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Abstract 

Matrix inversion is an essential computation for 
various algorithms which are employed in multi-
antenna wireless communication systems. FPGAs are 
ideal platforms for wireless communication; however, 
the need for vast amounts of customization throughout 
the design process of a matrix inversion core can 
overwhelm the designer. Decomposition methods 
provide the analytic simplicity and computational 
convenience necessary for computationally intensive 
matrix inversion. This paper presents automatic 
generation of different decomposition based matrix 
inversion architectures using a matrix inversion core 
generator tool, GUSTO with different parameterization 
options. We present automatic generation of a variety 
of general purpose matrix inversion architectures 
which have comparable results to published matrix 
inversion architecture implementations, but offer the 
advantage of providing the designer the ability to study 
the tradeoffs between architectures with different 
design parameters. 

1. Introduction 

Matrix inversion is a common function found in 
many algorithms used in wireless communication 
systems. For example MIMO-OFDM systems use 
matrix inversion in equalization algorithms to remove 
the effect of the channel on the signal [1], minimum 
mean square error algorithms for pre-coding in spatial 
multiplexing [2] and detection-estimation algorithms in 
space-time coding [3]. These systems often use a small 
number of antennas (2 to 8) which results in small 
matrices to be inverted and/or decomposed. For 
example the 802.11n standard specifies a maximum of 
4 antennas on the transmit/receive sides and the 802.16 
standard specifies a maximum of 16 antennas at a base 
station and 2 antennas at a remote station.  

Matrix inversion is a computationally intensive 
calculation. Decomposition methods provide a means 

to simplify this computation. There are different 
decomposition methods, such as QR, LU and 
Cholesky, that solve matrix inversion. The selection of 
the decomposition method depends on the 
characteristics of the given matrix. For non-square 
matrices or when simple inversion to recover the data 
performs poorly, the QR decomposition is used to 
generate an equivalent upper triangular system, 
allowing for detection using the sphere decomposition 
or M-algorithm. For simpler detection via inversion of 
square channel matrices, the LU and Cholesky 
decompositions are compatible with positive definite 
and nonsingular diagonally dominant square matrices, 
respectively. 

FPGAs are an ideal platform for wireless 
communication due to their high processing power, 
flexibility and non recurring engineering (NRE) cost. 
However, FPGAs require vast amounts of 
customization throughout the design process and few 
tools exist which can aid the designer with the many 
system, architectural and logic design choices. 
Designing a high level tool for fast prototyping matrix 
inversion architectures is crucial. 

For automatic generation of different matrix 
inversion architectures, we designed an easy to use 
tool, GUSTO (“General architecture design Utility and 
Synthesis Tool for Optimization”) [4]. GUSTO is the 
first tool of its kind to provide automatic generation of 
a variety of general purpose matrix inversion 
architectures with different parameterization options. 
GUSTO allows the user to select the matrix inversion 
method, the matrix dimension, the type and number of 
arithmetic resources and the data representation (the 
integer and fractional bit width).  

Our major contributions are: 
•	 Automatic generation of decomposition based 

matrix inversion architectures with parameterized 
matrix dimensions, bit widths, resource allocation 
and methods; 

•	 Comparison of different decomposition based 



  
  

 
  

 
 
 

  

 

 
 

 
 

  
 

  

  
   

 

  
   

 
  

  
 

 
 
 
 

 
  

   
 

   
 

  
  

 
 

 
   

 
 

 
 

  
  

  
 

  

   
  

 
  

 
 

  

 
  

 
 

  
 

  
 

  
 

 
 

   
  

 
  

  
  

  
  

  
   

  
 

    
 

 
 

 
  

 

  

matrix inversion methods, QR, LU and Cholesky. 
The rest of the paper is organized as follows. In 

section II, we introduce MIMO systems, matrix 
inversion and its different matrix decomposition based 
solution methods: QR, LU and Cholesky. In section 
III, we introduce our tool. Section IV presents our 
implementation results in terms of area and throughput 
and compares our results with previously published 
work. We conclude in Section V. 

2. MIMO Systems, Matrix Inversion and 
Its Methods 

Orthogonal Frequency Division Multiplexing 
(OFDM) is a promising technology for high data rate 
wireless communications due to its robustness to 
frequency selective fading, high spectral efficiency, 
and low computational complexity. Multiple Input 
Multiple Output (MIMO) systems, which improve the 
capacity and performance of wireless communication 
by using multiple transmit and receive antennas, are 
often used in conjunction with OFDM to improve the 
channel capacity and mitigate intersymbol interference 
[5]. 

