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Abstract— Matrix inversion is a common function found in
many algorithms used in wireless communication systems. As
FPGAs become an increasingly attractive platform for wireless
communication, it is important to understand the tradeoffs in
designing a matrix inversion core on an FPGA. This paper
describes a matrix inversion core generator tool, GUSTO, that
we developed to ease the design space exploration across
different matrix inversion architectures. GUSTO is the first tool
of its kind to provide automatic generation of a variety of general
purpose matrix inversion architectures with different
parameterization options. GUSTO also provides an optimized
application specific architecture with an average of 59% area
decrease and 3X throughput increase over its general purpose
architecture. The optimized architectures generated by GUSTO
provide comparable results to published matrix inversion
architecture implementations, but offer the advantage of
providing the designer the ability to study the tradeoffs between
architectures with different design parameters.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is a
promising technology for high data rate wireless
communications due to its robustness to frequency selective
fading, high spectral efficiency, and low computational
complexity. Multiple Input Multiple Output (MIMO) systems,
which improve the capacity and performance of wireless
communication by using multiple transmit and receive
antennas, are often used in conjunction with OFDM to
improve the channel capacity and mitigate intersymbol
interference (ISI) [1]. Matrix inversion is an essential
computation for various algorithms which are employed in
MIMO-OFDM  systems, e.g. equalization algorithms to
remove the effect of the channel on the signal [2][3][4],
minimum mean square error algorithms for pre-coding in
spatial multiplexing [5] and detection-estimation algorithms in
space-time coding [6].

FPGAs are an increasingly common platform for wireless
communication [7-9]. FPGAs are a perfect platform for
computationally intensive arithmetic calculations like matrix
inversion as they provide powerful computational architectural
features: vast amounts of programmable logic elements,
embedded multipliers, shift register LUTs (SRLs), Block

RAMs (BRAMs), DSP blocks and Digital Clock Managers
(DCMs). If used properly, these features enhance the
performance and throughput significantly. However, the
highly programmable nature of the FPGA can also be a curse.
An FPGA offers vast amounts of customization which
requires the designer to make a huge number of system,
architectural and logic design choices. This includes decisions
on resource allocation, bit widths of the data, number of
functional units and the organization of controllers and
interconnects. These choices can overwhelm the designer
unless she is provided with design space exploration tools to
help her prune the design space.

For more efficient design space exploration and
development, we designed an easy-to-use tool, GUSTO
(General architecture design Utility and Synthesis Tool for
Optimization), which allows us to select various parameters
such as different matrix dimensions, integer and fractional bits
of the data, resource allocation, modes for general purpose or
application specific architectures, etc. GUSTO provides two
modes of operation. In mode 1, it creates a general purpose
architecture and its datapath for given inputs. In mode 2, it
optimizes/customizes the general architecture to improve its
area results and design quality. Mode 2 performs this
improvement by trimming/removing the unused resources
from the general purpose architecture and creating a
scheduled, static, application specific architecture while
ensuring that correctness of the solution is maintained.
GUSTO also creates required HDL files which are ready to
simulate, synthesize and map.

The main contributions of this paper are:

e an easy-to-use matrix inversion core generator for design
space  exploration  with  reconfigurable  matrix
dimensions, bit widths, resource allocation, modes and
methods which can generate and/or optimize the design;

e a study of the area, timing and throughput tradeoffs
using different design space decisions;

e the determination of an inflection point, in terms of
matrix dimensions and bit widths, between QR
decomposition method and analytic method.



The rest of this paper is organized as follows: Section II
introduces MIMO systems, matrix inversion and two methods
to solve matrix inversion: QR decomposition method and
analytic method. Section III explains the architectural design
of the core generator. Section IV introduces FPGA resources,
discusses design decisions and challenges, presents
implementation results in terms of area and performance and
compares our results with other published FPGA
implementations. We conclude in Section V.

II. MIMO SYSTEMS, MATRIX INVERSION AND ITS METHODS

The received signal of a MIMO system with N transmit and
M receive antennas is Y = HX + w, where X, Y and w are the
complex transmitted signal, complex received signal and
complex white Gaussian noise respectively. The wireless
channel is described as an M x N deterministic matrix H. The
received signal equation can be replaced by its real valued
equivalent for computational convenience. Therefore the
detection problem becomes a Least Squares (LS) solution to a
system of linear equations. Several different MIMO receive
algorithms are employed for optimal detection of the
transmitted signal [10]. The sphere decoding algorithm offers
an exact method. However, tight timing constraints often
make it infeasible to wait for the exact solution, and therefore
heuristic algorithms are often used. Many heuristic algorithms
employ matrix inversion in MIMO-OFDM systems.

