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Framework for Optimal Asset Allocation
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Abstract— Asset classes respond differently to shifts in financial 
markets, thus an investor can minimize the risk of loss and 
maximize return of his portfolio by diversification of assets. 
Increasing the number of diversified assets in a financial 
portfolio significantly improves the optimal allocation of different 
assets giving better investment opportunities. However, a large 
number of assets require a significant amount of computation 
that only high performance computing can currently provide. 
Because of the highly parallel nature of Markowitz’ mean 
variance framework (the most popular approximation approach 
for optimal asset allocation) an FPGA implementation of the 
framework can also provide the performance necessary to 
compute the optimal asset allocation with a large number of 
assets.  In this work, we propose an FPGA implementation of 
Markowitz’ mean variance framework and show it has a 
potential performance ratio of ૛૛૚ ൈ over a software 
implementation.     

I. INTRODUCTION 

Asset allocation is the core part of portfolio management. 
With asset allocation, an investor distributes his wealth across 
different asset classes which include different securities such 
as bonds, equities, investment funds, derivatives, etc. in a 
given market to form a portfolio. Because each asset class 
responds differently to shifts in financial markets, an investor 
can minimize the risk of loss and maximize the return of his 
portfolio by diversifying his assets. The goal of the portfolio 
manager in a financial institution is to provide the asset 
allocation with the greatest return for some level of risk for 
investors [1][2]. 

A portfolio manager needs to include two pieces of 
information to determine the best allocation for a given 
investor: the investor’s profile and the market data. The 
investor profile includes the current asset allocation of the 
investor, the budget, the investment time horizon, and the 
investor’s objectives and satisfaction indices to be able to 
evaluate the portfolio’s performance. The market data include 
the joint distribution of the prices at the investment horizon 
and the implementation costs for trading these securities. 

Determining the best allocation for a given investor requires 
solving a constrained optimization problem [3][4][5]. Convex 
programming problems represent a broad class of constrained 
optimization problems which can be solved numerically [6]; 
however an optimal asset allocation problem includes a large 

number of variables that need to be processed which requires a 
long computation time. Therefore, using an approximation 
method for the allocation optimization is crucial.  

The most popular approximation approach for optimal asset 
allocation is Markowitz’s mean variance framework [7]. In 
this framework, the investor tries to maximize the portfolio’s 
expected return for a given risk and investment constraints. 
Mean variance framework is a two-step approach which 
approximates the solution of the optimal asset allocation 
problem as a tractable problem. The first step of the mean 
variance optimization selects efficient allocations for different 
risks among all the possible combinations of assets to form the 
efficient frontier; and the second step searches for the best 
allocation among all efficient allocations found in the first 
step. 

Increasing the number of assets in a portfolio significantly 
improves the efficient frontier as shown in Figure 1. Adding 
new diversified assets to a portfolio shifts the frontier to the 
upper left which gives better return opportunities with less risk 
compared to the lower number asset portfolios. An efficient 
way to find an optimal allocation for small investors is to use 
commercially available asset allocation software: World 
Markets [8], Allocation Master [9], Encorr [10], PACO [11], 
Expert Allocator [12], Horizon [13] and Power Optimizer 
[14]. However financial institutions which make larger 
investments or control large individual investor portfolios face 

124 

122 

120 

118 

116 

114 

112 

110 

108 

106 
0 5 15 2510 20 

Figure 1. Increasing the number of assets in a portfolio significantly 
improves the efficient frontier, the efficient allocations of different assets for 
different risks. Adding new assets to a portfolio shifts the frontier to the 
upper left which gives better return opportunities with less risk compared to 
the lower number of assets portfolios. 
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respective covariance matrix ሼ ݋ܥݒܯ The expected values of the market vector ܧ ሽoptimal asset allocation using FPGAs.   
Our major contributions are:  are needed as inputs to 

• A detailed description of the mean variance framework the mean variance framework. Calculating these inputs 
for optimal asset allocation, incorporating investor requires the use of already known publically available data: 
objectives and satisfaction indices used in practical prices, standard deviation, and covariances plus the investor’s 

horizon ܯሼ݋ܥݒimplementations; 
• Identification of bottlenecks for the mean variance 

framework which can be adapted to work in hardware; 
߬objective, number of securities, Ns, reference allocation and ܯሼܧ (as shown in Figure 2 (a)). Calculating ሽ�ሽ and 

• Design of the proposed hardware for the FPGA 
 using these investor and market parameters requires 

implementation of the mean variance framework; 
• A study of potential performance improvements through 

the 5 stage procedure (shown in Figure 3) explained in detail 
below [1].  ఛ෤௧ǡܺ1. Detection of the invariants, 

simulations of the hardware architectures and a Invariants are identical repetitions in the market within a ǁ߬ The estimation interval, ǁ߬comparison between a software implementation running 
 two 2.4 Ghz Pentium-4 CPUs, and an FPGA ǁgiven estimation interval, ߬߬ . 

on
, is 

different than the horizon 
estimation interval, architecture, showing potential performance ratios of ͻǤ͸ ൈ and ʹʹͳ ൈ for different steps. 

