
©ACM, 2010 . This is the author’s version of the work. It is posted here by permission of

ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on

Embedded Computing Systems (TECS), {9,4, (March 2010)} http://dx.doi.org/ 10.1145/1721695.1721698

GUSTO: An Automatic Generation and Optimization Tool for Matrix

Inversion Architectures

Ali Irturk and Bridget Benson University of California, San Diego

Shahnam Mirzaei

University of California, Santa Barbara

Ryan Kastner

University of California, San Diego

Matrix inversion is a common function found in many algorithms used in wireless

communication systems. As FPGAs become an increasingly attractive platform for wireless

communication, it is important to understand the trade-offs in designing a matrix inversion

core on an FPGA. This article describes a matrix inversion core generator tool, GUSTO, that

we developed to ease the design space exploration across different matrix inversion

architectures. GUSTO is the first tool of its kind to provide automatic generation of a variety

of general-purpose matrix inversion architectures with different parameterization options.

GUSTO also provides an optimized application-specific architecture with an average of 59%

area decrease and 3X throughput increase over its general-purpose architecture. The optimized

architectures generated by GUSTO provide comparable results to published matrix inversion

architecture implementations, but offer the advantage of providing the designer the ability to

study the trade-offs between architectures with different design parameters.

1. INTRODUCTION

Matrix inversion algorithms lie at the heart of most scientific computational tasks. Matrix

inversion is frequently used to solve linear systems of equations in many fields such as

wireless communication. For example, in wireless communication, MIMO-OFDM systems

use matrix inversion in equalization algorithms to remove the effect of the channel on the

signal [Zhou et al. 2005; Abe et al. 2003a, 2003b], minimum mean square error algorithms

for precoding in spatial multiplexing [Kusume et al. 2005], and detection-estimation

algorithms in space-time coding [Hangjun et al. 2003]. These systems often use a small

http://dx.doi.org/10.1145/1721695.1721698�

number of antennas (2 to 8) which results in small matrices to be decomposed and/or

inverted. For example, the 802.11n standard [IEEE 802.11] specifies a maximum of 4

antennas on the transmit/receive sides and the 802.16 [IEEE 802.16] standard specifies a

maximum of 16 antennas at a base station and 2 antennas at a remote station.

The computational platform plays a significant role in the overall design and

implementation of wireless communication systems. A designer should determine an

implementation way between a wide range of hardware: Application-Specific Integrated

Circuits (ASICs) and software: Digital Signal Processors (DSPs). ASICs offer

exceptional performance results at the price of long timeto-market and high

NonRecurring Engineering (NRE) costs. On the other hand, DSPs ease the development

of these architectures and offer a short time-tomarket, however, they lack the

performance capacity for high throughput applications. Field Programmable Gate Arrays

(FPGAs) strike a balance between ASICs and DSPs, as they have the programmability of

software with performance capacity approaching that of a custom hardware

implementation and present designers with substantially more parallelism, allowing more

efficient application implementation.

FPGAs are an increasingly common platform for wireless communication [Meng et al.

2005; Iltis et al. 2006; Cagley et al. 2007]. FPGAs are a perfect platform for

computationally intensive arithmetic calculations like matrix inversion as they provide

powerful computational architectural features: vast amounts of programmable logic

elements, embedded multipliers, shift register LUTs (SRLs), Block RAMs (BRAMs), DSP

blocks, and Digital Clock Managers (DCMs). If used properly, these features enhance the

performance and throughput significantly. However, the highly programmable nature of the

FPGA can also be a curse. An FPGA offers vast amounts of customization which requires

the designer to make a huge number of system, architectural, and logic design choices. This

includes decisions on resource allocation, bit widths of the data, number of functional units,

and the organization of controllers and interconnects. These choices can overwhelm the

designer unless she is provided with design space exploration tools to help her prune the design

space.

