

Standard Deviation

Ex
pe

ct
ed

 V
al

ue

FPGA Acceleration of Mean Variance

Framework for Optimal Asset Allocation

Ali Irturk†, Bridget Benson†, Nikolay Laptev‡, Ryan Kastner†

Abstract— Asset classes respond differently to shifts in financial
markets, thus an investor can minimize the risk of loss and
maximize return of his portfolio by diversification of assets.
Increasing the number of diversified assets in a financial
portfolio significantly improves the optimal allocation of different
assets giving better investment opportunities. However, a large
number of assets require a significant amount of computation
that only high performance computing can currently provide.
Because of the highly parallel nature of Markowitz’ mean
variance framework (the most popular approximation approach
for optimal asset allocation) an FPGA implementation of the
framework can also provide the performance necessary to
compute the optimal asset allocation with a large number of
assets. In this work, we propose an FPGA implementation of
Markowitz’ mean variance framework and show it has a
potential performance ratio of ૛૛૚ ൈ over a software
implementation.

I. INTRODUCTION

Asset allocation is the core part of portfolio management.
With asset allocation, an investor distributes his wealth across
different asset classes which include different securities such
as bonds, equities, investment funds, derivatives, etc. in a
given market to form a portfolio. Because each asset class
responds differently to shifts in financial markets, an investor
can minimize the risk of loss and maximize the return of his
portfolio by diversifying his assets. The goal of the portfolio
manager in a financial institution is to provide the asset
allocation with the greatest return for some level of risk for
investors [1][2].

A portfolio manager needs to include two pieces of
information to determine the best allocation for a given
investor: the investor’s profile and the market data. The
investor profile includes the current asset allocation of the
investor, the budget, the investment time horizon, and the
investor’s objectives and satisfaction indices to be able to
evaluate the portfolio’s performance. The market data include
the joint distribution of the prices at the investment horizon
and the implementation costs for trading these securities.

Determining the best allocation for a given investor requires
solving a constrained optimization problem [3][4][5]. Convex
programming problems represent a broad class of constrained
optimization problems which can be solved numerically [6];
however an optimal asset allocation problem includes a large

number of variables that need to be processed which requires a
long computation time. Therefore, using an approximation
method for the allocation optimization is crucial.

The most popular approximation approach for optimal asset
allocation is Markowitz’s mean variance framework [7]. In
this framework, the investor tries to maximize the portfolio’s
expected return for a given risk and investment constraints.
Mean variance framework is a two-step approach which
approximates the solution of the optimal asset allocation
problem as a tractable problem. The first step of the mean
variance optimization selects efficient allocations for different
risks among all the possible combinations of assets to form the
efficient frontier; and the second step searches for the best
allocation among all efficient allocations found in the first
step.

Increasing the number of assets in a portfolio significantly
improves the efficient frontier as shown in Figure 1. Adding
new diversified assets to a portfolio shifts the frontier to the
upper left which gives better return opportunities with less risk
compared to the lower number asset portfolios. An efficient
way to find an optimal allocation for small investors is to use
commercially available asset allocation software: World
Markets [8], Allocation Master [9], Encorr [10], PACO [11],
Expert Allocator [12], Horizon [13] and Power Optimizer
[14]. However financial institutions which make larger
investments or control large individual investor portfolios face

124

122

120

118

116

114

112

110

108

106
0 5 15 2510 20

Figure 1. Increasing the number of assets in a portfolio significantly
improves the efficient frontier, the efficient allocations of different assets for
different risks. Adding new assets to a portfolio shifts the frontier to the
upper left which gives better return opportunities with less risk compared to
the lower number of assets portfolios.

30

respective covariance matrix ሼ ݋ܥݒܯ The expected values of the market vector ܧ ሽoptimal asset allocation using FPGAs.
Our major contributions are: are needed as inputs to

• A detailed description of the mean variance framework the mean variance framework. Calculating these inputs
for optimal asset allocation, incorporating investor requires the use of already known publically available data:
objectives and satisfaction indices used in practical prices, standard deviation, and covariances plus the investor’s

horizon ܯሼ݋ܥݒimplementations;
• Identification of bottlenecks for the mean variance

framework which can be adapted to work in hardware;
߬objective, number of securities, Ns, reference allocation and ܯሼܧ (as shown in Figure 2 (a)). Calculating ሽ�ሽ and

• Design of the proposed hardware for the FPGA
 using these investor and market parameters requires

implementation of the mean variance framework;
• A study of potential performance improvements through

the 5 stage procedure (shown in Figure 3) explained in detail
below [1]. ఛ෤௧ǡܺ1. Detection of the invariants,

simulations of the hardware architectures and a Invariants are identical repetitions in the market within a ǁ߬ The estimation interval, ǁ߬comparison between a software implementation running
 two 2.4 Ghz Pentium-4 CPUs, and an FPGA ǁgiven estimation interval, ߬߬ .

on
, is

different than the horizon
estimation interval, architecture, showing potential performance ratios of ͻǤ͸ ൈ and ʹʹͳ ൈ for different steps.