The inverse of a square matrix A is shown as 4™ such that

Ax A" =1 (1)

where / is the identity matrix. Below we describe two known
methods to perform matrix inversion: QR decomposition
method and analytic method. QR decomposition method is
generally viewed as the preferred method because it scales
well for large matrix dimensions while the complexity of the
analytic method increases dramatically as the matrix
dimensions grow. However, for small matrices, the analytic
method, which can exploit a significant amount of parallelism,
outperforms the QR decomposition method.

A. Matrix Inversion using OR Decomposition

QR decomposition is an elementary operation, which
decomposes a matrix into an orthogonal and a triangular
matrix. QR decomposition of a matrix 4 is shown as
A = Q x R, where Q is an orthogonal matrix, 0" x Q =
0 xQ"=1,0" = 0", and R is an upper triangular matrix. The
solution for the inversion of matrix A4, A7, using QR
decomposition is shown as follows:

A" =R'xQ"[14] 2)

This solution consists of three different parts, QR
decomposition, matrix inversion for the upper triangular
matrix and matrix multiplication. QR decomposition is the

most computationally intensive calculation where the next two
parts are relatively simple due to the upper triangular structure
of R.

There are three different QR decomposition methods:
Gram-Schmidt orthogonormalization (Classical or Modified),
Givens Rotations (GR) and Householder reflections. Applying
slight modifications to the Classical Gram-Schmidt (CGS)
algorithm gives the Modified Gram-Schmidt (MGS) algorithm
[14]. QRD-MGS is numerically more accurate and stable than
QRD-CGS and it is numerically equivalent to the Givens
Rotations solution [11][12][13] (the solution that has been the
focus of previously published hardware implementations
because of its stability and accuracy). Also, if the input matrix,
A, is well-conditioned and non-singular, the resulting matrices,
Q and R, satisfy their required matrix characteristics and
QRD-MGS is accurate to floating-point machine precision
[13]. We therefore present the QRD-MGS algorithm in Figure
1 and describe it below.
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Fig. 1. QRD-MGS Algorithm and sample A, Q, R matrices (4 x 4).

A, O, R and X are the input, orthogonal, upper triangular and
intermediate matrices, respectively. The intermediate matrix,
X, is the updated input matrix throughout the solution steps.
Matrices with only one index as 4; or X; represent the columns
of the matrix and matrices with two indices like R;; represent
the entry at the intersection of ith row with jth column of the
matrix where / <ij <n.

We start every decomposition by transferring the input
matrix columns, A4;, into the memory elements (2). Diagonal
entries of the R matrix are the Euclidean norm of the X matrix
columns which is shown as (4). The Q matrix columns are
calculated by the division of the X matrix columns by the
Euclidean norm of the X matrix column, which is the diagonal
element of R (5). Non-diagonal entries of the R matrix are
computed by projecting the O matrix columns onto the X
matrix columns one by one (7) such that after the solution of
0,, it is projected onto X; and X, to compute R,; and R,,.
Lastly, X matrix columns are updated by (8).

B. Matrix Inversion using Analytic Method

Another method for inverting an input matrix A, is the
analytic method which uses the adjoint matrix, 4dj(4), and
determinant, det 4. This calculation is given by



1
A = x Adj(A (3)
det 4 J(

The adjoint matrix is the transpose of the cofactor matrix
where the cofactor matrix is formed by using determinants of
the input matrix with signs depending on its position. It is
formed in three stages. First, we find the transpose of the input
matrix 4 by interchanging the rows with the columns. Next,
the matrix of minors is formed by covering up the elements in
its row and column and finding the determinant of the
remaining matrix. Finally, the cofactor of any element is
found by placing a sign in front of the matrix of minors by
calculating (-1)**. These calculations are shown in Figure 2
(a) for the first entry in the cofactor matrix, C;;.
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Fig. 2. Matrix Inversion with analytic approach. The first element of cofactor
matrix, C;;, and determinant calculation for a 4 X 4 matrix is shown in (a),
(b) and (c) respectively.

