic and environmental objectives is adopted 

in this investigation. The methodology designed here 

searches for the ‘best’ land use and management combi­

nation that can generate maximum benefit for the farm 

owner, and at the same time, minimizes erosion and 

sediment yield from the farm. In this way, all stake­

holders in the watershed contribute to the common 

goal of reducing adverse impacts of erosion from their 

commonly owned watershed, while preserving their 

private goals of maximizing farm income. 

Effectiveness of this computational methodology is, 

however, directly influenced by the capability of the model 

used to estimate erosion and sediment yield for a given 

land use and management alternative and its ability to 

account for the various environmental factors that may 

affect the processes of erosion. Fortunately, over the last 

three decades, advances in hydrological science and 

engineering, as well as computer capabilities, have stimu­

lated the development of a wide variety of mathematical 

simulation models for such estimates. Some of these 

models integrate Geographic Information System (GIS) 

technology, thus improving their data management, 

retrieval and visualization capabilities. The most compre­

hensive simulation techniques are process-based (physi­

cally based), distributed models such as SHE (Abbott et al. 

1986), AGNPS (Young et al. 1987), ANSWERS-2000 

(Bouraoui & Dillaha 1996) and Soil and Water Assessment 

Tool, or SWAT (Arnold et al. 1999). These models have 

replaced traditional lumped, empirical models that relate 

management and environmental factors to runoff and 

sediment yield through statistical relations. Distributed 

models are able to capture the spatial and temporal 

heterogeneity of environmental factors such as soil, land 

use, topography and climate variables. This not only 

makes their resulting estimates more accurate, but also 

allows policies to be designed on small and more practical 

scales such as the farm-scale, which has been adopted in 

this study. SWAT, as mentioned above, is a particularly 

comprehensive distributed model that is interfaced with 

Arcview© GIS. Hydrological models themselves, however, 

are useful only for evaluating what-if scenarios and testing 

potential management alternatives. They are unable 

directly to solve water resources management and control 



problems that require the explanation of a range of avail­

able alternatives. 

A comprehensive decision-making framework for 

watershed management requires the integration of a 

hydrological simulation model and a suitable optimization 

technique that is capable of solving complex control prob­

lems. This integrative method, referred to here as a 

discrete-time optimal control methodology, has been 

increasingly popular in water resources related fields and 

has provided solutions for large-scale problems in areas of 

reservoir management (Yeh 1985; Unver & Mays 1990; 

Nicklow & Mays 2000), bioremediation design and 

groundwater management (Wanakule et al. 1986; Yeh 

1992; Minsker & Shoemaker 1998), design and operation 

of water distribution systems (Cunha & Sousa 2000; 

Sakarya & Mays 2000) and watershed management, 

(Muleta & Nicklow 2001; Nicklow & Muleta 2001). 

Nicklow (2000) provides a comprehensive review of the 

benefits of the approach, which include a reduced need for 

additional simplifying assumptions about the problem 

physics in order to reach an optimal policy and a decrease 

in size of the overall optimization problem. Furthermore, 

if the developer is able to incorporate existing simulation 

procedures that have been widely accepted in engineering 

practice, the optimal control model attempts to improve 

the practical utility of the approach. When applied to a 

typical nonpoint source pollution reduction problem, the 

approach allows the direct determination of land-use 

patterns and tillage practices that solve the following 

formulation: 

minimize: annual average sediment yield and maximize 

annual average economic benefits on a farm 

scale 

subject to: (i) water quality and hydrological relationships 

that govern erosion and sedimentation 

processes 

(ii) crop management constraints, such as 

feasible crops according to season and 

cropping sequence. 

There have been minimal applications of this type of 

integrative modelling technique for comprehensive 

watershed management. Dorn et al. (1995) and Harrell & 

Ranjithan (1997) used a similar technique to determine 

the optimal design of storm water detention ponds to 

achieve sediment removal requirements on a watershed 

scale. Sengupta et al. (2000) developed a spatial decision 

support system capable of evaluating the effect of 

proposed watershed conservation policies by linking the 

Agricultural Non-Point Source Pollution (AGNPS) model 

and a linear programming model known as GEOLP. 