, which was mentioned before. The
, refers to the time which we suspect a ߬The rest of the paper is organized as follows: In section II, repetition in data, where investment horizon,

time the investor plans to invest. Detection of the invariants is

, orെ ͳ೟ష௉௉ൌఛ෤௧ǡܮቁ
, refers to the

೟we describe the steps of the mean variance framework used
for optimal asset allocation. In section III, we present our ఛ

an essential step and linear return of stocksൌ �௧ǡܥ � ቀ ഓ௉೟௉೟షproposed implementation of the mean variance framework.
Section IV presents our results in terms of timing and

compounded return of stocks ഓ can be used as
invariants for the market. We chose to use compounded return throughput and compares these results with a purely software
of stocks.

more complicated problems to obtain the optimal asset
allocation. Their higher number of assets and more complex
diversification require significant computation that currently
only high performance computing can provide.

The addition of FPGAs to the existing high performance
computers can boost the application performance and design
flexibility. The mean variance framework’s inherent
parallelism (due to many matrix computations and its use of
Monte Carlo simulations) and its need for reprogramability (to
allow for modifications based on different investor
characteristics) make the framework an ideal candidate for an
FPGA implementation. There are some previous works which
consider the hardware acceleration of different financial
problems, mainly concentrated on Monte-Carlo simulations,
[15-21]. Zhang et al. [15] and Morris et al. [16] focused on
single option pricing where Kaganov et al. [21] considered
credit derivative pricing. Also interest rates and Value-at-Risk
simulations are being considered by Thomas et al. in [17] and
[18]. To the best of our knowledge, we are the first to propose
hardware acceleration of the mean variance framework for

implementation. We conclude and present future work in
section V.

II.	 THE MEAN VARIANCE FRAMEWORK FOR OPTIMAL ASSET
ALLOCATION

In this section, we present the mean variance framework for
optimal asset allocation. The framework is a popular two-step
approach used in all practical asset allocation applications.
Step 1 selects efficient allocations among all the possible
combinations of assets and computes the efficient frontier.
Step 2 performs a search for the best among the efficient
allocations using Monte-Carlo simulations. We divide our
discussion of the framework into three sections (shown in
Figure 2): A. The computation of inputs required for Step 1 of
the mean variance framework, B. Step 1 of the mean variance
framework, and C. Step 2 of the mean variance framework.
Note that all equations listed in the following subsections are
found in [1] unless otherwise specified.

A. Computation of the Required Inputs ሽܯሼ and the

Figure 2. The required steps for optimal asset allocation are shown in (a), (b) and (c). After the required inputs to the mean variance are generated in (a),
computation of the efficient frontier and determination of the highest utility portfolio are shown in (b) and (c) respectively. This figure also presents the inputs
and outputs provided to the user.

2. Determination of the distribution of the invariants
We can determine the distribution of the invariants based on

estimators (maximum likelihood estimators, nonparametric ߕ௧ǡ ൌ ௧ǡestimators etc.) based on current market information. As anܥ
example, we assume that are෠ȭఛ෤ߤƸఛ෤ the invariants ෠ሺܰ� ǡ ȭߤƸ ሻmultivariate normal distribution with where and
are vectors of sample mean and covariance matrix
respectively.

Projection of the invariants ߕ௧ǡ

to obtain the distribution of ்ߕାఛ
ఛ෤3. to the investment horizon ǡఛ

ሺߕ௧ǡAfter the determination of the distribution of the invariants
Figure 3. The procedure to generate required inputs is described. The in an estimation interval, we

Furthermore we use .ሻ̱ܰ�்ାఛǡܺ investment horizon ෠ȭఛఛ෤ǡ,ǁ߬ߤƸఛఛ෤ఛ෤ project them to the ఛ numbers 1-5 refers to these computation steps which are explained in
subsections in more detail.

this distribution to determine the distribution of the market M is a transformation of the market prices at the investment
prices, �் ାఛ. �	 (4) ఛఛ்ାܲܧComputation of the	 expected return
ሽሼ݋ܥݒ covariance matrix
 �	ఛ்ାܲ

invertible matrix respectively. These generalized forms of

horizon as: �ܯ ؠ ்ାܲܤ൅

 conformable vector and an are a suitable ܤ and
ሼ ሽ4. , and the

 from the distribution of the where
market prices.