The received signal for N transmit and M receive 
MIMO antennas is Y = HX + w, where X, Y and w are 
the complex transmitted signal, complex received 
signal and complex white Gaussian noise respectively. 
The wireless channel, where N transmit and M receiver 
antennas are employed, is described as the M×N 
deterministic matrix H. The received signal equation 
can be replaced by its real valued equivalent for 
computational convenience. Therefore, the detection 
problem becomes a Least Squares (LS) solution to a 
system of linear equations. Several different MIMO 
receive algorithms are employed for optimal detection 
of the transmitted signal [6]. The sphere decoding 
algorithm offers an exact method. However, tight 
timing constraints often make it infeasible to wait for 
the exact solution, and therefore heuristic algorithms 
are often used. Many heuristic algorithms employ 
matrix inversion, and therefore, matrix inversion is an 
essential computation for MIMO systems. 

The inverse of a square matrix A is shown as A-1such 
that A × A-1 = I, where I is the identity matrix. Explicit 
matrix inversion of a full matrix is a computationally 
intensive method. If the inversion is encountered, one 
should consider converting this problem into an easy 
decomposition problem which will result in analytic 
simplicity and computational convenience. 
2.1. QR Decomposition Based Matrix Inversion 

QR decomposition is an elementary operation, 
which decomposes a matrix into an orthogonal and a 

triangular matrix. QR decomposition of a matrix A is 
shown as A = Q × R, where Q is an orthogonal matrix, 
QP × Q = Q × Q P  = P

T T = I, Q-1 QT, and R is an upper  
triangular matrix. The solution for the inversion of a 
matrix, A-1, using QR decomposition is A-1 = R-1 × QT .P

P

This solution consists of three different parts: QR 
decomposition, matrix inversion for the upper 
triangular matrix and matrix multiplication. QR 
decomposition is the dominant calculation where the 
next two parts are relatively simple due to the upper 
triangular structure of R. 

There are three different QR decomposition 
methods: Gram-Schmidt orthogonormalization 
(Classical or Modified), Givens Rotations (GR) and 
Householder reflections. Applying slight modifications 
to the Classical Gram-Schmidt (CGS) algorithm gives 
the Modified Gram-Schmidt (MGS) algorithm [7]. 
QRD-MGS is numerically more accurate and stable 
than QRD-CGS and it is numerically equivalent to the 
Givens Rotations solution [8] (the solution that has 
been the focus of previously published hardware 
implementations because of its stability and accuracy). 
Also, if the input matrix, A, is well-conditioned and 
non-singular, the resulting matrices, Q and R, satisfy 
their required matrix characteristics and QRD-MGS is 
accurate to floating-point machine precision [8]. 

2.2. LU Decomposition Based Matrix Inversion 

If A is a square matrix and its leading principal 
submatrices are all nonsingular, matrix A can be 
decomposed into unique lower triangular and upper 
triangular matrices. LU decomposition of a matrix A is 
shown as A = L × U, where L and U are the lower and 
upper triangular matrices respectively. The solution for 
the inversion of a matrix, A-1, using LU decomposition 
is A-1 = U-1 × L-1 . 

This solution consists of four different parts: LU 
decomposition of the given matrix, matrix inversion 
for the lower triangular matrix, matrix inversion of the 
upper triangular matrix and matrix multiplication. LU 
decomposition is the dominant calculation where the 
next three parts are relatively simple due to the 
triangular structure of the matrices. 
2.3 Cholesky Decomposition Based Matrix 
Inversion 

Cholesky decomposition is another elementary 
operation, which decomposes a symmetric positive 
definite matrix into a unique lower triangular matrix 
with positive diagonal entries. Cholesky decomposition 
of a matrix A is shown as A = G×GT, where G is a 
unique lower triangular matrix, Cholesky triangle, and 



   
         

 
   

 
  

  
   

  
 

 

 
 

 
  

 

  
 

  
 

 
  

 
  

  
 

  
 

 
 

  
 
 

 
 

  
 

 
 

  
  

 

 
 
 

  

 
 

  

 
 

   
 

 
   

 
 
 

  
  

  
   

 
  

 
 

   

 

 
   

GT is the transpose of this lower triangular matrix. The 
solution for the inversion of a matrix, A-1, using 
Cholesky decomposition is A-1 = (GT)-1 × G-1 . 

This solution consists of four different parts: 
Cholesky decomposition, matrix inversion for the 
transpose of the lower triangular matrix, matrix 
inversion of the lower triangular matrix and matrix 
multiplication. Cholesky decomposition is the 
dominant calculation where the next three parts are 
relatively simple due to the triangular structure of the 
matrices. 