GEOLP is an enhanced version of an economic farm 

model developed by Kraft & Toolhill (1984) and was used 

to maximize annual farm income, rather than control 

nonpoint source pollution. Nicklow & Muleta (2001) pre­

sented an application of this methodology in which SWAT 

and a genetic algorithm were coupled for purposes of 

watershed management under consideration of a single 

objective of minimizing sediment yield from a basin. In 

this paper, the methodology is expanded for solution to a 

typical multiobjective problem involving both nonpoint 

source pollution and economic goals. The methodology is 

designed to yield directly the land use pattern that simul­

taneously minimizes sediment yield and maximizes net 

farm-level profits from a watershed, subject to specified 

constraints. The particular approach used here interfaces 

SWAT with an evolutionary multiobjective global search 

strategy known as SPEA (Zitzler & Thiele 1999) to locate  

non-dominated Pareto optimal solutions. Capabilities of 

the methodology and resulting integrative model are 

demonstrated through an application to the Big Creek 

watershed, a Southern Illinois watershed placed on the 

303(d) list by the Illinois Environmental Protection 

Agency (ILEPA) as a result of its excessive sediment 

yield. 

PROBLEM FORMULATION 

For the multiobjective problem being studied, the vector of 

decision variables is represented as seasonal cropping and 

tillage practices that define an agricultural landscape. The 

important state variables under consideration are sedi­

ment yield and economic benefit that occur in response 

to the applied land-use pattern. The problem can be 

expressed mathematically as 



T 

∑ (yt) 
t=  1 

(1)Min Z = 
T 

and 

T 

∑ (∂Pt) 
t=  1 

(2)Min Z = 
T 

subject to the transition constraints 

yt = f(Cs,Xs,Ts,t,s)  (3)  

Pt = f(Cs,Xs,Ts,M,t,s)  (4)  

and crop management constraints, expressed in functional 

form as 

g(Cs,Xs,Ts,t,s)≤0  (5)  

where Z represents the functions to be minimized; yt is 

annual sediment yield; Pt is the net annual economic 

benefit to be maximized; T is the number of years in the 

simulation horizon; Cs and Ts represent crops planted and 

tillage practices implemented during season s of year t; Xs 

is a generic term that represents all other hydrological and 

hydraulic factors that may affect sediment yield and crop 

yield during season s of year t, and M is an average market 

price for crop C over the decision period T. 

WATERSHED AND CROP GROWTH SIMULATION 

MODEL 

The transition constraints provided in the current problem 

formulations are best solved using a comprehensive water­

shed simulation model and crop growth model. With 

respect to the variety of models available, distributed 

models are better suited to solve watershed management 

problems than empirical and lumped routing models 

because of their use of spatially dynamic parameters. The 

USDA’s watershed management model, SWAT, represents 

a prime example of one such model. SWAT is a 

continuous-time (e.g. long-term yield) simulator 

developed to assist water resource managers in routine 

assessment of water supplies and the effects of nonpoint 

source pollution in large river basins (Arnold et al. 1998; 

ASCE 1999). The model operates on a daily time interval 

and allows a watershed to be subdivided into natural 

sub-watersheds, upon which distributed routing of flows is 

based. In addition, each sub-watershed can be further 

subdivided into a number of Hydrological Response Units 

(HRUs), defined by a unique combination of land use and 

soil type heterogeneity. All factors such as soil type, 

land management practice and climate are considered 

homogeneous on an HRU scale. 

While SWAT can be used to study more specialized 

processes such as bacteria transport, the minimum data 

required for execution are commonly available from 

government agencies, thus boosting its practical utility. 

SWAT inputs can be divided into the following categories: 

hydrology, weather, sedimentation, soil temperature, crop 

growth, nutrients, pesticides and applied agricultural 

management techniques. Weather variables that drive the 

hydrological model include daily precipitation, maximum 

and minimum air temperature, solar radiation, wind speed 

and relative humidity. For watersheds lacking adequate 

weather data, a stochastic weather generator can be used 

for all or several variables and is based on monthly climate 

statistics that are calculated from long-term measured 

data from a weather station that is geographically near the 

watershed. In addition, weather data can be permitted to 

vary according to specific sub-watersheds, depending on 

data availability. 

SWAT is designed to simulate major hydrological 

components and their interactions as simply, and yet 

realistically, as possible (Arnold & Allen 1996). Hydrologi­

cal processes that are modelled include surface runoff, 

estimated using the SCS curve number or Green–Ampt 

infiltration equation; percolation, modelled with a layered 

storage routing technique combined with a crack 

flow model; lateral subsurface flow; groundwater flow 

to streams from shallow aquifers; potential evapo­

transpiration by the Hargreaves, Priestley–Taylor and 

Penman–Monteith methods; snow melt; and transmission 

losses from ponds. For additional detailed information, 

the reader is referred to Arnold et al. (1998). 



Sediment yield is computed for each HRU using the 

Modified Universal Soil Loss Equation (MUSLE). 