, which was mentioned before. The 
, refers to the time which we suspect a ߬The rest of the paper is organized as follows: In section II, repetition in data, where investment horizon,
 

time the investor plans to invest. Detection of the invariants is
 

, orെ ͳ೟ష௉௉ൌఛ෤௧ǡܮቁ
, refers to the 

೟we describe the steps of the mean variance framework used 
for optimal asset allocation. In section III, we present our ఛ 

an essential step and linear return of stocksൌ �௧ǡܥ � ቀ ഓ௉೟௉೟షproposed implementation of the mean variance framework. 
Section IV presents our results in terms of timing and 

compounded return of stocks ഓ  can be used as 
invariants for the market. We chose to use compounded return throughput and compares these results with a purely software 
of stocks. 

more complicated problems to obtain the optimal asset 
allocation. Their higher number of assets and more complex 
diversification require significant computation that currently 
only high performance computing can provide. 

The addition of FPGAs to the existing high performance 
computers can boost the application performance and design 
flexibility. The mean variance framework’s inherent 
parallelism (due to many matrix computations and its use of 
Monte Carlo simulations) and its need for reprogramability (to 
allow for modifications based on different investor 
characteristics) make the framework an ideal candidate for an 
FPGA implementation. There are some previous works which 
consider the hardware acceleration of different financial 
problems, mainly concentrated on Monte-Carlo simulations, 
[15-21]. Zhang et al. [15] and Morris et al. [16] focused on 
single option pricing where Kaganov et al. [21] considered 
credit derivative pricing. Also interest rates and Value-at-Risk 
simulations are being considered by Thomas et al. in [17] and 
[18]. To the best of our knowledge, we are the first to propose 
hardware acceleration of the mean variance framework for 

implementation. We conclude and present future work in 
section V.  

II.	 THE MEAN VARIANCE FRAMEWORK FOR OPTIMAL ASSET 
ALLOCATION 

In this section, we present the mean variance framework for 
optimal asset allocation.  The framework is a popular two-step 
approach used in all practical asset allocation applications. 
Step 1 selects efficient allocations among all the possible 
combinations of assets and computes the efficient frontier. 
Step 2 performs a search for the best among the efficient 
allocations using Monte-Carlo simulations. We divide our 
discussion of the framework into three sections (shown in 
Figure 2): A. The computation of inputs required for Step 1 of 
the mean variance framework, B. Step 1 of the mean variance 
framework, and C. Step 2 of the mean variance framework. 
Note that all equations listed in the following subsections are 
found in [1] unless otherwise specified.      

A.  Computation of the Required Inputs ሽܯሼ  and the 

Figure 2. The required steps for optimal asset allocation are shown in (a), (b) and (c). After the required inputs to the mean variance are generated in (a), 
computation of the efficient frontier and determination of the highest utility portfolio are shown in (b) and (c) respectively. This figure also presents the inputs 
and outputs provided to the user.   



 

  
 

    
 

   

 
 

   
  

 
 

 
 

   

 
 

  
 

                                               
 

 
 

 
 
             
 

   
  

 

 
  

    
 
 

  

 
 

 
 

 
 

 
                                                
 

 
 

 
                                              
 

 

   

 

   
 

 
                                                          
 
                                                    

 
  

  

    
  

   
  

 
 

 
  

 
 

   
   

  
  

 
    

                  
  

      

 
  

  
  

  
  

     
  

 

   
 

  

2. Determination of the distribution of the invariants 
We can determine the distribution of the invariants based on 

estimators (maximum likelihood estimators, nonparametric ߕ௧ǡ ൌ  ௧ǡestimators etc.) based on current market information. As anܥ
example, we assume that  are෠ȭఛ෤ߤƸఛ෤ the invariants ෠ሺܰ� ǡ ȭߤƸ ሻmultivariate normal distribution with  where  and 
are vectors of sample mean and covariance matrix 
respectively. 

