Characterization of six polymorphic microsatellites for the polychaete tubeworm *Hydroides elegans* and cross-species amplification in the congener *Hydroides hexagonus*

J. B. PETTENGILL,* M. G. HADFIELD,† M. D. SCHUG* and D. E. WENDT‡

*Department of Biology, The University of North Carolina, Greensboro, NC 27403, USA, †Kewalo Marine Laboratory, University of Hawaii, 41 Aluhi Street, Honolulu, HI 96813, USA, ‡Biological Sciences Department, Cal Poly State University, San Luis Obispo, CA 93407, USA

Abstract

We isolated and characterized six polymorphic microsatellite loci for the polychaete tube­worm, *Hydroides elegans*. Two additional loci were not reliably scorable and estimates of heterozygosity were obtained for the other six. In addition, cross-species amplification was successful for two loci using the congener *H. hexagonus*. Given that few microsatellite loci are available for polychaetes, these markers will be useful in assessing dispersal and gene flow in *H. elegans* and probably also other polychaetes.

Keywords: gene flow, larval dispersal, microsatellites, polychaete

Obtaining direct evidence of dispersal for marine invertebrates is often extremely difficult. For species with sessile adult stages, the free-swimming larval phase is probably a primary mechanism of migration between populations. The advent of genetic markers has increased the ability of population ecologists to indirectly assess larval dispersal between populations (e.g. Palumbi 1995) and the impact of anthropogenic-mediated dispersal (Gollasch 2002). Microsatellites are good markers for such studies as they have relatively high mutation rates (e.g. Dallas 1992) and are thought to be selectively neutral (Jarne & Lagoda 1996). We report here on the development of six polymorphic microsatellite loci for the serpulid polychaete tubeworm *Hydroides elegans*.

We performed a pooled extraction on 25 live animals to obtain a significant amount (606.8 ng/mL) of high quality (OD<sub>260/280</sub> 1.82) genomic DNA, which was quantified using spectrophotometry (biophotometer; Eppendorf). Several extraction ‘kits’ and a standard digestion buffer (100 mM Tris at pH 7.5–8.0, 100 mM EDTA at pH 8.0 and 0.5% sodium dodecyl sulphate) followed by a phenol/chloroform/isoamyl precipitation were attempted. Although these methods yielded sufficient high molecular weight DNA, the stability of the DNA decreased quickly during enzymatic reactions. A cetyltrimethyl ammonium bromide phenol/chloroform/isoamyl combination was used to more adequately remove polysaccharides and proteins, as described by Winnenpenninckx *et al*. (1993). A similar protocol for the polychaete *Pectinaria koreni* was utilized by Weinmayr *et al*. (2000).

The microsatellite library was generated following the methods of Dr Travis Glenn at the University of Georgia Savannah River Ecology Laboratory. Briefly, ∼500-bp fragments were created by digesting genomic DNA with the restriction enzyme *RsaI*. SNX linkers were then ligated onto the fragments, which ultimately allows for the enrichment of products through polymerase chain reaction (PCR). These fragments were probed with biotin-labelled oligonucleotide repeats (di-, tri- and tetranucleotide) and exposed to streptavidin Dynabeads® (Dynal Biotech). Streptavidin Dynabeads® bind to those fragments containing a sufficient number of hybridized biotin oligonucleotides, which are collected with a magnet. After enrichment through PCR, the products were cloned with a PCR Cloning<sub>Plus</sub> Kit (QIAGEN) according to the manufacturer’s protocol. Minipreps of positive colonies were performed using the Wizard<sup>®</sup> Plus SV Miniprep DNA Purification System (Promega) with centrifugation.
characteristics of six polymorphic microsatellite loci and two additional loci for *Hydroides elegans*.

To confirm which plasmids had inserts, we performed a 25-µL PCR reaction with 1.0 µL 100 pmol M13 forward and reverse primers. 1.0 µL plasmid DNA, 2.5 µL 10× buffer, 2.0 µL 25 mmol MgCl₂, 1 U *Taq* polymerase (Promega) and 17.375 µL ddH₂O (35 cycles at 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s).

Plasmids containing inserts were sequenced to determine the presence and identity of each microsatellite locus. The PCR reaction mixtures for sequencing were according to the manufacturer’s protocol (Epicentre® Sequitherm). The thermocycler conditions were 4.5 min at 95 °C, followed by 30 cycles of 30 s at 95 °C, 30 s at 53 °C and 1 min at 72 °C. Sequencing was conducted using a NEN® Global IR2 DNA Sequencer System (LiCor) with 41-cm 64-well 5.5% polyacrylamide gels created from the prescribed polyacrylamide solution. The analysis of sequencing gels was done using Gel Imaging® (LiCor) software.