For more efficient design space exploration and development, we designed an easy-to-use

tool, GUSTO (General architecture design Utility and Synthesis Tool for Optimization),

which allows us to select various parameters such as different matrix dimensions, integer

and fractional bits of the data, resource allocation, modes for general-purpose or

application-specific architectures, etc. [Irturk et al. 2008]. GUSTO provides two modes of

operation. In mode 1, it creates a general-purpose architecture and its datapath for given

inputs. In mode 2, it optimizes/customizes the general architecture to improve its area

results and design quality. Mode 2 performs this improvement by trimming/removing the

unused resources from the general-purpose architecture and creating a scheduled, static,

application-specific architecture while ensuring that correctness of the solution is

maintained. GUSTO also creates required HDL files which are ready to simulate,

synthesize, and map.

The main contributions of this article are:

(1) an easy-to-use matrix inversion core generator for design space exploration with

reconfigurable matrix dimensions, bit widths, resource allocation, modes, and methods

which can generate and/or optimize the design;

(2) a study of the area, timing, and throughput trade-offs using different design space decisions;

(3) determination of inflection points, in terms of matrix dimensions and bit widths,

between QR, LU, and Cholesky decomposition methods and an analytic method.

The rest of this article is organized as follows: Section 2 introduces MIMO systems, matrix

inversion, and four methods to solve matrix inversion: QR, LU, and Cholesky

decomposition methods and the analytic method. Section 3 explains the architectural

design of the core generator, GUSTO. Section 4 describes the error analysis GUSTO uses

to determine the accuracy offered by different bit widths. Section 5 introduces FPGA

resources, discusses design decisions and challenges, presents implementation results in

terms of area and performance, and compares our results with other published FPGA

implementations. We conclude in Section 6.

2. MATRIX INVERSION AND ITS METHODS

Explicit matrix inversion of a full matrix is a computationally intensive method. If the

inversion is encountered, one should consider converting this problem into an easy

decomposition problem which will result in analytic simplicity and computational

convenience. Next we describe three known decomposition methods to perform matrix

inversion: QR, LU, and Cholesky decomposition methods [Golub and Loan 1996]. For

square matrices, n denotes the size of the matrix such that n = 4 for 4 x 4 matrices. For

rectangular matrices, m and n denote the number of rows and columns in the matrix,

respectively, such that m = 3, n = 4 for 3 x 4 matrices.

 [Insert Figure 1]

QR. Given A Rmxn with rank(A) = n, QR factorization exists as A = Q x R where Q R mxn has

orthonormal columns and R Rnxn is upper triangular. LU. Given A Rnxn with det(A(1 : k, 1 : k))

=A 0 for k = 1 : n − 1, LU decomposition exists as A = L x U. If LU decomposition exists and the

given matrix, A, is nonsingular, then the decomposition is unique and det(A) = u11 ... unn.

Cholesky. Given asymmetric positive definite matrix, A Rmxn, Cholesky decomposition exists as

A = G x GT where G R mxn is a unique lower triangular matrix with positive diagonal entries.

A matrix A E Rnxn is positive definite if xTAx > 0 for x E Rn and x =A 0 and if it is symmetric

positive definite matrix then AT = A. A positive definite matrix is always nonsingular and its

determinant is always positive.

Decomposition methods are generally viewed as the preferred methods for matrix inversion

because they scale well for large matrix dimensions while the complexity of the analytic

method increases dramatically as the matrix dimensions grow. However, for small

matrices, the analytic method, which can exploit a significant amount of parallelism,

outperforms the decomposition methods. Also note that Cholesky and LU decompositions

work only with positive definite and nonsingular diagonally dominant square matrices,

respectively. QR decomposition, on the other hand, is more general and can be applied to

any matrix. We further explain these different matrix inversion methods, their character-

istics and algorithms, the resulting matrices, and the solution steps for matrix inversion in

the next subsections.

 [Insert Figure 2]

2.1 Matrix Inversion of Triangular Matrices

Triangular matrix inversion is used in all of the decomposition-based (QR, LU, and

Cholesky) matrix inversion architectures described before and we use this subsection to

describe why this inversion is relatively simple and therefore not a dominant calculation in

any of these methods. Primarily, triangular matrix inversion requires fewer calculations

compared to full matrix inversion because of its zero entries. The algorithm for triangular

matrix inversion is shown in Figure 1 and described next.