Projection of the invariants ߕ௧ǡ

to obtain the distribution of ்ߕାఛ
ఛ෤3.  to the investment horizon ǡఛ 

ሺߕ௧ǡAfter the determination of the distribution of the invariants
Figure 3. The procedure to generate required inputs is described. The in an estimation interval, we

Furthermore we use .ሻ̱ܰ�்ାఛǡܺ investment horizon ෠ȭఛఛ෤ǡ,ǁ߬ߤƸఛఛ෤ఛ෤  project them to the ఛ numbers 1-5 refers to these computation steps which are explained in 
subsections in more detail. 

this distribution to determine the distribution of the market M is a transformation of the market prices at the investment 
prices, �் ାఛ. �	    (4) ఛఛ்ାܲܧComputation of the	  expected  return
ሽሼ݋ܥݒ covariance matrix 
 �	ఛ்ାܲ

invertible matrix respectively. These generalized forms of 

horizon as: �ܯ ؠ ்ାܲܤ൅ 

 conformable vector and an  are a suitable ܤ and 
ሼ ሽ4. , and the 

 from the distribution of the where 
market prices. 

We use the characteristic function of the compounded ሻሻ
investor objectives are also shown in Table I (b) with different ሺఈ೅௪ؠሻߛሺ values where ܤ and � ߙ ௪೅ሺఉܭ�ܫܫ ؠ   (Normalization factor), ൬ఓෝreturns to formulize the expected returns as ݁ሺ௡ ೙೙మಂ෡ା೙ሺ௡்ܲ ቅ ൌ்ାܲܧቄ ഓ෤ഓሻఛ ൰ሻ

ሽሽሼሼሽܯܯሼሼݒ

ே is identity matrix . Computation of the 
market vector combines the expected returns and covariance 
matrix with the investor objectives using different �
values for different investor objectives which is shown as : 

ఛܧൌ � ൅ � ܧ  ்ାܲ
ఛ்ାܲݒൌ ��ሽ ݋ܥ

ே െ 
௣ఉ೅ƍ௣ఉ೅ƍ  and (1) 

and covariance matrix of the market as: ሺ௠ ሺ௡ ቅ ൌ்ାǡ ்ܲାܲቄ݋ܥݒ ሻఛሻఛ  and B 

ሺ௠்ܲ ሻ ሺ௡்ܲ ሻ݁ഓ෤ഓሺఓෝ೘ାఓෝ೙ሻ݁ ഓ෤ഓభమ ቀ݁ ቁഓ෤ഓ൫ஊ෡೘೘ାஊ෡ ൫ஊ෡ (5)൯ ൯೙೙ ܥ݋ �ᇱ       (2) ೘೙ሼ െ ͳሽܧܯ
 of the market vector 

(6) 
Computation of the expectedܯሼ݋ܥݒ covariance matrix ሽ5. and the  return , Notice that each step requires the financial analyst to make 

assumptions (such as what type of invariant distribution to 
assume, and what estimation interval to use). Each assumption 
affects the outcome of the computation and hence each of the 
five steps described is a broad research area in economics. 

An investor objective is a function for which every investor 
desires the largest value as an output of that function. There 
are different objectives such as absolute wealth, relative 
wealth and net profits [1]. An absolute wealth investor tries to 

For our purposes we use the following assumptions with the maximize the value of the portfolio in the investment horizon. 
knowledge these could be easily changed: we use the past 3 
years of the data with 1 week estimation interval. We use 

A relative wealth investor tries to achieve better portfolio 
return compared to a reference portfolio where the reference 
portfolio is denoted as ȕ with ߛ compounded returns of stocks as market invariants and  as a normalization factor. A 

 that they are multivariate random variables. We net profits investor always tries to increase the value of the assume
portfolio compared to the value of the portfolio today. The assume our estimation horizon is 1 year. 
specific forms of the equations for these objectives are shown B. Mean Variance Framework Step 1: Computation of the in Table I (a).  Efficient Frontier 

Computing the efficient frontier, the efficient allocations of 
These different objectives can be seen as a linear function 

, shown ܯ , and the market vector ߙof the investor’s allocation 
different assets for different risks, is the first step of the mean 
variance framework (Figure 2(b)). The inputs to this step are 

(3) current prices (already known), expected prices, E{M}, and 

TABLE I 
DIFFERENT INVESTOR OBJECTIVES, SPECIFIC AND GENERALIZED FORMS 

as follows : ߰ఈ ൌ ܯߙ�
Standard Investor Objectives 

Absolute Wealth �߰ఈ ൌ ்ܹା ሺߙሻܫ
Relative Wealth Net Profits ߰ఈ ൌ ்ܹା ሺߙሻ െ ؠሻ(a) Specific Form ఛߙሺ்ݓ Ͳǡ ܤ ؠ ఛ ்ାఛܤ ؠ ܭ ሻǡߙͲ߰ఈ ൌ ்ܹା ሺ െ ሻܹߙሺߛ ሺߚሻ ఛؠ െ݌ ǡܤ����� ؠ ܫ