Whereas the original Universal Soil Loss Equation 

(USLE) uses rainfall as an indicator of erosive energy, the 

MUSLE uses the quantity and rate of runoff to simulate 

erosion and sediment yield. The substitution results in 

a number of benefits including increased prediction 

accuracy, elimination of the need for a sediment delivery 

ratio, and the computation of sediment yield on a single 

storm basis. The MUSLE can be expressed as 

)0.56KCP(LS)y = 11.8V(qp	 (6)  

where y is the sediment yield from an HRU in tons; V is the 

surface runoff column for the HRU in m3; qp is the peak 

flow rate for the HRU in m3/s; K is a soil erodibility factor; 

C is a crop management factor, which accounts for crop 

rotations, tillage methods, crop residue treatments, and 

other cultural practice variables; P is an erosion control 

factor; and LS is the slope length and steepness factor 

(Yang 1996; Arnold et al. 1999). A quick observation of the 

MUSLE reveals a range of possibilities for reducing sedi­

ment yield from watersheds. As described earlier, these 

include the minimization of erosive potential of rainfall 

using alternative ground covers, the usage of tillage 

practices that cause less soil disturbance, the reduction of 

long, steep slopes through construction of terraces and 

check dams, and the proper choice of land use and 

management combinations. Land use and tillage practices 

in particular play a significant role in reducing erosive 

power of rainfall by binding the soil and reducing soil 

mobility and by increasing roughness to retard transport. 

Within SWAT, crop growth is simulated over a daily 

time step, and crop management factor values in the 

MUSLE are calculated for all days that runoff occurs, 

thus accounting for stage of crop growth and improving 

accuracy of model results. Using crop-specific input 

parameters that are included in the model as a database, 

one can simulate a variety of annual and perennial crops. 

Agricultural management practice options include tillage 

techniques, planting and harvesting dates of crops, 

fertilizer and pesticide types, application dates and 

dosages, and cropping sequences. The model also provides 

an estimate of crop yield and accounts for crop yield 

reduction that may arise due to stresses such as the lack of 

sufficient precipitation and/or fertilizer. This crop yield 

estimate, along with information on production expenses 

and market price of the crops, helps in predicting 

economic implication of a decision policy. In addition, 

SWAT operates on an Arcview© GIS platform, which 

greatly assists in the generation of model input parameters 

and visualization of model output. Finally, SWAT and its 

source code are public domain and available online free 

of charge (http://www.brc.tamus.edu/swat/). It is a 

well-supported model and is widely used in solving broad 

water resources problems ranging from nonpoint 

source pollution control to climate change studies. These 

numerous features make SWAT a comprehensive mech­

anism for assessing both environmental and economic 

effects of alternative land management practices, and as 

such, a suitable tool for solving the transition constraints 

of the current optimization problem. 

MULTIOBJECTIVE EVALUATION 

Multiobjective optimization, without loss of generality, 

can be defined as a technique for simultaneously minimiz­

ing or maximizing several non-commensurable and often 

conflicting objectives. Although single-objective optimiz­

ation problems may have a unique optimal solution, this is 

not the case for many realistic multiobjective optimization 

problems (MOPs). Typically, MOPs have no unique, 

perfect solution but rather a set of non-dominated, or 

non-inferior, alternative solutions, also known as the 

Pareto-optimal set. 

For an m-dimensional minimization problem 

F(x) = (f1(x),  . . .,  fm(x)) subject to constraints gi(x)≤0, i = 1,  

. . .,  k, x∈V, Veldhuizen & Lamont (2000) defined Pareto 

dominance and Pareto optimality as follows: 

•	 A vector u = (u1,  . . .,  um) is said to dominate another 

vector v = (v1,  . . .,  vm) if  u is partially less than v, i.e. 

∀i∈{1,  . . .,  m}, ui≤vi ` ∃ i∈{1,  . . .,  m}: ui < vi. 

•	 A solution x∈V is said to be Pareto optimal with 

respect to V if  there is no  x′∈V for which 

v = F(x′) = (f1(x′),  . . .,  fm(x′)) dominates 

u = F(x) = (f1(x),  . . .,  fm(x)). 

http://www.brc.tamus.edu/swat


These Pareto optimal solutions may have no clearly 

apparent relationships other than that they form a 

set of solutions whose corresponding vectors are non-

dominated with respect to all other comparison vectors, 

the comparison vectors being the m-dimensional 

functional values. A decision maker then implicitly 

chooses an acceptable solution (or solutions) by selecting 

one or more from the Pareto-optimal set based on his/her 

own additional criteria. When applied to the two objective 

non-point source pollution problem discussed here, x is a 

vector of land use patterns and tillage operations over the 

decision period (T), and F(x) is a vector of the minimiz­

ation function Z given in Equations (1) and (2), where 

f1(x) is mean annual sediment yield (Equation (1)) and f2 

(x) is mean annual net profit (Equation 2). Transition 

equations and system constraints given in Equations (3)– 

(5) are analogous to gi (x). For any decision policy to be a 

member of Pareto optimal set, the vector of decision 

variables chosen (i.e. land covers and corresponding 

tillage practices) should result in a mean annual sediment 

yield and mean annual dollar values that are at least as 

good as those obtained by any other alternative policies 

investigated and should be better than those alternatives 

in at least one of the two objectives. 