We use the characteristic function of the compounded ሻሻ
investor objectives are also shown in Table I (b) with different ሺఈ೅௪ؠሻߛሺ values where ܤ and � ߙ ௪೅ሺఉܭ�ܫܫ ؠ (Normalization factor), ൬ఓෝreturns to formulize the expected returns as ݁ሺ௡ ೙೙మಂ෡ା೙ሺ௡்ܲ ቅ ൌ்ାܲܧቄ ഓ෤ഓሻఛ ൰ሻ

ሽሽሼሼሽܯܯሼሼݒ

ே is identity matrix . Computation of the
market vector combines the expected returns and covariance
matrix with the investor objectives using different �
values for different investor objectives which is shown as :

ఛܧൌ � ൅ � ܧ ்ାܲ
ఛ்ାܲݒൌ ��ሽ ݋ܥ

ே െ
௣ఉ೅ƍ௣ఉ೅ƍ and (1)

and covariance matrix of the market as: ሺ௠ ሺ௡ ቅ ൌ்ାǡ ்ܲାܲቄ݋ܥݒ ሻఛሻఛ and B

ሺ௠்ܲ ሻ ሺ௡்ܲ ሻ݁ഓ෤ഓሺఓෝ೘ାఓෝ೙ሻ݁ ഓ෤ഓభమ ቀ݁ ቁഓ෤ഓ൫ஊ෡೘೘ାஊ෡ ൫ஊ෡ (5)൯ ൯೙೙ ܥ݋ �ᇱ (2) ೘೙ሼ െ ͳሽܧܯ
 of the market vector

(6)
Computation of the expectedܯሼ݋ܥݒ covariance matrix ሽ5. and the return , Notice that each step requires the financial analyst to make

assumptions (such as what type of invariant distribution to
assume, and what estimation interval to use). Each assumption
affects the outcome of the computation and hence each of the
five steps described is a broad research area in economics.

An investor objective is a function for which every investor
desires the largest value as an output of that function. There
are different objectives such as absolute wealth, relative
wealth and net profits [1]. An absolute wealth investor tries to

For our purposes we use the following assumptions with the maximize the value of the portfolio in the investment horizon.
knowledge these could be easily changed: we use the past 3
years of the data with 1 week estimation interval. We use

A relative wealth investor tries to achieve better portfolio
return compared to a reference portfolio where the reference
portfolio is denoted as ȕ with ߛ compounded returns of stocks as market invariants and as a normalization factor. A

 that they are multivariate random variables. We net profits investor always tries to increase the value of the assume
portfolio compared to the value of the portfolio today. The assume our estimation horizon is 1 year.
specific forms of the equations for these objectives are shown B. Mean Variance Framework Step 1: Computation of the in Table I (a). Efficient Frontier

Computing the efficient frontier, the efficient allocations of
These different objectives can be seen as a linear function

, shown ܯ , and the market vector ߙof the investor’s allocation
different assets for different risks, is the first step of the mean
variance framework (Figure 2(b)). The inputs to this step are

(3) current prices (already known), expected prices, E{M}, and

TABLE I
DIFFERENT INVESTOR OBJECTIVES, SPECIFIC AND GENERALIZED FORMS

as follows : ߰ఈ ൌ ܯߙ�
Standard Investor Objectives

Absolute Wealth �߰ఈ ൌ ்ܹା ሺߙሻܫ
Relative Wealth Net Profits ߰ఈ ൌ ்ܹା ሺߙሻ െ ؠሻ(a) Specific Form ఛߙሺ்ݓ Ͳǡ ܤ ؠ ఛ ்ାఛܤ ؠ ܭ ሻǡߙͲ߰ఈ ൌ ்ܹା ሺ െ ሻܹߙሺߛ ሺߚሻ ఛؠ െ݌ ǡܤ����� ؠ ܫ

(b) Generalized Form
�� ேࢻ࣒ ൌ ࣎ାࢀࡼᇱࢻ � ൌ ࢻ࣒ؠ �� ࣎ାࢀࡼࡷᇱࢻ ் ேࢻ࣒� ൌ െ ࣎ାࢀࡼᇱሺࢻ ሻࢀ࢖

expected covariance matrix, Cov{M},(which are calculated as efficient frontier, we have to consider satisfaction indices to
described in section II-A), number of portfolios, Np, number of determine which ‘point’ along the efficient frontier represents
securities, Ns and investor’s budget. This step calculates Np the optimal allocation for the given investor. The required
amount of efficient portfolios. These different portfolios create inputs to this step are the allocations computed in step 1,
the curve in Figure 2 (b) which is called the efficient frontier. current prices, number of portfolios, Np, number of securities,

Assume an investor who purchases Įn units of the n-th

ሺ௡்ܲ investment is made). If

Ns, number of scenarios, Nm, and investor satisfaction index (as

ሻsecurity in a market of N securities at time T (the time that the shown in Figure 2 (c)).
 and Į denote the price of the n-th The investor objective function produces one value.