(b) Generalized Form 
�� ேࢻ࣒ ൌ ࣎ାࢀࡼᇱࢻ � ൌ ࢻ࣒ؠ �� ࣎ାࢀࡼࡷᇱࢻ ் ேࢻ࣒� ൌ െ ࣎ାࢀࡼᇱሺࢻ  ሻࢀ࢖



 

 
  

     

   
  

     
    

  
  

 
 

                                                                 
 

 
  

 
                                                           

 
 

 
  

 
   

  
  

 
 
               

 

 
 
                                                                
  
                                                     
 

   

  

 
  
 

 
 

  

  
 

    

 
  

  
 

    
  

 
 

 
  
 

   

 
 

 
  

 
 

 
 

 
 

   
 

   
 

    
 

  
  

  
   

 
                                                                

 
   

    
 

  
    

 
 
 

 
  

  
   

 

 
   

               

  
 

    

   
   

 

expected covariance matrix, Cov{M},(which are calculated as efficient frontier, we have to consider satisfaction indices to 
described in section II-A), number of portfolios, Np, number of determine which ‘point’ along the efficient frontier represents 
securities, Ns and investor’s budget. This step calculates Np the optimal allocation for the given investor. The required 
amount of efficient portfolios. These different portfolios create inputs to this step are the allocations computed in step 1, 
the curve in Figure 2 (b) which is called the efficient frontier.  current prices,  number of portfolios, Np, number of securities, 

Assume an investor who purchases Įn units of the n-th 

ሺ௡்ܲ investment is made). If 

Ns, number of scenarios, Nm, and investor satisfaction index (as 

ሻsecurity in a market of N securities at time T (the time that the shown in Figure 2 (c)). 
 and Į denote the price of the n-th The investor objective function produces one value. 

However this value is random since the market prices at the ܯǡ vector, 

security at the time T and the allocation at the time the �investment horizon are stochastic and therefore the market 
contains random variables. Therefore, using the 

investor function alone does not allow us to select the optimal 
(7)	 allocation because we have no way of determining which 

random value output is ‘better’ for the investor than another. 

decision is made respectively, the value of the portfolio is 
calculated as : 

ؠ்ܲ ሺ்�ܹߙሻߙ
However, the market prices of the securities are multivariate 

Therefore we need to compute the expected value of the random variables at the investment horizon, therefore the 
investor objective value by introducing satisfaction indices portfolio is a random variable which can be seen as :

ఛ்ାܲᇱؠߙሻሺߙఛ்ାܹ    (8) 
[1]. Satisfaction indices represent all the features of a given 
allocation with one single number and quantify the investor’s 

where ߙᇱ satisfaction. Therefore, an investor prefers an allocation to the  refers to the allocation at the horizon. Because the 
other if it provides more satisfaction. There are mainly three 
different classes of indices being used to model the investor’s 

portfolio’s value is a random value since the market prices are 
unknown, the expected prices horizon ሽఛ்ାܲܧሼ  at the investment ሼ ఛ்ାܲ݋ܥݒ  and the covariance matrix ሽ satisfaction: certainty-equivalent, quantile and coherent  need to be 

indices.  We use certainty-equivalent indices because they are computed and then investor objective function needs to be
based on a concave function and promote diversification [1].   (These calculations are ሽܯሼ݋ܥݒ and ሽܧܯሼincluded to give us 

Certainty-equivalent indices are represented by the shown in the previous section). The efficient frontier is then 
investor’s utility function and objective. A utility function ݑሺ߰ሻ is defined for an investor to explain his enjoyment. 

found by maximizing the investor objective value by a 

ሽܯሼ ����ǡ ݒ ൒ Ͳ��     (9) ߙݒؠሺ ሻ �constrained variance. This computation can be seen as :ܧᇱܽݎ݃ �����ߙ ఈאԧ ఈᇲ஼௢௩ሼெሽఈୀ
There are different utility functions which we can use to 
represent an investor’s satisfaction such as exponential, ௩ quadratic etc. Even though this function is specific for every 
investor, it is possible to investigate the most commonly used 
functions and generalize them [1]. We show these different where an investor’s objective value and variance is calculated 

as follows:  ሼ߰ఈሽ߰ఈሽ ൌ ሼܧߙ ݒሼܯሼܯ ሽ ܧൌ ݋ܥߙ
With the efficient frontier depending on how much risk an 

ᇱ utility functions in Table II. To generalize the creation of 
(10) utility functions, we use Hyperbolic Absolute Risk Aversion ሽܸܽݎ  ᇱ (HARA) class of utility functions which are specific forms ofߙ