Upper triangular matrix inversion is performed column by column. Calculating the diagonal

entries of the R−1 matrix consists of simply dividing 1 by the diagonal entry of the R matrix (3)

and the rest of the column entries introduce multiplication and addition iteratively (1) which is

then divided by the diagonal R matrix entry (2).

2.2 QR Decomposition-Based Matrix Inversion

QR decomposition is an elementary operation which decomposes a matrix into an

orthogonal and a triangular matrix. QR decomposition of a matrix A is shown as A = Q x R,

where Q is an orthogonal matrix, QT x Q = Q x QT = I, Q−1 = QT, and R is an upper

triangular matrix (Figure 2(b)). The solution for the inversion of matrix A, A−1, using QR

decomposition is shown as follows.

A−1 = R−1 x QT (1)

This solution consists of three different parts: QR decomposition, matrix inversion for the

upper triangular matrix, and matrix multiplication (Figure 2(c)). QR decomposition is the

dominant calculation where the next two parts are relatively simple due to the upper

triangular structure of R (as described earlier in Section 2.1).

There are three different QR decomposition methods: Gram-Schmidt orthogonormalization

(classical or modified), Givens Rotations (GR), and householder reflections. Applying slight

modifications to the Classical Gram-Schmidt (CGS) algorithm gives the Modified Gram-

Schmidt (MGS) algorithm [Golub and Loan 1996].

QRD-MGS is numerically more accurate and stable than QRD-CGS and it is numerically

equivalent to the Givens Rotations solution [Bj˝orck et al. 1992, 1994; Singh et al. 2007]

(the solution that has been the focus of previously published hardware implementations

because of its stability and accuracy). Also, if the input matrix, A, is well-conditioned and

nonsingular, the resulting matrices, Q and R, satisfy their required matrix characteristics and

QRD-MGS is accurate to floating-point machine precision [Singh et al. 2007]. We therefore

present the QRD-MGS algorithm in Figure 2(a) and describe it next.

 [Insert Figure 3]

A, Q, R, and X are the input, orthogonal, upper triangular, and intermediate matrices,

respectively. The intermediate matrix is the updated input matrix throughout the solution

steps. Matrices with only one index as Ai or Xj represent the columns of the matrix and

matrices with two indices like Rij represent the entry at the intersection of ith row with jth

column of the matrix where 1 < i, j < n.

In Figure 2(a) we show that we start every decomposition by transferring the input, 4 x 4,

matrix columns, Ai, into the memory elements (2). Diagonal entries of the R matrix are the

Euclidean norm of the intermediate matrix columns which is shown as (4). The Q matrix

columns are calculated by the division of the intermediate matrix columns by the Euclidean

norm of the intermediate matrix column, which is the diagonal element of R (5).

Nondiagonal entries of the R matrix are computed by projecting the Q matrix columns onto

the intermediate matrix columns one by one (7) such that after the solution of Q2, it is

projected onto X3 and X4 to compute R23
 and

 R24. Lastly, the intermediate matrix columns are

updated by (8).

2.3 LU Decomposition-Based Matrix Inversion

IfA is a square matrix and its leading principal submatrices are all nonsingular, matrix A

can be decomposed into unique lower triangular and upper triangular matrices. The LU

decomposition of a matrix A is shown as A = L x U, where L and U are the lower and upper

triangular matrices, respectively (Figure 3(b)).

 [Insert Figure 4]

The solution for the inversion of a matrix A, A−1, using LU decomposition is shown as follows.

A−1 = U−1 x L−1 (2)

This solution consists of four different parts: LU decomposition of the given matrix,

matrix inversion for the lower triangular matrix, matrix inversion of the upper triangular

matrix, and matrix multiplication (Figure 3(c)). LU decomposition is the dominant

calculation where the next three parts are relatively simple due to the triangular structure

of the matrices L and U.