However this value is random since the market prices at the ܯǡ vector,

security at the time T and the allocation at the time the �investment horizon are stochastic and therefore the market
contains random variables. Therefore, using the

investor function alone does not allow us to select the optimal
(7)	 allocation because we have no way of determining which

random value output is ‘better’ for the investor than another.

decision is made respectively, the value of the portfolio is
calculated as :

ؠ்ܲ ሺ்�ܹߙሻߙ
However, the market prices of the securities are multivariate

Therefore we need to compute the expected value of the random variables at the investment horizon, therefore the
investor objective value by introducing satisfaction indices portfolio is a random variable which can be seen as :

ఛ்ାܲᇱؠߙሻሺߙఛ்ାܹ (8)
[1]. Satisfaction indices represent all the features of a given
allocation with one single number and quantify the investor’s

where ߙᇱ satisfaction. Therefore, an investor prefers an allocation to the refers to the allocation at the horizon. Because the
other if it provides more satisfaction. There are mainly three
different classes of indices being used to model the investor’s

portfolio’s value is a random value since the market prices are
unknown, the expected prices horizon ሽఛ்ାܲܧሼ at the investment ሼ ఛ்ାܲ݋ܥݒ and the covariance matrix ሽ satisfaction: certainty-equivalent, quantile and coherent need to be

indices. We use certainty-equivalent indices because they are computed and then investor objective function needs to be
based on a concave function and promote diversification [1]. (These calculations are ሽܯሼ݋ܥݒ and ሽܧܯሼincluded to give us

Certainty-equivalent indices are represented by the shown in the previous section). The efficient frontier is then
investor’s utility function and objective. A utility function ݑሺ߰ሻ is defined for an investor to explain his enjoyment.

found by maximizing the investor objective value by a

ሽܯሼ ����ǡ ݒ ൒ Ͳ�� (9) ߙݒؠሺ ሻ �constrained variance. This computation can be seen as :ܧᇱܽݎ݃ �����ߙ ఈאԧ ఈᇲ஼௢௩ሼெሽఈୀ
There are different utility functions which we can use to
represent an investor’s satisfaction such as exponential, ௩ quadratic etc. Even though this function is specific for every
investor, it is possible to investigate the most commonly used
functions and generalize them [1]. We show these different where an investor’s objective value and variance is calculated

as follows: ሼ߰ఈሽ߰ఈሽ ൌ ሼܧߙ ݒሼܯሼܯ ሽ ܧൌ ݋ܥߙ
With the efficient frontier depending on how much risk an

ᇱ utility functions in Table II. To generalize the creation of
(10) utility functions, we use Hyperbolic Absolute Risk Aversion ሽܸܽݎ ᇱ (HARA) class of utility functions which are specific forms ofߙ

 (11) the Arrow-Pratt risk aversion model and defined in [1, 22] asటమఊటؠሻܣሺ߰ ା఍టାఎ
(12)Ͳߟ ؠ�where

investor wants to face, there is a corresponding expected �. The HARA class of utility functions gives us
most of the utility functions by varying the constants, ߞ� return. The region which is below the black curve (the shadedߛ���

region in Figure 2(b)) corresponds to the achievable risk-
return space for the specific frontier which includes at least as shown in Table II.
one portfolio constructible from the investments that has the Therefore, an investor compares different allocations using
risk and return corresponding to that point. The upper region is the index of satisfaction and chooses the maximum value as
the unachievable risk-return space. The black curve running the optimal asset allocation. Computing the optimal allocation
along the top of the achievable region is the efficient frontier. is a maximization problem using different market scenarios
The portfolios that correspond to points on that curve are since market values are uncertain and its analytical solution is
optimal according to equation (9). not possible in many practical implementations [1]. Therefore

approximation methods are employed for finding the best C. Mean Variance Framework Step 2: Computing the
allocation on the efficient frontier. To solve this problem with Optimal Allocation
approximations, a large number of market scenarios are

Now that we have generated the inputs for the mean simulated through Monte-Carlo simulations.
variance framework and used these inputs to compute the

TABLE II

DIFFERENT UTILITY FUNCTIONS FOR SATISFACTION INDICES

 Utility Functions
Exponential Utility
ߞ) ൐ ࣒Ͳሻࢋߛ �ܽ݊݀� ؠ Ͳ) Ͳሻ൐࢛ߞ࣒ሺ Quadratic Utility ૚ؠ െͳሻ ߛ�݀݊ܽ� Ͳؠ࣒ ሺߞ ܽ݊݀ ൒ ͳሻPower Utility Logarithmic Utility ሺ݈݅݉ ఊ ߛ ՜ଵ ሻ ൌ࣒ሺ࢛ሻߛ ࣒࢔࢒

Linear Utilityሺ݈݅݉ఊ՜ஶ ߛሻ࢛ሺ࣒ሻ ൌ ሺ࢛࣒ ൌ െ ି૚࣒ࣀ ሺ ൌ ࣒ െ ૛࣒ ࣀ૛ ࢛ሺ ሻ ൌ ࢽ૚ି૚࣒

50
60

70
80

90

50
60

70
80

90
0

100
200
300
400
500
600
700
800

Number o Port o oNumber o Secur es

Ex
ec

o
m

e
n

Se
co

nd

100 200 300 400 500 600

1
1.01

1.02
1.03

1.04

x 10
50

60
70

80
90

0

300

600

900

1200

1500

Number o Senar oNumber o Port o o

E
xe

cu
on

 T
m

e
n

Se
co

nd

20 80 000 1200

III.	 IMPLEMENTATION OF THE MEAN VARIANCE
FRAMEWORK

Now that we have described how optimal asset allocation
works, we now discuss our proposed implementation of the
mean variance framework. We first present a series of figures
to provide the motivation for our implementation and
determine the bottlenecks of optimal asset allocation. We then
describe the proposed architectures and possible ways to
benefit from their inherent parallelism.