 (11) the Arrow-Pratt risk aversion model and defined in [1, 22] asటమఊటؠሻܣሺ߰ ା఍టାఎ 
(12)Ͳߟ ؠ�where 

investor wants to face, there is a corresponding expected �. The HARA class of utility functions gives us 
most of the utility functions by varying the constants, ߞ�  return. The region which is below the black curve (the shadedߛ���

region in Figure 2(b)) corresponds to the achievable risk-
return space for the specific frontier which includes at least as shown in Table II. 
one portfolio constructible from the investments that has the Therefore, an investor compares different allocations using 
risk and return corresponding to that point. The upper region is the index of satisfaction and chooses the maximum value as 
the unachievable risk-return space. The black curve running the optimal asset allocation. Computing the optimal allocation 
along the top of the achievable region is the efficient frontier. is a maximization problem using different market scenarios 
The portfolios that correspond to points on that curve are since market values are uncertain and its analytical solution is 
optimal according to equation (9). not possible in many practical implementations [1]. Therefore 

approximation methods are employed for finding the best C. Mean Variance Framework Step 2: Computing the 
allocation on the efficient frontier. To solve this problem with Optimal Allocation 
approximations, a large number of market scenarios are

Now that we have generated the inputs for the mean simulated through Monte-Carlo simulations. 
variance framework and used these inputs to compute the 

TABLE II 

DIFFERENT UTILITY FUNCTIONS FOR SATISFACTION INDICES


  Utility Functions 
Exponential Utility 
ߞ) ൐ ࣒Ͳሻࢋߛ �ܽ݊݀� ؠ Ͳ) Ͳሻ൐࢛ߞ࣒ሺ Quadratic Utility ૚ؠ െͳሻ ߛ�݀݊ܽ� Ͳؠ࣒ ሺߞ ܽ݊݀ ൒ ͳሻPower Utility Logarithmic Utility ሺ݈݅݉ ఊ ߛ ՜ଵ ሻ ൌ࣒ሺ࢛ሻߛ  ࣒࢔࢒  

Linear Utilityሺ݈݅݉ఊ՜ஶ ߛሻ࢛ሺ࣒ሻ ൌ ሺ࢛࣒ ൌ െ ି૚࣒ࣀ ሺ ൌ ࣒  െ  ૛࣒ ࣀ૛ ࢛ሺ ሻ ൌ  ࢽ૚ି૚࣒
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III.	 IMPLEMENTATION OF THE MEAN VARIANCE 
FRAMEWORK 

Now that we have described how optimal asset allocation 
works, we now discuss our proposed implementation of the 
mean variance framework. We first present a series of figures 
to provide the motivation for our implementation and 
determine the bottlenecks of optimal asset allocation. We then 
describe the proposed architectures and possible ways to 
benefit from their inherent parallelism. 

A. Implementation Motivation 
As previously shown in Figure 1, increasing the number of 

securities in a portfolio allows the investor to achieve better 
investment opportunities, thus our goal is to allow for a large 
number of diversified securities in a portfolio. But how much 
computation time does increasing the number of securities add 
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Figure 5. Identification of the bottlenecks in the computation of the optimal 
asset allocation. We run two different test while holding all but one variable to the computation of the optimal asset allocation? To address 

this question we looked at how varying the number of 
constant. We determined that generation of the required input does not 
consume significant amount of time. On the other hand, step 1 and 2 of the 

securities affected the computation time in relation to number mean variance framework consumes significant amount of time. 
of portfolios and number of scenarios, two other important 
parameters that affect computation time (an increase in the 
number of portfolios increases the number of points on the 
efficient frontier and increasing the number of scenarios 
increases the number of runs of the Monte-Carlo simulation). 
Figure 4 (a) and (b) compare number of securities, Ns, versus 
number of portfolios, Np, and number of portfolios, Np, versus 
number of scenarios, Nm, respectively. By looking at the 
slopes of the lines in the figures it can be easily seen that Ns 
dominates computation time (has a steeper slope) over Np (a), 
and Np dominates computation time over Nm (b). These results 
suggest that the number of securities is the most 
computationally time sensitive input to the optimal asset 
allocation problem, thus if a large number of securities are to 
be allowed as input to the framework, a faster implementation 
must be developed.  