The analysis of sequencing gels was done using GENE IMAGi (LiCor) software.

Details of the degree of polymorphisms and scorability are in Table 1. Estimates of observed and expected heterozygosity were conducted using the software program @Stat (Goudet 1995). Two of the microsatellite loci (*Hel 10* and *Hel 16*) for *H. elegans* were tried on the copener *H. hexagonus* and both successfully amplified. These loci will aid in answering questions of natural and anthropogenic dispersal and gene flow between adult populations of *H. elegans* and possibly other closely related polychaetes.

**Acknowledgements**

We would like to thank the following people for graciously collecting and sending samples: S. McCoy (The University of South Wales, Sydney, Australia); J. R. Levene (Mote Marine Laboratory, Sarasota, Florida, USA); C. Miles (St. Petersburg, Florida, USA); T. L. Moen (Norwegian University); Y. Cai, D. H. Lai and T. Min (Singapore National University, Singapore) and H-L Hsieh (Academia Sinica, Taipei, Taiwan). This work was supported in part by the Office of Naval Research (Grant no. N00014-02-1-0939).

**Table 1** Characteristics of six polymorphic microsatellite loci and two additional loci for *Hydroides elegans*

<table>
<thead>
<tr>
<th>Locus</th>
<th>Primers*</th>
<th>Core repeat sequence</th>
<th>Size of PCR product (bp)‡</th>
<th>No. of alleles†</th>
<th>HO</th>
<th>HE</th>
<th>GenBank Accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hel 3</td>
<td>F: 5'-TGGCAATATGGACGATG-3' R: 5'-GCTACTGCATTTGATAT-3'</td>
<td>(ATC)₁₁</td>
<td>256</td>
<td>15</td>
<td>0.763</td>
<td>0.723</td>
<td>ss 5607065</td>
</tr>
<tr>
<td>Hel 8</td>
<td>F: 5'-GACACGATGACGATGGA-3' R: 5'-GCTACTGCATTTGATAT-3'</td>
<td>(GAT)₆</td>
<td>200</td>
<td>19</td>
<td>0.781</td>
<td>0.707</td>
<td>ss 5607066</td>
</tr>
<tr>
<td>Hel 10</td>
<td>F: 5'-CCGCAATATGGACGATG-3' R: 5'-GCTACTGCATTTGATAT-3'</td>
<td>(CA)₅</td>
<td>135</td>
<td>11</td>
<td>0.625</td>
<td>0.620</td>
<td>ss 5607067</td>
</tr>
<tr>
<td>Hel 16</td>
<td>F: 5'-AGATGACGATGACGATGGA-3' R: 5'-GCTACTGCATTTGATAT-3'</td>
<td>(CA)₁₄</td>
<td>163</td>
<td>24</td>
<td>0.893</td>
<td>0.896</td>
<td>ss 5607068</td>
</tr>
<tr>
<td>Hel 4</td>
<td>F: 5'-GCAAACCAACGTTGATAT-3' R: 5'-GCTACTGCATTTGATAT-3'</td>
<td>(ATC)₅</td>
<td>204</td>
<td>3</td>
<td>0.465</td>
<td>0.493</td>
<td>ss 5607069</td>
</tr>
<tr>
<td>Hel 7</td>
<td>F: 5'-GACATGACGATGACGATGGA-3' R: 5'-GCTACTGCATTTGATAT-3'</td>
<td>(GACT)₆</td>
<td>246</td>
<td>9</td>
<td>0.741</td>
<td>0.668</td>
<td>ss 5607070</td>
</tr>
<tr>
<td>Hel 2</td>
<td>F: 5'-CCCCCGACACTTGATCA-3' R: 5'-GCTACTGCATTTGATAT-3'</td>
<td>(TG)₇</td>
<td>380</td>
<td>§</td>
<td>ss 5607071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hel 11</td>
<td>F: 5'-CACGACGATGACGATGGA-3' R: 5'-GCTACTGCATTTGATAT-3'</td>
<td>(GAT)₆</td>
<td>218</td>
<td>§</td>
<td>ss 5607072</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Minus the M13 forward sequence.
†No. of alleles from 137 individuals.
‡Size of cloned allele.
§Could not be reliably scored due to multiple stutter bands.

PCR, Polymerase chain reaction; HO, observed heterozygosity; HE, expected heterozygosity.
References