Traditionally, there have been many methods of 

solving MOPs including those which find a single optimal 

solution in one simulation run (Deb & Horn 2000). These 

methods, however, need to be used repeatedly with hopes 

of finding a different Pareto-optimal solution each time. 

Moreover, they have difficulties in solving problems 

having a non-convex search space. Alternatively, 

evolutionary algorithms (EAs), search and optimization 

algorithms inspired by the process of natural evolution 

and that work on populations of candidate solutions, are a 

natural choice for multicriteria evaluation since they can 

generate a number of Pareto-optimal solutions in one 

simulation run. Current evolutionary approaches include 

evolutionary programming (EP), evolutionary strategies 

(ES), genetic algorithms (GAs) and genetic programming 

(GP). For details of these techniques, the reader is referred 

to Back et al. (2000). Candidate solutions in EAs are 

evaluated and assigned fitness values based on their rela­

tive performance, represented through objective func­

tions. Proportional to their fitness value, better individuals 

are then given the opportunity to reproduce themselves 

with the philosophy that the new generation could better 

fit the environment than the parents from which the new 

individuals were created. Offspring produced are modified 

by means of mutation and/or recombination operators in 

order to control premature convergence. To apply this 

logic to MOPs, the key is the conversion of the multiple 

performance measures, such as objective function values, 

into a scalar fitness measure. 

Based on techniques of mapping multiple perform­

ance values to a single fitness value, usually termed as 

fitness assignment, Fonseca & Fleming (2000) grouped 

current EA approaches to solving MOPs into plain 

aggregation approaches, population-based non-Pareto 

approaches and Pareto-based approaches. As the name 

implies, aggregation methods numerically combine the 

objectives into a single objective function that can be 

optimized using single function optimization techniques. 

A weighted-sum approach is the classical example of this 

technique. The shortcoming of the method, however, lies 

in the assignment of relative importance of the multiple 

objectives. In population-based non-Pareto approaches, 

different objectives affect the selection of different parts of 

the population. The Vector Evaluated Genetic Algorithm 

(VEGA) (Schaffer 1985) is a typical example of algorithms 

that adopt this technique. In VEGA, selection is carried 

out for each objective function separately. Pareto-based 

techniques make use of Pareto dominancy criteria for 

fitness evaluation and population ranking. 

Motivated by the diversity of algorithms and the lack 

of comparative performance studies of the different 

approaches, Zitzler et al. (2000) provided a systematic 

comparison of six multiobjective EAs from the three 

classes. The basis of the empirical study was formed by a 

set of well-defined, domain-independent test functions 

that allow investigation of independent problem features. 

Test functions having features that pose difficulties for 

EAs with regard to convergence to the Pareto-optimal 

front (Deb 1999) (i.e. convexity, non-convexity, discrete 

Pareto fronts, multimodality, deception and biased search 

spaces) were used in the comparison study. As such, the 

authors were able to compare systematically the 

approaches based on different kinds of difficulties and 

determine more exactly where certain techniques are 



advantageous or have trouble. The conclusions of their 

comparison study included a clear hierarchy of algorithms 

with respect to the distance to the Pareto-optimal front. 

The Strength Pareto Evolutionary Algorithm (SPEA) was 

ranked first and outperformed all other algorithms on five 

of the six test functions, and was ranked second on the 

sixth-test function that incorporated deceptive features. 

Based on this comprehensive comparison study and 

inspired by the excellent performance of SPEA on these 

carefully chosen test functions, SPEA has been integrated 

into the solution methodology for the multiobjective 

watershed management problem. 

SPEA (Zitzler & Thiele 1999) is an algorithm that 

makes use of both well-established techniques and new 

concepts in finding Pareto-optimal solutions. Specifically, 

it incorporates concepts such as elitism, niching and 

clustering, and Pareto dominancy. The algorithm begins 

with initial solution alternatives, P, that are randomly 

generated, and objective function evaluation is performed 

for each of these decision policies. Based on the definition 

of Pareto dominance, non-dominated solutions are sought 

from these initial solutions and are copied to temporary 

storage P′. The fitness of each individual in P, as well as  P′, 
is then calculated. The fitness assignment is a two-stage 

process. First, fitness of individuals in the external, non-

dominated set P′ is evaluated. The number of individuals 

in P that are dominated by an individual i in P′, denoted 

here as n, are counted, and the fitness value (fi) for  

individual i in P′ is then determined according to 

n 
fi = (7)