A. Implementation Motivation
As previously shown in Figure 1, increasing the number of

securities in a portfolio allows the investor to achieve better
investment opportunities, thus our goal is to allow for a large
number of diversified securities in a portfolio. But how much
computation time does increasing the number of securities add

1

10

100

10 20 30 40 50 60 70 80 90 100

C
o
m

p
u

ta
ti

o
n

 T
im

e
 (

S
e
c
)

Number of Portfolios

Mean Variance Framework Step 1
Mean Variance Framework Step 2

0.001

0.01

0.1

1

10

20 30 40 50 60 70 80 90 100

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

se
c
)

Number of Securities

Generation of the Required Inputs
Mean Variance Framework Step 1
Mean Variance Framework Step 2

Figure 5. Identification of the bottlenecks in the computation of the optimal
asset allocation. We run two different test while holding all but one variable to the computation of the optimal asset allocation? To address

this question we looked at how varying the number of
constant. We determined that generation of the required input does not
consume significant amount of time. On the other hand, step 1 and 2 of the

securities affected the computation time in relation to number mean variance framework consumes significant amount of time.
of portfolios and number of scenarios, two other important
parameters that affect computation time (an increase in the
number of portfolios increases the number of points on the
efficient frontier and increasing the number of scenarios
increases the number of runs of the Monte-Carlo simulation).
Figure 4 (a) and (b) compare number of securities, Ns, versus
number of portfolios, Np, and number of portfolios, Np, versus
number of scenarios, Nm, respectively. By looking at the
slopes of the lines in the figures it can be easily seen that Ns
dominates computation time (has a steeper slope) over Np (a),
and Np dominates computation time over Nm (b). These results
suggest that the number of securities is the most
computationally time sensitive input to the optimal asset
allocation problem, thus if a large number of securities are to
be allowed as input to the framework, a faster implementation
must be developed.

To identify the bottlenecks of the computation of the
optimal asset allocation, we look at the runtime of each
solution step (1. generation of the required inputs, 2. Step 1 of
the mean variance framework, and 3. Step 2 of the mean
variance framework) with respect to varying the number of

f f li sf iti

ut
 i

n
T i

 i

s

5

f i sf f li s

t i
i

 i
s

0 40 0 60 0 0 1

Figure 4. To determine the computation time of different variables, we
compare number of securities, Ns, versus number of portfolios, Np, and number
of portfolios, Np, versus number of scenarios, Nm, respectively. By looking at
the slopes of the lines in the figures it can be easily seen that Ns dominates
computation time (has a steeper slope) over Np (a), Np dominates computation
time over Nm.

securities (Figure 5 (a)) and number of portfolios (Figure 5
(b)). As can be seen from Figure 5 (a), the generation of the
required inputs does not consume a significant amount of
time, thus it is best to keep this implementation step in
software if the computation cannot be parallelized. On the
other hand, step 1 and 2 of the mean-variance framework
consume a significant amount of time providing the
motivation for an alternative implementation. It is also
important to note there is a cutoff point between step 1 and 2,
showing that the computational time for step 1 becomes more
significant after 60 securities. In (b), we only compare step 1
and 2 for different number of portfolios (because we already
determine that the computational time for the generation of
required steps is not significant), and we conclude that most
time consuming part is step 1.

B. Hardware/Software Interface
As determined in section III-A, Step 1 and Step 2 of the

mean variance framework are the bottlenecks for computing
the optimal asset allocation. FPGA implementations can
provide a substantial performance improvement for processes
that can be easily parallelized. Fortunately, finding the
maximum return for different risk values to create the efficient
frontier (Step 1) and implementing Monte-Carlo simulations
to apply different market scenarios (Step 2) can be easily
parallelized making them good candidates for hardware
implementations. Although the generation of required inputs is
not a bottleneck for optimal asset

phase 5 of this step (computation of
performance improvement can be gained by implementing ݋ܥݒܯ and ܧܯallocation, ሼ ሽ further ሼ ሽ)
which includes parallizable matrix computations in hardware.
Thus, our implementation combines software (a Host PC) to
compute phases 1-4 of the generation of required inputs and
hardware (FPGA) to compute phase 5 of the generation of
required inputs and step 1 and step 2 of the mean variance
framework to obtain maximal performance gain.

Because our implementation combines hardware and
software, we must pay particular attention to the
hardware/software interface, especially to the data that needs
to be transferred, to insure we do not lose the performance
gain we added through the hardware software separation. The

information that needs to be transferred between the software
and hardware are current prices, expected prices, and expected
covariances which are of the dimensions Ns ൈ1, Ns ൈ1 and Nsൈ Ns respectively. In the following subsections, we present our
architectural design and parallelization possibilities for the
generation of the required inputs phase 5, mean variance
framework step 1 and 2.

