
  

 

 

                                      
 

     
 

  

           
            

                   
 

  

 
 

 

 
 

  
 

  

   
 

  

 
  

 
 

  
 

 
  

   
  

 
 

  
 

 
     

 
 

 
 

  
 

  
  

   
   

  

 
  

  
   

  
   

   
   

 
 

 
 

   
 

 
  

  
 

  
  

  
   

 
  

  
   

   
   

   
 

   
 
 

   
 

 

  
 

Channel equalization based on data reuse LMS 

algorithm for shallow water acoustic communication 


Feng TONG  Bridget Benson  Ying Li2  Ryan Kastner

Abstract—In recent years, there has been increasing interest in 
the design of underwater acoustic modems for marine 
environmental monitoring, underwater structure inspection and 
sea bottom resource exploitation. As underwater acoustic 
channels pose difficulties such as multipath, time-space 
selectivity, frequency dependent noise, and Doppler shifts on 
transmission, research on adaptive equalizers play an important 
role in the design of underwater modems. This paper presents a 
data reuse least mean square (DR-LMS) algorithm to achieve 
equalization performance with low computational complexity to 
facilitate a practical hardware implementation. Experimental 
results obtained in physical shallow water channels demonstrate 
the effectiveness of the proposed method compared to classic 
LMS (Least mean square) and RLS (Recursive least square) 
algorithms. 

��   INTRODUCTION 

There has been an increasing interest in underwater 
communications for many marine applications such as 
environmental (pollution, coral reef, seismic, ocean current, 
etc.) monitoring, underwater structure inspection (oil platform, 
pipeline, undersea tunnel, etc.), oceanographic investigation, 
and sea bottom resource exploitation. However, due to the 
difficulties encountered in underwater acoustic (UWA) 
channels, digital communications through UWA channels are 
much more difficult than those in other media, such as the 
radio channel [1]. One of the main obstacles for reliable high 
speed UWA communications through severely band-limited 
UWA channels is intersymbol interference (ISI) [2-5]. While 
typical multipath spreads in the mobile radio channel are two 
or three symbol intervals, they increase to several tens of 
symbol intervals for moderate to high data rates in the 
shallow-water acoustic channel. Channel equalization 
provides an effective solution to overcome ISI. 

There is a great amount of literature on adaptive channel 
equalization algorithms (especially on the classic LMS and 
RLS algorithms), but there is a lack of literature on their 
adaptability to the UWA channel. The UWA time variant 
channel requires that the equalization algorithm provide fast 

convergence to ensure high tracking performance. However, 
the lack of suitable power resources in many UWA 
application scenarios requires the algorithm to have 
low-complexity to allow for a power efficient implementation. 
Some efforts have been made to derive adaptive algorithms 
that converge faster or are more efficient from a complexity 
point of view than the classical LMS algorithm as well as the 
RLS algorithm [6-9], but few efforts have addressed both fast 
convergence and low complexity for use in the underwater 
channel.  

In this paper, we present DR-LMS as a channel 
equalization algorithm capable of achieving both the 
algorithm performance and low computation complexity 
required for practical use in the underwater acoustic channel. 
DR-LMS is a fast-converging algorithm that avoids any 
division operation making it an attractive algorithm for an 
efficient hardware design. Though the DR LMS algorithm 
has been theoretically investigated in several papers [6-8], there 
are few works that reported its performance in an 
experimental setting.  Thus, we also report experimental 
results showing the algorithm’s performance on a real UWA 
communication link. 

Besides the DR-LMS algorithm, we also adopt DFE 
(Decision feedback equalizer) and FSE structures (fractionally 
space equalizer, FSE) to guarantee performance under hostile 
shallow water channels [1]. Finally, we compare DR-LMS with 
classic LMS and RLS will to verify its performance 
improvement.  

The rest of the paper is organized as follows: Section II 
presents the basis of the classic and DR LMS algorithms. 
Section III introduces the system design and sea experiment 
configuration. The Section IV provides the experimental 
results. We conclude in section V. 

�� BASIS OF DR-LMS 

Firstly, let us define the classic LMS algorithm. Its iteration 
formula of coefficients Wk updating is[9]: 



  

 

                

  
 

   
 

  
 

 
     

 
  

 

 
 

  
 

 

 
	  
  

                          

 
 

  
  

  

 
 

  
 

 
  

 
  

  
  

  
 
 
 

  

 
 
 
 
 
 
 
 
 

  
 

  
 

  

   
 

  
   

  
   

    
 

  
 
 
 
 
 
 
 
 
 

 
  

    
    

  
 

 
  

 
    

   

     
  

  

 
  

 

 

 

X k � [xk , xk �1,..., xk �L�1] k � 1, 2,... N (1) 
Te � d � X W  (2)k k k k 

W � W � 2� �e � X (3)
k �1 k k k 

Where u is a gain constant used to control the 
convergence rate, ek is the error of an adaptive system, N is the 
length of the input and reference signal, L is the length of the 
filter coefficients,  dk and xk are the reference signal and input 
signal respectively. The original tap weights, W0, are generally 
set to zero. 