3. Matrix Inversion Core Generator Tool 

As shown in the previous sections, there are 
different solution methods for matrix inversion which 
can be implemented in many different ways. The 
selection of these methods depends on the structure of 
the given matrices. The implementation choices are: 
matrix size (depends on the number of antennas used in 
system), resource allocation, number of functional 
units, the organization of controllers and interconnects 
(depends on the hardware constraints such that designs 
which offer the most time efficient or the most area 
efficient architecture), and bit widths of the data 
(depends on the precision required). 

GUSTO, “General architecture design Utility and 
Synthesis Tool for Optimization,” is a high level 
design tool, written in Matlab, that is the first of its 
kind to provide automatic generation of different 
matrix inversion architectures. GUSTO allows the user 
to select the matrix inversion method (QR, LU and/or 
Cholesky decompositions), the matrix dimension, the 
type and number of arithmetic resources and the data 
representation (the integer and fractional bit width) as 
shown in Figure 1.  

The created architecture by GUSTO works at the 
instruction-level where the instructions define the 
required calculations for the matrix inversion. For 
better performance results, instruction level parallelism 
is exploited. The dependencies between the 
instructions limit the amount of parallelism that exists 
within a group of computations. GUSTO generates a 
general purpose architecture and its datapath by using 
resource constrained list scheduling. In this 
architecture, controller units track the operands to 
determine whether they are available and perform 
register renaming which assigns a free arithmetic unit 
for the desired calculation. Register renaming is 

Fig. 1. Flow of GUSTO. 

provided by reservation station usage in every 
arithmetic unit where reservation stations fetch and 
buffer an operand as soon as the operand is ready. Our 
proposed design consists of two controller units and 
three arithmetic units. The arithmetic units are capable 
of computing decomposition, simple matrix inversion 
using back-substitution and matrix multiplication. The 
control units are instruction and timing and operand 
controller. The arithmetic units are adder/subtractor, 
multiplier/divider and square root units. The advantage 
of this architecture is that it is capable of solving any of 
the decomposition methods with a selection input. 

4. Results 

In this section, we first present the total number of 
operations used in different decomposition methods of 
GUSTO and determine different inflection points 
between these different methods; and compare our area 
and throughput results with previously published 
FPGA implementations. 

The total number of operations used in different 
decomposition methods is shown in Figure 2 in log 
domain. It is important to notice that there is an 
inflection point between LU and Cholesky 
decompositions at 4 × 4 matrices with a significant 
difference from QR decomposition. Furthermore, this 
inflection point is shifted to 5 × 5 matrices for matrix 
inversion implementations where LU and Cholesky 
have more significant differences in terms of total 
number of operations; besides the difference between 
QR and the other decomposition methods increases.  
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Fig. 2. Total number of operations in log domain for 
decomposition based matrix inversion (light) and decompositions 
only (dark). Note that the dark bars overlap the light bars.  

We present area results in terms of slices and 
performance results in terms of throughput. 
Throughput is calculated by dividing the maximum 
clock frequency (MHz) by the number of clock cycles 
to perform matrix inversion. A comparison between 
our results and previously published implementations 
for a 4 × 4 matrix is presented in Table 1.  For ease of 
comparison we present all of our implementations with 
bit width 20 as this is the largest bit width value used 
in the related works. Though it is difficult to make 
direct comparisons between our designs and those of 
the related works (because we used fixed point 
arithmetic instead of floating point arithmetic and fully 
used FPGA resources (like DSP48s) instead of LUTs), 
we observe that our results are comparable. The main 
advantage of our implementation is that it provides the 
designer the ability to study the tradeoffs between 
architectures with different design parameters. 

5. Conclusion 

This paper presents different decomposition based 
matrix inversion architectures using a matrix inversion 
core generator tool, GUSTO, that is developed for 
automatic generation of various matrix inversion 
architectures which targets reconfigurable hardware 
designs. GUSTO provides different parameterization 
options including matrix dimensions, bit width and 
resource allocations which enables us to study area and 
performance tradeoffs over a large number of different 
architectures. In this paper, we especially concentrate 
on QR, Cholesky and LU decomposition methods for 
matrix inversion in a general purpose architecture, to 
observe the advantages and disadvantages of these 
methods in response to varying parameters. 

TABLE I 

COMPARISONS BETWEEN OUR RESULTS AND PREVIOUSLY 


PUBLISHED PAPERS. NR DENOTES NOT REPORTED. 

Ref[9] Ref[10] Our 

Method QR QR QR, LU, Cholesky 
Bit width 12 20 20 

Data type fixed floating Fixed 
Device type Virtex 2 Virtex 4 Virtex 4 

Slices 4,400 9,117 11,644 
DSP48s NR 22 12 
BRAMs NR NR 1 

Throughput  
(106×s-1) 

0.28 0.12 0.23 0.32 0.30 
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