C.	 Generation of Required Inputs – Phase 5
We implement “Market Vectors Calculator IP Core” for the

calculation of phase 5 in the generation of the required inputs
(Figure 6 (a)). This IP Core can compute three different
objectives: absolute wealth, relative wealth and net profits or
any combination of these which are described in subsection II-
A. This IP Core includes the K building block which computes
the constant matrix K and used if the investor’s objective isߚ

deviation (risk) to find the efficient portfolio.
maximization problem needs to be solved for different risks
number of portfolios, ௣ܰ, times. A simple example of this

Figure 7. Parallel optimum allocation calculator IP Cores.

This

(13)

relative wealth. The required inputs to this hardware areᇱ, identity matrix, IN,current prices, PT, reference allocation,ఛ்ାܲ and expected returns, maximization problem can be seen as:ߙ��௩ఈୀ�ሽሼ�஼௢௩ᇲఈ݃ؠܽݎ ᇱܧሼܯሽ����ǡ ݒ ൒ Ͳߙ��ሺݒሻ �,. We use two control inputs:
cntrl_a and cntrl_b to select the desired investor profile. These
control relationships are described as:

Control Inputs
Investor Objective cntrl_a cntrl_b investor and σ ௜ܽ

�ெ
where two possibly important constraints: the budget of theൌ ͳ are not added the for ease ofேೞ௜ୀଵAbsolute Wealth 0 0
understanding.Relative Wealth 1 0

Net Profits 0 1
After these control units are given, E{M}, the market

vectors at the investment horizon, is calculated. Figure 6 (b)
shows how the Market Vectors Calculator IP Core can be
easily parallelized. Cov{M}, computed by equation (6) is only
needed when the investor objective is relative wealth. seen as:
Because it also includes many matrix multiplications and
accumulations, a similar parallelized hardware can be
implemented.

ଶଵ
 aሽ

D. Hardware Architecture for Mean Variance Framework
Step 1 డ௔డ భࣦ
Mean variance framework 1 డ௔డࣦమܽis constrained

maximization problem which is shown in equation (9). Thisܯሼ݋ܥݒ and ܯሼܧ step receives market vectors,

stepሽ as inputs and

ሿሿሻሻ݋݋

ݒݒݒݒ

ሿ ሺሺ
ଶଵܽܽଵଶ
ሾሾ
ଵଶܲܲ

ଵଶ

A popular approach to solve constrained maximization
problems is to use the Lagrangian multiplier method [23]
which introduces an additional variable, ߣ, to equalize the
number of equations and number of unknowns. The equations
for the solution of the equation (13) for 2 securities can be

ᇱെ݋ܥݒ ܽ	൤�ܽ݋ܥሺܽ ଵଶଵଵݒߙ ൨ ቂଶଶ݋ܥ݋ܥ ଶଵ݋ܥଶ	ଶଵ
ଵଶ൅ ൌܲܽʹ݋ܥଶଵܥ

ଵଶ൅ ൌܲܽʹ݋ܥଶଵܥ ݋ܥݒܽ݋ݒଶଶܽ݋ܥ ଵଶሻ ൅ ݒ

ሼሺ ሼ ሽߣܧ ሽെ ݒݒ
ݒܯ ൅ ଵ൅ܽߣ �ଵଵ݋ܥ ൅ �ଶଶ݋ܥ ൅ ܥሺݒ݋ଶଵܥ

ܯ ݒݒݒݒ
ሻᇱ (14)ቃሻ(15)ሾߙ ሿ ሾࣦ ൌ �ܽ ࣦ ൌ൤ ൨ ൅ ଵଶܽܽൌ Ͳ (16)ൌ Ͳ (17)

ଶଶ ൌ ଵܽܽ(18) ݒ
െ െߣ ߣ
ଵଵ ൅ ܽడࣦడఒ

ൌ ଵ ଶ ǡ � ଶ�ǡ maximizes the expected return for a specific standard ,ߣ
By solving three equations for three unknowns,

Figure 6. Parameterizable hardware architecture for the generation of the required inputs – phase 5. Two different architectures are presented as serial and fully
parallel. As can be seen from the parallel architecture, phase 5 has very high potential for the parallel implementation, therefore a good candidate for decreasing
the computational time of the optimal asset allocation.

ଵߙ ଶ and values where calculationߙ

constants such
arithmetic for our implementations and assume that our clock , amount of functions need to be computed for ௦ܰ securities,

determination of the efficient allocation for a given risk. These frequency achieves 200 MHz. The complexity of the mean

compare our results with a software implementation running one can derive the optimal
of these values can be written as functions of the known ݋ܥݒଵܲ,݇ሻܴ݅ݏሺݒ� on two 2.4 Ghz Pentium-4 CPUs (every test is run 1000 times ଶଶ. Aand number of and average runtime is presented). We use 32 bit fixed-point as

equations will be the same for different risks and hence can be
easily parallelized (as shown in Figure 7). There are differentߙ calculator blocks in every core. This core can be used
serially by applying different variances as inputs or can be
parallelized since the equations these cores include are the
same.