The first data reuse adaptive algorithm was introduced by 
Shaffer and Williams [7] for the LMS algorithm and consists of 
reusing the same data N times. The data reuse LMS (DR-LMS) 
algorithm is then given by the following equations: 
Step 1: Initialization : i � 0 
ek � ek ,0 ,Wk ,0 � Wk , (4) 

Step2 :  :  i �Loop While N �1 
Te � d � X W  (5) k i, k  k k i, 

W � W � 2� � e � X , i � i �1k i, 1  ,  k i  k  (6) � k i  , 

Step3:Update 
W � W , k � k �1;  Goto  Step  1 (7) k �1 k N  , 

Obviously, N=1 reduces to the classic LMS update. It also can 
easily be obtained that the weight updating equation can be 
further rewritten as: 

T i (8)e � e [1 � �X X ] , i � 0,..., N �1k i, k n n 

� W � n e 1 1 2� TW X 
� � � X X �

N 

k �1 k T k n n �X X  � � (9)
n n 

Thus when N , the DR-LMS is actually a special case of 
the normalized LMS (NLMS) algorithm which is defined as
[6]: 

�X nWk �1 � Wk � T ek (10)  
X Xn n 

Where� is a normalized step size. Therefore, theoretically it 
can be concluded that the DR-LMS algorithm will converge at 
the rate between that of LMS and NLMS. Compared to 
NLMS, DR-LMS does not need any division calculation thus 
simplifying the algorithm design for a practical hardware 
implementation. 

�. SYSTEM AND EXPERIMENT DESIGN 

The coherent UWA communication link used to test the 
algorithm performance is shown in Fig. 1. The link consists 
of two computers (one acting as a bit resource while the other 
acting as a signal recorder), a DA and AD card used for data 
output and acquisition, power amplifier, preamplifier, and two 
transducers (one for transmitting and the other for receiving). 

The adaptive channel equalization algorithm described in 
the previous section was implemented in MATLAB and used 
for off-line processing of experimental data. In the DR-LMS 
algorithm implementation we used the small iteration numbers 
of N=2,3,4 to reduce the complexity of a practical hardware 
design. 

DA Power 
Amp. PC Transducer 

Transducer Pre 
Amp. ADPC 

Channel 

Fig .1 Bock chart of experimental UWA link 

The signal frame consisted of an LFM (Linear frequency 
modulation) chirp to acquire synchronization and detect the 
channel, a guard time and the modulated data. The carrier 
frequency was 16k Hz, with the sampling rate at 96ksps. The 
modulation format was QPSK, and the signals were 
transmitted at 6.4 kilobits per second. The bandwidth of 
transducer couple was 13-18k Hz. 

The experiment in the ocean was carried out at Wuyuan 
Bay, Xiamen, China. The depth of the experiment area is 
approximately 7m under the pier and 12 m offshore. The 
arrangement of the experiment is shown in Fig. 2. The 
transmit transducer was suspended from the pier at the depth 
of 5 m from the sea surface. Similarly, the receive transducer 
was suspended from a boat at the depth of 5 m from the sea 
surface. The distance between the transmitter and receiver was 
2km. 

Fig.2 Sea experiment configuration 

�. EXPERIMENTAL RESULTS AND DISCUSSION 

The input to the equalizer is the raw received signal, 
brought to baseband using the nominal carrier frequency, 
sampled at 2/T, and frame-synchronized using the LFM sync 
head. No phase synchronization or bit-timing adjustment is 
performed on the signal. The T/2 spaced DFE structure 
equalizer contained a 32-tap feedforward filter and a 16-tap 
feedback filter. 

For the purpose of comparison, classic LMS and RLS 
algorithm were also adopted to process the signal. With the 
forgotten factor of RLS algorithm set at 0.985. 

The channel response obtained with the LFM channel 
probe transmitted before the actual data is shown in Fig. 3. 

 



 

   
 

 
     

 
 

    
  

 
 

  
 

 
 
 

  
 

  
 

      
  

  
    

 
  

  
 

     
 

  
    

 
 
 

  
 

   
 

 
 

   
  

  
 

   
  

    
   

 

 

 

 
                        

 
                  

 
 

 
 

 
 

The channel probe can be used to determine roughly the 
extent as well as the pattern of the multipath. The channel 
response consists of the dominant component of arrivals 
whose delay spread is on the order of 15 symbol intervals. In 
addition, there is a distant cluster of weak arrivals, 
approximately 50 symbol intervals away. 