N + 1  

where N is the total number of individuals in P. This 

process is repeated for all individuals in P′. Afterwards, to 

determine fitness of individuals in P, say for individual j, 

fitness values of all individuals in P′ that dominated indi­

vidual j will be added and a value of one is added to this 

total to ensure that members of P′ have better fitness than 

members of P: 

fj = 1 +  ∑ fi . (8) 
i,i≥j 

Based on their fitness values, individuals from P and P′ are 

ranked and selected according to a user-defined scheme 

until the mating pool is filled. Problem-specific crossover 

and mutation operators are then applied. On subsequent 

generations (iterations), dominance is checked within P′, 
and those solutions that are dominated are removed. If the 

number of solutions (Pareto optimal set) stored in P′ 
exceeds a user specified maximum number of niches (N′), 
P′ is pruned by clustering. For this study, an average 

linkage method was used for clustering. Unless the con­

vergence criteria is satisfied, another iteration begins by 

searching for non-dominated solutions and copying them 

to P′. Figure 1 presents the structure of SPEA. For further 

detail of the algorithm, including fitness assignment and 

the clustering approach, the reader is referred to Zitzler & 

Thiele (1999). 

Equations (1) and (2) are the objective functions to be 

minimized and represent the mean annual sediment yield 

and mean annual economic benefit generated from a farm 

field, respectively. The functions implicitly depend on a 

particular landscape and climate conditions through the 

governing dynamics of water quality and hydrological 

phenomena. The transition constraints, Equations (3) and 

(4), represent the laws that govern water quality, hydro­

logical processes, crop growth and subsequent crop yield, 

and market conditions and are used to describe the stage­

by-stage response of the watershed system and economics 

according to an imposed land-use pattern. The transition 

equations for the current problem are comprised of rela­

tionships for water and sediment continuity, the soil loss 

equation, plant growth model, and many others solved by 

SWAT. Equation (5) defines a feasible range for decision 

policies. These policy constraints, together with the tran­

sition constraints, define the feasible solution space for 

this multiobjective watershed management problem. 

SOLUTION METHODOLOGY 

The optimal control methodology developed to solve the 

multiobjective problem relies on an interface between 

SWAT and SPEA, as illustrated in Figure 2. Design of the 

SWAT–SPEA linkage was performed systematically with 

two critical goals: minimizing computational resources, 

particularly CPU time, and preserving the originality of 

SWAT so as to simplify upgrading efforts of the optimal 



Figure 1 | Logical flow diagram of SPEA. 

control tool with future, newer versions of SWAT. SWAT 

is a model designed to make one simulation run starting 

from variable declaration and initialization, to the pro­

cesses of reading inputs, computation of hydrological pro­

cesses, and writing outputs to file. The optimization model 

developed here, however, requires an iterative search for 

which a number of function evaluations, or SWAT calls, 

are necessary. To avoid performing some of the unneces­

sary operations that demand considerable computational 

time, such as reading inputs, only computational sub­

routines of SWAT were directly involved in the search 

process. Input reading was performed only once in 

operation of the overall model. Likewise, subroutines for 

reinitializing variables to their original values after every 

function evaluation were carefully designed and incorpor­

ated to the model. The process of iteratively writing 

outputs to a file was fully suppressed. Output was written 

only on completion of the overall optimal control model. 

In this control model, decision variables, or genes, are 

cropping and tillage practice combinations for a particular 

HRU, which are permitted to change over subsequent 

seasons. A set of decision variables, or chromosome, that 

defines a particular landscape then represents a potential 

solution to the posed problem. Within this study, Table 1 

provides examples of genes (land cover and tillage prac­

tice) and their assigned integer codes for some of the land 

covers considered in this search operation. An operational 

management database and economic database were devel­

oped for all potential land covers believed to be commonly 

grown in the study watershed. After a sequence of genes 

for a chromosome, or policy, is chosen, the model uses the 

database to automatically assign management operations 

for each crop in the chromosome. This subsequent man­

agement schedule is ultimately used by SWAT in hydro­

logical simulation. The operational management schedule 

dictates the type of land cover chosen for a particular 

season, tillage type used, planting and harvest dates for the 

crop, chemical (fertilizer and pesticide) application dates 

and dosages, end of year operations, curve number to be 

used in estimating surface runoff taking into account soil 

type in the HRU and crop type selected for the season 

and its tillage type, potential heat units required for the 



Figure 2 | Structure of SWAT–SPEA interface. 