E. Hardware Architecture for Mean Variance Framework
Step 2
After computing the efficient frontier, we determine the

highest utility allocation (optimal allocation) among these
different allocations using satisfaction indices. Computing the
optimal allocation is a maximization problem by simulating a
large amount of market scenarios through Monte-Carlo
simulations. The Satisfaction Function Calculator IP core
(Figure 8 (a)) has required inputs of the investor objective
function values ߰, and the constants ߛ�����ߞ which are
defined in equation (12). The Satisfaction Function Calculator
IP core can evaluate linear, logarithmic, exponential,
quadratic, and power utility functions. The control input,
cntrl_c, defines which utility to use.

For the determination of the highest utility allocation, the
Monte-Carlo block and the Utility Calculation Block (as part
of the Satisfaction Function Calculator block) are run number
of simulations, Nm, times. The whole Satisfaction Function
Calculator IP core is then run number of portfolios, Np, times.
Therefore, the Monte-Carlo block, Utility Calculation Block,
and Satisfaction Function Calculator IP core can be easily
parallelized a maximum of Nm, Nm and Np times respectively
as shown in Figure 8 (b).

IV. RESULTS

In this section, we investigate potential speed-ups for the
mean variance framework using simulations of the hardware
architectures we described in Section III. We concentrate on
“Generation of the required inputs – Phase 5” and “the mean
variance framework – step 2.” We consider serial and
different level of parallel implementations of these steps and

variance framework step 1 increases dramatically with
increased securities, and hence its potential runtime cannot be
determined until we investigate alternative parallelism
methods (such as employing Monte-Carlo simulations) and
hence is not presented.

As can be seen from Figure 6, the market vector calculator
IP Core can be implemented with different levels of
parallelism levels where we are bound by hardware resources
rather than by the parallelism that this step offers. The serial
implementation of this step (no parallelism exploited)
performs poorly compared to the software implementation.
The parallel implementation uses a reasonable parallelism
level by employing Ns number of arithmetic resources in
parallel: for 50 securities there are 50 multipliers, dividers,
subtractors etc. This level of parallelism achieves a potential
performance ratio between ͸ ൈ ����ͻǤ͸ ൈ compared to the
software implementation. A fully parallel implementation
which might not be realistic due to hardware limitations,
presents a best potential bound offering a performance ratio ͸ʹͻ ൈ (for 50 securities). This comparison is shown in Figure
9 (a).

We investigate the difference in timing for mean variance
framework step 2 in Figure 9(b). We use 100,000 scenarios,
Nm, for Monte-Carlo simulations and 50 portfolios, Np, to
evaluate. We present two parallel architectures, parallel 1
employs 10 Satisfaction Function Calculator blocks where
each consists of 1 Monte-Carlo block with 10 multipliers and
10 Utility Function Calculator blocks. Parallel 2 employs 10
Satisfaction Function Calculator blocks where each consists of
1 Monte-Carlo block with 20 multipliers and 20 Utility
Function Calculator blocks. Parallel 1 and Parallel 2 offer a
potential performance ratio between ͳͷͳ ൈ �����ʹʹͳ ൈ and
between ͵Ͳʹ ൈ �����ͶͶʹ ൈ.

As can be seen from the potential performance ratios, both
“Generation of the required inputs – phase 5” and “mean
variance framework – step 2” offer significant speed-up when
parallelized and implemented in hardware.

Figure 8. Parallel parameterizable hardware architecture for the mean variance framework step 2. The Monte-Carlo block, Utility Calculation Block, and
Satisfaction Function Calculator IP core can be easily parallelized a maximum of Nm, Nm and Np times respectively.

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

C
om

pu
ta

tio
na

l T
im

e
(s

ec
)

50

Software

60

Serial

70 80 90

Number of Securities

Parallel Fully Parallel

100

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

C
o

m
p

u
ta

ti
o

n
a

l T
im

e
(s

ec
)

50 60 70 80

Number of Securities

Software Parallel 1 Parallel 2

90 100

Figure 9. Possible speed-ups for “generation of the required inputs - phase 5” and mean variance framework Step 2.

V. CONCLUSIONS AND FUTURE WORK

The addition of FPGAs to the existing high performance
computers can boost an application’s performance and design
flexibility. The mean variance framework’s inherent
parallelism in its solution steps (due to many matrix
computations and its use of Monte Carlo simulations) and its
need for reprogramability (to allow for modifications based on
different investor characteristics) make the framework an ideal
candidate for an FPGA implementation. In this work, we are
the first to propose hardware acceleration of optimal asset
allocation through an FPGA implementation of Markowitz’
mean variance framework. We concentrate on “Generation of
the required inputs – Phase 5” and “Mean-variance
Framework – Step 2” in this work and present a study of
potential performance improvements through simulations of
the hardware architectures. We provide a comparison between
a software implementation running on two Pentium-4 CPUs,
and an FPGA architecture, showing potential performance
gains of ͻǤ͸ ൈ for Phase 5 and ʹʹͳ ൈ for Step 2.