To identify the bottlenecks of the computation of the 
optimal asset allocation, we look at the runtime of each 
solution step (1. generation of the required inputs, 2. Step 1 of 
the mean variance framework, and 3. Step 2 of the mean 
variance framework) with respect to varying the number of 

f f li sf iti 

ut
 i 

n 
T i

 i
 

s 

5 

f i sf f li s 

t i 
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Figure 4. To determine the computation time of different variables, we 
compare number of securities, Ns, versus number of portfolios, Np, and number 
of portfolios, Np, versus number of scenarios, Nm, respectively. By looking at 
the slopes of the lines in the figures it can be easily seen that Ns dominates 
computation time (has a steeper slope) over Np (a), Np dominates computation 
time over Nm. 

securities (Figure 5 (a)) and number of portfolios (Figure 5 
(b)).  As can be seen from Figure 5 (a), the generation of the 
required inputs does not consume a significant amount of 
time, thus it is best to keep this implementation step in 
software if the computation cannot be parallelized. On the 
other hand, step 1 and 2 of the mean-variance framework 
consume a significant amount of time providing the 
motivation for an alternative implementation. It is also 
important to note there is a cutoff point between step 1 and 2, 
showing that the computational time for step 1 becomes more 
significant after 60 securities. In (b), we only compare step 1 
and 2 for different number of portfolios (because we already 
determine that the computational time for the generation of 
required steps is not significant), and we conclude that most 
time consuming part is step 1.  

B. Hardware/Software Interface 
As determined in section III-A, Step 1 and Step 2 of the 

mean variance framework are the bottlenecks for computing 
the optimal asset allocation. FPGA implementations can 
provide a substantial performance improvement for processes 
that can be easily parallelized. Fortunately, finding the 
maximum return for different risk values to create the efficient 
frontier (Step 1) and implementing Monte-Carlo simulations 
to apply different market scenarios (Step 2) can be easily 
parallelized making them good candidates for hardware 
implementations. Although the generation of required inputs is 
not a bottleneck for optimal asset 

phase 5 of this step (computation of
performance improvement can be gained by implementing ݋ܥݒܯ and ܧܯallocation, ሼ ሽ further ሼ ሽ) 
which includes parallizable matrix computations in hardware. 
Thus, our implementation combines software (a Host PC) to 
compute phases 1-4 of the generation of required inputs and 
hardware (FPGA) to compute phase 5 of the generation of 
required inputs and step 1 and step 2 of the mean variance 
framework to obtain maximal performance gain.  

Because our implementation combines hardware and 
software, we must pay particular attention to the 
hardware/software interface, especially to the data that needs 
to be transferred, to insure we do not lose the performance 
gain we added through the hardware software separation. The 



 

 
     

 

  
   

  
 
 

 
   

  

  
  

 
 

 
  

 
   

  
   

 

 
 

 
  

 
  

   
  

   
 

 
               

 
 
 

 
  

  

 
  

 
 
                                  

 
 

 
       

       

  
 
  

 
  

 
   

 

information that needs to be transferred between the software 
and hardware are current prices, expected prices, and expected 
covariances which are of the dimensions Ns ൈ1, Ns ൈ1 and Nsൈ Ns respectively. In the following subsections, we present our 
architectural design and parallelization possibilities for the 
generation of the required inputs phase 5, mean variance 
framework step 1 and 2. 

C.	 Generation of Required Inputs – Phase 5 
We implement “Market Vectors Calculator IP Core” for the 

calculation of phase 5 in the generation of the required inputs 
(Figure 6 (a)). This IP Core can compute three different 
objectives: absolute wealth, relative wealth and net profits or 
any combination of these which are described in subsection II-
A. This IP Core includes the K building block which computes 
the constant matrix K and used if the investor’s objective isߚ 

deviation (risk) to find the efficient portfolio. 
maximization problem needs to be solved for different risks 
number of portfolios, ௣ܰ, times. A simple example of this 

Figure 7. Parallel optimum allocation calculator IP Cores. 

This 

(13) 

relative wealth. The required inputs to this hardware areᇱ, identity matrix, IN,current prices, PT, reference allocation,ఛ்ାܲ and expected returns, maximization problem can be seen as:ߙ��௩ఈୀ�ሽሼ�஼௢௩ᇲఈ݃ؠܽݎ ᇱܧሼܯሽ����ǡ ݒ ൒ Ͳߙ��ሺݒሻ �,. We use two control inputs: 
cntrl_a and cntrl_b to select the desired investor profile. These 
control relationships are described as: 

Control Inputs 
Investor Objective cntrl_a cntrl_b investor and σ ௜ܽ

�ெ
where two possibly important constraints: the budget of theൌ ͳ are not added the for ease ofேೞ௜ୀଵAbsolute Wealth 0 0 
understanding.Relative Wealth 1 0 

Net Profits 0 1 
After these control units are given, E{M}, the market 

vectors at the investment horizon, is calculated. Figure 6 (b) 
shows how the Market Vectors Calculator IP Core can be 
easily parallelized. Cov{M}, computed by equation (6)  is only 
needed when the investor objective is relative wealth. seen as: 
Because it also includes many matrix multiplications and 
accumulations, a similar parallelized hardware can be 
implemented. 