particular crop to reach maturity which heavily influences 

crop yield, and other practices. This operational manage­

ment schedule varies from HRU to HRU within the same 

Table 1 | Example of genes defining crop types and tillage practice 

Crop Tillage practice Acronym Integer code 

Soybean No tillage SYNT 1 

Corn No tillage CRNT 4 

Sorghum Conservation tillage SGCT 8 

Wheat Fall tillage WWFT 19 

Wheat No tillage WWNT 17 

Soybean after wheat Conservation tillage SYWC 10 

Alfalfa No tillage AFNT 12 

Pasture No tillage PSNT 14 

search iteration and also varies within the same HRU from 

iteration to iteration. As a result, its allocation is dynamic 

and should be updated each time a new policy is designed 

for an HRU. The economic database supplies information 

on production expenses, both variable and fixed costs, and 

the selling price of all crops included in the decision 

process. 

The solution methodology assumes that each HRU 

represents a particular farm field that is singularly or 

commonly owned by a landowner. Under this assump­

tion, a landowner’s decision concerning land uses and 

tillage types will have no influence on the decisions 

made by neighbouring landowners. Expressed differently, 

the methodology allows each landowner within the 

watershed to make independent decisions, but con­

tributes towards the overall goal of minimizing sediment 

yield to a receiving water body. This approach supports 

ILEPA’s recognition that watershed planning and 

management begins with the responsibility of farmers 

and other landowners who have ownership rights within 



Table 2 | Sample management alternatives 

Crop 3 Crop 4 Crop 5 

Crop 1 Crop 2 Warm or Warm or Winter or 

Warm Winter perennial perennial perennial 
Chromosome season crop crop season season 

1 1 17 12 12 12 
(SYNT) (WWNT) (AFNT) (AFNT) (AFNT) 

2 8 19 10 4 14 
(SGCT) (WWFT) (SYWC) (CRNT) (PSNT) 

the watershed. Their land use choices directly affect their 

personal income and affect their shared responsibility 

to maintain environmental quality. Effective decision 

making in such cases should thus recognize different 

stakeholder perspectives. It may be argued that such 

decision policy needs to be performed on the scale of a 

watershed rather than a farm field. Unlike the farm-

based decision, however, a watershed scale decision may 

be that which economically favours one landowner over 

the other within the same watershed and may suffer from 

severe socioeconomic issues. 

Farm management decisions are not typically based 

on single-year concerns, but rather under consideration of 

multi-year criteria, such as crop rotation. In this study, it is 

assumed that a farm management policy dictates the 

seasonal sequence of crops to be grown on an individual 

farm field for a three-year time horizon. In the decision 

process, only field crops are considered and a maximum of 

two crops per year are permitted to grow. The second crop 

of the year can be planted only after the preceding crop is 

harvested. Planting and harvesting dates of crops are 

assumed to be consistent within the dates recommended 

for specific crops in the watershed of study, and a crop 

year is assumed to commence in January. With any three-

year rotation, a maximum of five crops can be grown. The 

first crop planted in the three-year period is a warm season 

crop and is harvested in late September. A winter crop is 

then planted in early October and is harvested in June. 

Next, using a double cropping system, warm season crops, 

such as soybean, that can grow following harvest of winter 

crops are planted. The fourth crop is a warm season crop 

that is planted in March or April, and finally the fifth and 

the last crop of the sequence is a winter crop. In addition, 

once planted, perennial crops such as hay and pasture 

are allowed to remain on the field until the end of the 

three-year plan. These criteria represent crop manage­

ment constraints, which were expressed generally through 

Equation (5). 

The solution methodology begins with randomly 

generated chromosomes for each HRU, each consisting of 

five genes, which represent the sequence of land covers 

and tillage practices to be implemented over a three-year 

period for that farm field. By design, each chromosome is 

feasible according to the specified crop management con­

straints described above. Satisfaction of the management 

constraints is checked not only during initial random 

generation of alternative solutions, but also on crossover 

and mutation operations. This was performed using the 

systematically assigned crop codes (see Table 1), and 

supplying minimum and maximum values (codes) that a 

certain season’s gene may assume. For further illustration, 

Table 2 provides two examples of potential chromosomes. 

Considering the second alternative in the table, sorghum 

with conservation tillage is a warm season crop and is 

chosen as gene 1; then wheat with fall tillage is a winter 

crop chosen as gene 2; soybean with no tillage which can 

be grown over the summer after harvesting wheat is the 

third land cover; and the last land cover selected over the 

decision time horizon is pasture with no tillage. In alter­

native 1, silage with spring tillage was proposed as the first 



gene and the second gene was chosen to be perennial land 

cover, which is alfalfa with no tillage option. The third, 

fourth and fifth genes of the chromosome were then 

automatically assigned the same land cover (i.e. alfalfa 

with no tillage) to satisfy the management constraints due 

to perennial cropping. 