We are currently working on a parameterizable hardware
implementation of these steps with fixed-point and floating
point arithmetic. There are different architectural choices
(parallelism levels) to implement these steps and we are bound
with the hardware resources instead of parallelism offered.
Thus we follow a design methodology which we can
automatically generate and optimize different architectures
and perform a design space exploration to find efficient
implementations by generating libraries and working on a tool
[24-27] which can perform these tasks.

REFERENCES

[1]	 A. Meucci, “Risk and Asset Allocation,” Springer Finance Press, 2005.
[2]	 F. Fabozzi, “Handbook of Portfolio Management,” Frank J. Fabozzi

Associates, New Hope, Pennsylvania, 1998.
[3]	 M. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, “ Applications of

second order cone programming,” Linear Algebra and its Applications,
Special Issue on Linear Algebra in Control, Signals and Image
Processing 284, 193-228, 1998.

[4]	 A. Ben-Tal and A. Nemirovski, “Optimal Design of Engineering
Structures,” Optima pp. 4-9.

[5]	 S. Boyd and L. Vandenberghe, “Convex Optimization”, Cambridge
University Press, 2004.

[6]	 Y. Nesterov, and A. Nemitovski, “Interor-Point Polynomial Algorithms
in Convex Programming”, Society for Industrial and Applied
Mathemetics, 1995.

[7]	 H. M. Markowitz, “Portfolio Selection: Efficient Diversification of
Investments”, 2nd Edition, 1991.

[8]	 http://www.barra.com
[9]	 http://www.sungard.com/AllocationMaster/
[10]	 http://www.ibbotson.com
[11]	 http://www.northinfo.com
[12]	 http://invest-tech.com/allocator.html
[13]	 http://www.wilshire.com
[14]	 http://wilsonintl.com
[15] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C. Cheung, D.-U.

Lee, R.C.C. Cheung, W. Luk, "Reconfigurable acceleration for Monte
Carlo based financial simulation," 2005 IEEE International Conference
on Field-Programmable Technology, 2005. vol., no., pp. 215-222, 11-14
Dec. 2005.

[16] G.W. Morris, M. Aubury, "Design Space Exploration of the European
Option Benchmark using Hyperstreams," International Conference on
Field Programmable Logic and Applications, 2007. vol., no., pp.5-10,
27-29 Aug. 2007.

[17] D.B. Thomas, J.A. Bower, W. Luk, "Automatic Generation and
Optimisation of Reconfigurable Financial Monte-Carlo Simulations,"
IEEE International Conf. on Application-specific Systems, Architectures
and Processors, 2007., vol., no., pp.168-173, 9-11 July 2007.

[18] D.B. Thomas, W.	 Luk, "Sampling from the Multivariate Gaussian
Distribution using Reconfigurable Hardware," 15th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines,
2007. vol., no., pp.3-12, 23-25 April 2007.

[19] D.B. Thomas, W.	 Luk, “Credit Risk Modelling using Hardware
Accelerated Monte-Carlo Simulation,” In Proceedings of Field-
Programmable Custom Computing Machines 2008.

[20] N. A. Woods, and T. VanCourt, “FPGA Acceleration of Quasi-Monte
Carlo in Finance,” accepted for publication in Proceedings of Field
Programmable Logic and Applications (FPL) 2008.

[21] A. Kaganov, A. Lakhany and P. Chow, “FPGA Acceleration of Monte-
Carlo Based Credit Derivative Pricing,” Accepted for publication in
Proceedings of Field Programmable Logic and Applications (FPL)
2008.

[22] M. LiCalzi and A. Sorato, "The Pearson system of utility functions,"
Game Theory and Information 0311002, EconWPA 2003.

[23] W.	 Nicholson, “Microeconomic Theory: Basic Principles and
Extensions,” South Western Educational Publishing, 2004.

[24] A. Irturk, B. Benson, and R. Kastner, “An Optimization Methodology
for Matrix Computation Architectures,” submitted for review, Design,
Automation & Test in Europe (DATE) 2009.

[25] A.	 Irturk, B. Benson, S. Mirzaei, and R. Kastner, “GUSTO: An
Automatic Generation and Optimization Tool for Matrix Inversion
Architectures,” submitted for review, Transactions on Embedded
Computing Systems.

[26] A.	 Irturk, B. Benson, and R. Kastner, “Automatic Generation of
Decomposition based Matrix Inversion Architectures,” accepted for
publication in Proceedings of International Conference on Field-
Programmable Technology (ICFPT) 2008.

[27] A.	 Irturk, B. Benson, S. Mirzaei and R. Kastner, “An FPGA Design
Space Exploration Tool for Matrix Inversion Architectures,” accepted
for publication in Proceedings of IEEE Symposium on Application
Specific Processors (SASP) 2008.

http:http://wilsonintl.com
http:http://www.wilshire.com
http://invest-tech.com/allocator.html
http:http://www.northinfo.com
http:http://www.ibbotson.com
http://www.sungard.com/AllocationMaster
http:http://www.barra.com