The calculation of the first entry in the cofactor matrix, C;;
is also presented in (b). This stage is repeated 16 times for a
4 X 4 matrix to form the cofactor matrix. The adjoint matrix is
the transpose of the cofactor matrix and formed using register
renaming. After the calculation of the adjoint matrix, the
determinant is calculated using a row or a column which is
shown in (c¢). The last stage is the division between the adjoint
matrix and the determinant which gives the inverted matrix.

For the analytic method, we present three different designs,
Implementation A, B, and C, with varying levels of parallelism
to form cofactor matrices. Implementation A uses one core,
Implementation B uses two cores and Implementation C uses 4
cores for the cofactor formulation shown in (b). In the next
section, we present our core generator GUSTO which is an
infrastructure for fast prototyping of QR decomposition
method and analytic method.

III. MATRIX INVERSION CORE GENERATOR TOOL

There are several different architectural design alternatives
for these solution methods of matrix inversion. Thus, it is
important to study tradeoffs between these alternatives and
find the most suitable solution for desired results such as most
time efficient or most area efficient design. Performing design
space exploration is a time consuming process where there is
an increasing demand for higher productivity. High level
design tools offer great convenience by easing this burden and
giving us the opportunity to test different alternatives in a
reasonable amount of time. Therefore, designing a high level
tool for fast prototyping is essential.

GUSTO, “General architecture design Utility and Synthesis
Tool for Optimization,” is such a high level design tool,
written in Matlab, that is the first of its kind to provide design
space exploration across different matrix inversion
architectures. As shown in Figure 3, GUSTO allows the user
to select the matrix inversion method (QR decomposition or
analytic), the matrix dimension, the type and number of
arithmetic resources, the data representation (the integer and
fractional bit width), and the mode of operation (Mode 1 or
Mode 2).
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Fig. 3. Different modes of GUSTO.

Mode 1 of GUSTO generates a general purpose architecture
and its datapath by using resource constrained list scheduling
after the required inputs are given. The general purpose
architecture is used for area and timing analysis for a general
non-optimized solution. The advantage of generating a general
purpose architecture is that it can be used to explore other
algorithms, (other than analytic and QR) so long as these
algorithms require the same resource library. However Mode



1’s general purpose architectures generally do not lead to
high-performance results. Therefore optimizing/customizing
these architectures to improve their area results is another
essential step to enhance design quality.

In Mode 2, GUSTO performs this improvement by
trimming/removing the unused resources from the general
purpose architecture and creating a scheduled, static,
application specific architecture while ensuring that
correctness of the solution is maintained. GUSTO simulates
the architecture to define the usage of arithmetic units,
multiplexers, register entries and input/output ports and trims
away the unused components with their interconnects.

A trimming example is shown in Figure 4. Suppose there
are 3 arithmetic units and one memory with 2 inputs and 1
output each (a). Input / output port relationships between
arithmetic unit 4 and the other units are shown in a block
diagram in (b). Although Out_A, Out_B, Mem, and Out_C are
all inputs to In_ Al and In_A2, not all the inputs may be used
during simulation. We can represent whether an input/output
port is used or not during simulation in a matrix such as the
one shown in (c¢). As the simulation runs, the matrix is filled
with 1s and Os representing the used and unused ports
respectively. GUSTO uses these matrices to remove the
unused resources (d).
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Fig. 4. Flow of GUSTO’s trimming feature.

IV. RESULTS

In this section, we present different design space
exploration examples using different inputs of GUSTO and
compare our results with previously published FPGA
implementations. Design space exploration can be divided into
two parts, inflection point and architectural design alternatives
analysis.

Inflection Point Analysis: The total number of operations
used in both methods is shown in Figure 5 (a) in log domain.
It is important to notice that the total number of operations

increases by an order of magnitude for each increase in matrix
dimension for the analytic method making the analytic
solution unreasonable for large matrix dimensions. Since the
analytic approach does not scale well, there will be an
inflection point where the decomposition approach will
provide better results. At what matrix size does this inflection
point occur and how does varying bit width and degree of
parallelism change the inflection point? The comparisons for
sequential and parallel executions of QR and analytic methods
are shown in (b and c) with different bit widths: 16, 32 and 64.
We used implementation A for the parallel implementation of
analytic method. Solid and dashed lines represent QR
decomposition method and analytic method results
respectively. The balloons denote the inflection points
between the two methods for the different bit widths.