Once a single, random decision policy is chosen for an 

HRU in the watershed, the task of assigning operational 

management schedules for the HRUs is accomplished. 

This process is repeated for all HRUs in the watershed 

where potentially different policies are chosen for differ­

ent HRUs, according to the process described above. After 

having decision alternatives for all HRUs in the water­

shed, the water quality and hydrological simulator is used 

to solve implicitly the transition constraints for each 

chromosome. The objective function value returned from 

SWAT represents a three-year average annual sediment 

yield and crop yield of the five genes in a chromosome that 

occur in response to implementation of a particular alter­

native. Net profit that accrues as a result of implementing 

this policy is then estimated by using the economic data­

base and the crop yield estimated for each gene. Finally, 

variable reinitialization is performed since the original 

SWAT processes of variable initialization and input 

reading are suppressed for the mere reason of reducing 

computational time. This process is repeated until the 

user-defined number of chromosomes for each HRU is 

reached. The mean annual sediment yield and mean 

annual net profit values establish the basis for searching 

non-dominated solutions by SPEA. If the number of non-

dominated solutions is beyond the maximum niche 

number assigned by a user, clustering is performed. Binary 

tournament selection is applied to the fittest pairs of 

chromosomes to evaluate policies that are privileged to 

mate during a random, uniform crossover scheme. Before 

progressing to the next generation (search iteration) of the 

SPEA, genes are mutated according to a user-specified 

frequency and function evaluation is performed for 

the new offspring and mutated alternatives. This cyclic 

process is continued for a user-defined number of 

generations. The ultimate result is the evolution of a 

set of land-use patterns (Pareto-optimal sets) that are best 

suited to the multiple criteria problem considered in this 

study. 

Figure 3 | Location map of Big Creek watershed. 

APPLICATION TO THE BIG CREEK WATERSHED 

The Cache River basin, shown in Figure 3, is located in 

Southern Illinois near the confluence of the Mississippi 

and Ohio Rivers. Big Creek watershed is one of the major 

tributaries draining into the Lower Cache River, near 

the internationally recognized Cache River Wetlands, 

including Buttonland Swamp. This watershed not only 

contributes significant amounts of water to the Lower 

Cache River, but also carries a higher sediment load than 

other tributaries in the area. According to data from 

1985–1988, Big Creek watershed contributed more than 

70% of sediment inflows into the Lower Cache (Demissie 

et al. 2001). Because of its high sediment yield and influ­

ence on the Lower Cache River, multiple agencies and 

organizations have identified the Big Creek watershed as a 

priority area for improved watershed management. As 

a result, it is undergoing extensive study as part of the 

Illinois Pilot Watershed Program, through cooperation 

between the Illinois Department of Natural Resources 



(IDNR), the Illinois Department of Agriculture, ILEPA, 

and the U.S. Natural Resources Conservation Service 

(IDNR 1998). 

A 30 m resolution U.S. Geological Survey (USGS) 

Digital Elevation Model (DEM), an IDNR land use map, 

and a soils map were obtained for the region of study. The 

land use map had been generated from LandSat imagery 

collected between April 1991 and May 1995. The Big 

Creek watershed was delineated from the DEM using 

the United States Environmental Protection Agency’s 

(USEPA) BASINS model, which provides a GIS extension 

for SWAT2000, and was subsequently divided into 73 

sub-basins. BASINS was used in this study since the 

Arcview© interface for the latest version of SWAT, 

SWAT2000, was not yet released (as of July 2001) from the 

USDA. The land use map and soils map were then super­

imposed over the subdivided watershed to identify HRUs. 