ଶଵ
 aሽ

D. Hardware Architecture for Mean Variance Framework 
Step 1 డ௔డ భࣦ
Mean variance framework 1 డ௔డࣦమܽis  constrained 

maximization problem which is shown in equation (9). Thisܯሼ݋ܥݒ and ܯሼܧ step receives market vectors, 

stepሽ  as inputs and 

ሿሿሻሻ݋݋

ݒݒݒݒ

ሿ ሺሺ
ଶଵܽܽଵଶ
ሾሾ
ଵଶܲܲ

ଵଶ 

A popular approach to solve constrained maximization 
problems is to use the Lagrangian multiplier method [23] 
which introduces an additional variable, ߣ, to equalize the 
number of equations and number of unknowns. The equations 
for the solution of the equation (13) for 2 securities can be 

ᇱെ݋ܥݒ ܽ	൤�ܽ݋ܥሺܽ ଵଶଵଵݒߙ ൨ ቂଶଶ݋ܥ݋ܥ ଶଵ݋ܥଶ	ଶଵ
ଵଶ൅  ൌܲܽʹ݋ܥଶଵܥ

ଵଶ൅ ൌܲܽʹ݋ܥଶଵܥ ݋ܥݒܽ݋ݒଶଶܽ݋ܥ ଵଶሻ ൅ ݒ

ሼሺ ሼ ሽߣܧ ሽെ ݒݒ
ݒܯ ൅ ଵ൅ܽߣ �ଵଵ݋ܥ ൅ �ଶଶ݋ܥ ൅ ܥሺݒ݋ଶଵܥ

ܯ ݒݒݒݒ
ሻᇱ (14)ቃሻ(15)ሾߙ ሿ ሾࣦ ൌ �ܽ ࣦ ൌ൤ ൨ ൅ ଵଶܽܽൌ Ͳ (16)ൌ Ͳ (17) 

ଶଶ ൌ ଵܽܽ(18) ݒ
െ െߣ ߣ
ଵଵ ൅ ܽడࣦడఒ 

ൌ ଵ ଶ ǡ � ଶ�ǡ  maximizes the expected return for a specific standard ,ߣ
By solving three equations for three unknowns, 

Figure 6. Parameterizable hardware architecture for the generation of the required inputs – phase 5. Two different architectures are presented as serial and fully 
parallel. As can be seen from the parallel architecture, phase 5 has very high potential for the parallel implementation, therefore a good candidate for decreasing 
the computational time of the optimal asset allocation. 



 

 
    

   

 
  

  
  

  

   

 
 

   
 
 

 
  

   
 

  
 

  
 
 

 
 

  
 

  
  

 
  

  

 

 
 
 

  
 

   

 
 

   
  

 

  
  

 
 

  
 

  

  
 

    
  

 

   
   

  
    

   
 

 
 

 
 
 

 
       

ଵߙ  ଶ and  values where calculationߙ

constants such 
arithmetic for our implementations and assume that our clock , amount of functions need to be computed for ௦ܰ securities, 

determination of the efficient allocation for a given risk. These frequency achieves 200 MHz. The complexity of the mean 

compare our results with a software implementation running one can derive the optimal 
of these values can be written as functions of the known ݋ܥݒଵܲ,݇ሻܴ݅ݏሺݒ� on two 2.4 Ghz Pentium-4 CPUs (every test is run 1000 times ଶଶ. Aand number of and average runtime is presented). We use 32 bit fixed-point as 

equations will be the same for different risks and hence can be 
easily parallelized (as shown in Figure 7). There are differentߙ calculator blocks in every core. This core can be used 
serially by applying different variances as inputs or can be 
parallelized since the equations these cores include are the 
same. 

E. Hardware Architecture for Mean Variance Framework 
Step 2 
After computing the efficient frontier, we determine the 

highest utility allocation (optimal allocation) among these 
different allocations using satisfaction indices. Computing the 
optimal allocation is a maximization problem by simulating a 
large amount of market scenarios through Monte-Carlo 
simulations. The Satisfaction Function Calculator IP core 
(Figure 8 (a)) has required inputs of the investor objective 
function values ߰, and the constants ߛ�����ߞ which are 
defined in equation (12). The Satisfaction Function Calculator 
IP core can evaluate linear, logarithmic, exponential, 
quadratic, and power utility functions. The control input, 
cntrl_c, defines which utility to use.    