The sequential execution results (b) show that the analytic
method offers a practical solution for matrix dimensions <
4 X 4. It also gives the same performance as the QR
decomposition method for 5 X 5 matrices using 64 bits. The
analytic method result increases dramatically for 6 X 6
matrices (not shown) where it needs 12,251 clock cycles (for
16 bits) as opposed to 1,880 clock cycles for QR
decomposition suggesting the analytic method is unsuitable
for matrix dimensions > 6 X 6.

The parallel execution results are shown in (c). Analytic
method offers a practical solution for matrix dimensions <
4 X 4 and it is preferred for 5 X 5 matrix dimension for 32
and 64 bits. The increase in the clock cycle is again dramatic
for matrix dimensions > 6 X 6 for the analytic method
demanding to use the QR decomposition method for these
larger matrix dimensions.

Architectural Design Alternatives: These analyses are
shown for QR decomposition based matrix inversion for 4 X 4
matrices. We present area results in terms of slices and
performance results in terms of throughput. Throughput is
calculated by dividing the maximum clock frequency (MHz)
by the number of clock cycles to perform matrix inversion.
We present both mode 1 (non-optimized) and mode 2
(optimized) results in (d) to show the improvement in our
results with the optimization feature, and present only mode 2
results in (e) and ().

We investigate different resource allocations using both
modes of GUSTO and present the results in Figure 5 (d). As
expected from mode 1, (d) shows an increase in area and
throughput as the number of resources increase up to optimal
number of resources. Adding more than optimal number of
resources decreases throughput while still increasing area.
However, mode 2 of GUSTO finds the optimal number of
resources which maximizes the throughput while minimizing
area which is shown in (d). Mode 2’s optimized application
specific architecture can therefore provide an average of 59%
decrease in area and 3X increase in throughput over Mode 1’s
general purpose (non optimized) design.
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Fig. 5. Different design space exploration examples of our tool. This exploration divided into two parts: inflection point and architectural design alternatives

analysis.

Bit width of the data is another important input for the
matrix inversion. The precision of the results is directly
dependent on the number of bits used. The usage of a high
number of bits results in high precision at a cost of higher area
and lower throughput. We present 3 different bit widths, 19,
26 and 32 bits in (e). We also present three different matrix
dimensions, 4 X 4, 6 X 6 and 8 X 8, implementation results
in (f) showing how the area and performance results scale with
matrix dimension.

Comparison: A comparison between our results and
previously published implementations for a 4 X 4 matrix is
presented in Table 1. For ease of comparison we present all of

our implementations with bit width 20 as this is the largest bit
width value used in the related works. Though it is difficult to
make direct comparisons between our designs and those of the
related works (because we used fixed point arithmetic instead
of floating point arithmetic and fully used FPGA resources
(like DSP48s) instead of LUTs), we observe that our results
are comparable. The main advantages of our implementation
are that provides the designer the ability to study the tradeoffs
between architectures with different design parameters and
provides a means to find an optimal design.

TABLEI
COMPARISONS BETWEEN OUR RESULTS AND PREVIOUSLY PUBLISHED PAPERS. NR DENOTES NOT REPORTED.

Ref[15] | Ref[15] Our Our Our Ref[16] | Ref[17] Our
ImplA ImplB ImplC
Method Analytic | Analytic | Analytic | Analytic | Analytic QR QR QR
Bit width 16 20 20 20 20 12 20 20
Data type floating | floating fixed fixed fixed fixed floating fixed
Device type Virtex 4 | Virtex4 | Virtex4 | Virtex4 | Virtex4 | Virtex2 | Virtex4 | Virtex 4
Slices 1561 2094 702 1400 2808 4400 9117 3584
DSP48s 0 0 4 8 16 NR 22 12
BRAMs NR NR 0 0 0 NR NR 1
Throughput 1.04 0.83 0.38 0.72 1.3 0.28 0.12 0.26
(10°xs™)




V. CONCLUSION

This paper describes a matrix inversion core generator tool,
GUSTO, that we developed to enable easy design space
exploration for various matrix inversion architectures which
targets reconfigurable hardware designs. GUSTO provides
different  parameterization options including matrix
dimensions, bit width and resource allocations which enables
us to study area and performance tradeoffs over a large
number of different architectures. We especially concentrate
on QR decomposition method and analytic method for matrix
inversion, to observe the advantages and disadvantages of
both of these methods in response to varying parameters.

GUSTO 1is the only tool that allows design space
exploration across different matrix inversion architectures. Its
ability to provide design space exploration, which leads to an
optimized architecture, makes GUSTO an extremely useful
tool for applications requiring matrix inversion (i.e. MIMO
systems).
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