For this application, dominant soils types and land uses 

from each sub-basin were used in establishing HRUs, a 

statement that implies that each farm field consists of a 

single soil type and land cover during any one season and 

that the number of HRUs is equal to the number of 

sub-basins (i.e. 73). A search for an optimal land use 

pattern was applied to HRUs whose existing land cover 

was not forest, water, wetland and/or urban. Historical 

data related to daily precipitation, daily maximum tem­

perature and daily minimum temperature were obtained 

from the U.S. National Weather Service for Anna, IL, a 

nearby weather station. A database of 19 suitable cropping 

and tillage practice combinations was prepared for the Big 

Creek watershed. This database contains additional infor­

mation on planting dates, harvesting dates, dates to apply 

tillage, fertilizer and pesticide types, application dates and 

dosages, heat units required for a plant to reach maturity, 

and curve numbers the land cover may assume for all 

hydrological soil groups for AMC II (i.e. Soil Groups A, B, 

C and D). Information for the watershed’s management 

database was collected from the Illinois Agronomy 

Handbook (UIUC 2000) and from National Agricultural 

Statistics Service (USDA 2000). Additionally, an econ­

omic database for all crop type and tillage combinations 

was prepared. This database provides data on production 

expenses and selling prices of these land uses. The produc­

tion expenses were broadly classified as variable costs and 

fixed costs. Variable costs include expenses for seed, 

chemical, insurance and interest for machinery, labour 

and trucking. Fixed costs are related to cost of owning 

land and machinery and were not used in the optimization 

process. A 10-year (1990–1999) average of production 

expenses and selling price data for the study area were 

collected from various sources, and these data were used 

in the decision process. The major resources used in 

preparing the economic database were the University of 

Illinois at Urbana-Champaign (UIUC) Farm and Resource 

Management Laboratory (FaRM Lab) (UIUC 1999), 

Illinois Census of Agriculture (USDA 1997a), and Cost 

and Returns Estimator model (CARE) farm budget for 

Southern Illinois (USDA 1997b). 

The optimal control model was applied using inputs 

collected for Big Creek watershed and executed for each 

HRU with an initial population of 100 chromosomes, an 

upper limit of 100 generations and a mutation rate of 15%. 

To search solutions for the 73 HRUs in the entire 130 km2 

watershed required a CPU time of about 63.25 h on a 

Pentium 4, 1.3 GHz PC. However, it should again be 

noted that a 3-year policy is designed for the watershed 

during this 63.25 h of CPU time. To demonstrate solution 

convergence, search results for one particular HRU is 

presented in the plot shown in Figure 4. The plot shows 

Pareto-optimal fronts obtained at generation 2 and 

generation 50. The search was continued until generation 

100, but no significant improvement was found after 

generation 50. One can clearly see that none of the 

alternatives at any corresponding generation are better 

than any other as to the criteria that were supplied to the 

model. Alternatively stated, improvement in one of the 

objective functions comes only at the expense of deterio­

ration of the other objective and no solution is better than 

the other solution according to the model criteria. The 

policy maker can add his/her own criteria to decide on 

which of these seven alternatives to implement. At the 

same time, the ability of the model to guide the search to a 

region that improves both objectives simultaneously is 

demonstrated. This is evident from a comparison of the 

Pareto front found at generation 50 with that obtained at 

generation 2. It is also interesting to see that the optimal 

land covers chosen make a clear compromise between 

erosion protection and generating profit. Considering the 



Figure 4 | Convergence plot of SWAT–SPEA application to Big Creek watershed. 

plot for generation 50, for example, land covers that corre­

spond to alternatives on the lower portion of the curve (i.e. 

those which generate less profit, but have better erosion 

protection capability) are mainly hay and pasture with 

conservational tillage or no tillage option. Those on the 

extreme opposite side of the curve are cash crops with less 

erosive tillage options, which can generate higher profit, 

but at relatively high sediment yield. Lack of alternatives in 

the middle of the curve is due to extreme differences 

between field crops and perennial crops with respect to 

erosion protection and market prices and not due to the 

inadequacy of SPEA in locating smoothly distributed 

optimal solutions over the range of the front. 

It should also be noted that no calibration was 

performed as part of this particular study since sufficient 

calibration data does not exist at this time. This makes the 

actual figures (average sediment yields and annual dollar 

values) given in the convergence plot less informative, 

apart from their relative comparison. This data, however, 

is currently being collected, thus permitting extensive 

calibration efforts in the near future. Nevertheless, 

application of the model and presentation of results at this 

stage allow the demonstration of the tools developed in 

this research and their capabilities. 

CONCLUSIONS 

This study explains a multiobjective, discrete-time optimal 

control computational model for watershed decision sup­

port. The tool may potentially play a significant role in 

addressing adverse environmental impacts of non-point 

source pollution and, at the same time, boost the agricul­

tural economy of a watershed. The model framework is 

based on an interface between a comprehensive hydro­

logical and water quality model known as SWAT and 

an evolutionary algorithm-based, multiobjective optimiz­

ation technique known as SPEA. Application of the 

methodology to a study region located in Southern Illinois 

demonstrates the effectiveness of the tool in presenting 

non-dominated decision alternatives to policy makers, 

who may then decide upon which policy to adopt, 

based on their own additional criteria. The solution 

methodology applied in this study integrates local, social 

dynamics in multiple ownership watersheds with environ­

mental issues and is more likely to be granted validity and 

trust by stakeholders of a watershed. Future work will 

address calibration concerns and issues related to the 

reliability of the model under uncertainty of inputs. 

Techniques that may reduce computational demand of the 

current methodology are also under investigation. Finally, 

the methodology and computational watershed decision 

support model may play a significant role in assisting 

watersheds in meeting criteria such as Total Daily 

Maximum Loads (TMDLs). 
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