For the determination of the highest utility allocation, the 
Monte-Carlo block and the Utility Calculation Block  (as part 
of the Satisfaction Function Calculator block) are run  number 
of simulations, Nm, times. The whole Satisfaction Function 
Calculator IP core is then run number of portfolios, Np, times. 
Therefore, the Monte-Carlo block, Utility Calculation Block, 
and Satisfaction Function Calculator IP core can be easily 
parallelized a maximum of Nm, Nm and Np times respectively 
as shown in Figure 8 (b).  

IV. RESULTS 

In this section, we investigate potential speed-ups for the 
mean variance framework using simulations of the hardware 
architectures we described in Section III. We concentrate on 
“Generation of the required inputs – Phase 5” and “the mean 
variance framework – step 2.” We consider serial and 
different level of parallel implementations of these steps  and 

variance framework step 1 increases dramatically with 
increased securities, and hence its potential runtime cannot be 
determined until we investigate alternative parallelism 
methods (such as employing Monte-Carlo simulations) and 
hence is not presented.    

As can be seen from Figure 6, the market vector calculator 
IP Core can be implemented with different levels of 
parallelism levels where we are bound by hardware resources 
rather than by the parallelism that this step offers. The serial 
implementation of this step (no parallelism exploited) 
performs poorly compared to the software implementation. 
The parallel implementation uses a reasonable parallelism 
level by employing Ns number of arithmetic resources in 
parallel: for 50 securities there are 50 multipliers, dividers, 
subtractors etc. This level of parallelism achieves a potential 
performance ratio between ͸ ൈ ����ͻǤ͸  ൈ compared to the 
software implementation. A fully parallel implementation 
which might not be realistic due to hardware limitations, 
presents a best potential bound offering a performance ratio ͸ʹͻ ൈ (for 50 securities). This comparison is shown in Figure 
9 (a). 

We investigate the difference in timing for mean variance 
framework step 2 in Figure 9(b). We use 100,000 scenarios, 
Nm, for Monte-Carlo simulations and 50 portfolios, Np, to 
evaluate. We present two parallel architectures, parallel 1 
employs 10 Satisfaction Function Calculator blocks where 
each consists of 1 Monte-Carlo block with 10 multipliers and 
10 Utility Function Calculator blocks. Parallel 2 employs 10 
Satisfaction Function Calculator blocks where each consists of 
1 Monte-Carlo block with 20 multipliers and 20 Utility 
Function Calculator blocks. Parallel 1 and Parallel 2 offer a 
potential performance ratio between ͳͷͳ ൈ �����ʹʹͳ ൈ  and 
between ͵Ͳʹ ൈ �����ͶͶʹ ൈ. 

As can be seen from the potential performance ratios, both 
“Generation of the required inputs – phase 5” and “mean 
variance framework – step 2” offer significant speed-up when 
parallelized and implemented in hardware.  

Figure 8. Parallel parameterizable hardware architecture for the mean variance framework step 2. The Monte-Carlo block, Utility Calculation Block, and 
Satisfaction Function Calculator IP core can be easily parallelized a maximum of Nm, Nm and Np times respectively. 
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Figure 9. Possible speed-ups for “generation of the required inputs - phase 5” and mean variance framework Step 2. 

V. CONCLUSIONS AND FUTURE WORK 

The addition of FPGAs to the existing high performance 
computers can boost an application’s performance and design 
flexibility. The mean variance framework’s inherent 
parallelism in its solution steps (due to many matrix 
computations and its use of Monte Carlo simulations) and its 
need for reprogramability (to allow for modifications based on 
different investor characteristics) make the framework an ideal 
candidate for an FPGA implementation. In this work, we are 
the first to propose hardware acceleration of optimal asset 
allocation through an FPGA implementation of Markowitz’ 
mean variance framework. We concentrate on “Generation of 
the required inputs – Phase 5” and “Mean-variance 
Framework – Step 2” in this work and present a study of 
potential performance improvements through simulations of 
the hardware architectures. We provide a comparison between 
a software implementation running on two Pentium-4 CPUs, 
and an FPGA architecture, showing potential performance 
gains of ͻǤ͸ ൈ  for Phase 5 and ʹʹͳ ൈ for Step 2.  

We are currently working on a parameterizable hardware 
implementation of these steps with fixed-point and floating 
point arithmetic. There are different architectural choices 
(parallelism levels) to implement these steps and we are bound 
with the hardware resources instead of parallelism offered. 
Thus we follow a design methodology which we can 
automatically generate and optimize different architectures 
and perform a design space exploration to find efficient 
implementations by generating libraries and working on a tool 
[24-27] which can perform these tasks. 
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