The raw received signal recorded during the sea 
experiment has an SNR (Signal noise ratio) of 14dB. Shown 
in Fig.4 (a)(b)(c)(d)(e) are the equalization results of the LMS, 
RLS and the DR-LMS algorithm with iteration number 
N=2,3,4 respectively. As seen by the output scatter plot, the 
performance of LMS and DR-LMS algorithms is of moderate 
quality compared to that of the RLS receiver (See Fig.4(b)). 
One may also observe that the classic LMS algorithm (See 
Fig.4(a)) as well as the DR-LMS with N=2 (See Fig.4(c)) still 
contain some residual phase deviation caused by channel, 
which is adjusted to some extent in the DR-LMS receiver with 
N=3 (See Fig.4(d))and N=4 (See Fig.4(e)). The performance 
comparison in the scatter plot output indicates that some 
performance improvement is achieved by DR-LMS algorithm 
with respect to the classic LMS. 

The mean square error (MSE) results of the different 
algorithms are shown in Fig.5. It needs to be noted that here 
the MSE curve of DR-LMS receiver with iteration number N 
is directly obtained from the error at the Nth iteration. As we 
can observe from Fig.5, RLS yields better MSE than LMS, 
but DR-LMS with higher iteration number yields better MSE 
than RLS. However, for the DR-LMS receiver, a better MSE 
curve at the Nth iteration does not necessarily mean better 
equalization performance as the calculation of the equalizer 
tap depends on overall data reuse error, not simply on that of 
the final iteration, as indicated by equation [9]. 

The relationship between performance and the iteration 
number is verified at the estimated bit error rate (BER) output 
as shown in Tab. 1. We find that the DR-LMS receiver with 
N=2 exhibits a superior BER result, 0.95%, to the BER of 
classic LMS (1.3%), and DR-LMS with N=3 corresponds to 
an even better BER (0.92%). But, further increasing the 
iteration number of DR-LMS does not result in further 
increasing the BER performance improvement, as the BER 
degrades from 0.92% to 1.15% when N increases from 3 to 4. 
Thus, there is an optimal N value for DR-LMS receiver in 
view of the performance improvement introduced by data 
reuse iterations. In the shallow water acoustic communication 
scenario discussed here, N=3 achieves the optimal result. 

If we use the number of multiplications per iteration to 
determine the complexity of each algorithm for a filter with 
the number of taps M, the RLS receiver corresponds to the 
best BER performance (0.4%) at the expense of a calculation 
burden increasing as the square of M [9]. On the other hand, 
the DR-LMS algorithm with N=3 only requires approximately 
2NM=6M multiplications to achieve only a slightly worse 
BER (0.92%). When considering M=32 for the feedforward 
filter and M=16 for the feedback filter, the difference of 
algorithm complexity is quite high in this underwater 
scenario. 

Fig.3 Channel impulse response 

(a)  LMS   (b)  RLS  

(c)  DR-LMS  N=2  (d)  DR-LMS  N=3  

(e) DR-LMS N=4
 
Fig.4 Scatter plot of equalization result
 

Fig.5 MSE curve of equalization result 

 



 

 
 

   

 
 
 

 
 

 
 

   
  
  

 
   

  
  

    
  
 

  
  

  
 

  
 

  
  

 
   

  
   

  
 

  
  

 
 

  
   

 

 
 

  

 
 

       

 
   

   

  
  

   
 

 
  

   
  

 
  

 
 

  

 
 

   
  

 
    

 

TABLE1. BER PERFORMANCE OF EQUALIZATION RESULT 

Equalization algorithm Bit error rate (%) 
LMS 1.3 
RLS 0.4 

DR-LMS,  N=2 0.95 
DR-LMS,  N=3 0.92 
DR-LMS,  N=4 1.15 

�� CONCLUSIONS 

In this paper, we have presented the theoretical foundation, 
system design and experimental result of the DR-LMS 
channel equalization technique to ensure reliable acoustic 
communications in a shallow water acoustic channel. In order 
to overcome the intersymbol interference caused by multipath 
propagation, the DR-LMS algorithm is incorporated with 
BSE-DFE structure to form an adaptive channel equalizer for 
the coherent acoustic communication link. The field test 
carried out in Wuyan Bay shows that the employment of 
DR-LMS can achieve some performance improvement against 
the classic LMS equalizer. 

Previous theoretical analysis of DR-LMS algorithm has 
indicated that it will need an infinite data reuse iteration to 
attain the performance of NLMS [6], making the algorithm less 
attractive for a practical implementation. However, the 
comparison result of our shallow water acoustic 
communication experiment show that a small iteration number 
is enough for DR-LMS to ensure some performance 
improvement over the classic LMS approach. Moreover, it is 
found that a higher iteration number will not always 
correspond to a better result, as the DR-LMS with N=3 
achieved the optimal BER output in our experiment. 
Furthermore, some enhancement in phase adjustment of 
DR-LMS algorithm can be noticed in our coherent acoustic 
communication data analysis. 

With the increasing interest in dense, short-range and lost 
cost underwater networks used for marine environmental and 
structural applications [10,11], attention must be paid to the 
design of simple, uncomplate, lost cost and energy-efficiency 
underwater acoustic modems. Thus, from a practical point of 
view, reliable and low-complexity algorithms such as 
DR-LMS have the potential of being developed and employed 
in this field. 
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