The LU algorithm is shown in Figure 3(a). It writes lower and upper triangular matrices

onto the A matrix entries. Then it updates the values of the A matrix column by column

((4) and (7)). The final values are computed by the division of each column entry by the

diagonal entry of that column (9).

2.4 Cholesky Decomposition-Based Matrix Inversion

Cholesky decomposition is another elementary operation which decomposes a symmetric

positive definite matrix into a unique lower triangular matrix with positive diagonal entries.

Cholesky decomposition of a matrixA is shown as A = G x GT, where G is a unique lower

triangular matrix, Cholesky triangle, and GT is the transpose of this lower triangular matrix

(Figure 4(b)). The solution for the inversion of a matrix, A−1, using Cholesky

decomposition is shown as follows.

A−1 = (GT)−1 x G−1 (3)

This solution consists of four different parts: Cholesky decomposition, matrix inversion for the

transpose of the lower triangular matrix, matrix inversion of the lower triangular matrix, and

matrix multiplication (Figure 4(c)). Cholesky decomposition is the dominant calculation where

the next three parts are relatively simple due to the triangular structure of the matrices G and GT.

Figure 4(a) shows the Cholesky decomposition algorithm. We start decomposition by

transferring the input matrix, A, into the memory elements. The diagonal entries of lower

triangular matrix, G, are the square root of the diagonal entries of the given matrix (2). We

calculate the entries below the diagonal entries by dividing the corresponding element of

the given matrix by the belonging column diagonal element (4). The algorithm works

column by column and after the computation of the first column of the diagonal matrix

with the given matrix entries, the elements in the next columns are updated (7). For

example, after the computation of G11 by (2), G21, G31, G41 by (4), second column: A22,

A32, A42, third column: A33, A43, and fourth column: A44 are updated by (7).

2.5 Matrix Inversion Using the Analytic Method

Another method for inverting an input matrix A, is the analytic method which uses the

adjoint matrix, Adj(A), and determinant, det A. This calculation is given by

A−1~ 1

det A x Adj(A). (4)

The adjoint matrix is the transpose of the cofactor matrix where the cofactor matrix is

formed by using determinants of the input matrix with signs depending on its position. It is

formed in three stages. First, we find the transpose of the input matrix, A, by interchanging

the rows with the columns. Next, the matrix of minors is formed by covering up the

elements in its row and column and finding the determinant of the remaining matrix.

Finally, the cofactor of any element is found by placing a sign in front of the matrix of

minors by calculating (−1)(i+j). These calculations are shown in Figure 5(a) for the first

entry in the cofactor matrix, C11.

The calculation of the first entry in the cofactor matrix C11 is also presented in Figure 5(b)

using a cofactor calculation core. This core is run 16 times for a 4 x 4 matrix to form the 4 x

4 cofactor matrix which has 16 entries. The adjoint matrix is the transpose of the cofactor

matrix and formed using register renaming. After the calculation of the adjoint matrix, the

determinant is calculated using a row or a column which is shown in (c) using the

determinant calculation core. The last stage is the division between the adjoint matrix and the

determinant which gives the inverted matrix.

For the analytic method, we present three different designs, Implementation A, B, and C,

with varying levels of parallelism (using cofactor calculation cores in parallel) to form

cofactor matrices. Implementation A uses one cofactor calculation core, implementation B

uses two cofactor calculation cores, and implementation C uses 4 cofactor calculation cores.

In the next section, we present our core generator GUSTO which is an infrastructure for fast

prototyping the matrix inversion architectures using different methods.

 [Insert Figure 5]

3. MATRIX INVERSION CORE GENERATOR TOOL

There are several different architectural design alternatives for these solution methods of

matrix inversion. Thus, it is important to study trade-offs between these alternatives and

find the most suitable solution for desired results such as the most time efficient or most

area efficient design. Performing design space exploration is a time-consuming process

where there is an increasing demand for higher productivity. High-level design tools offer

great convenience by easing this burden and giving us the opportunity to test different

alternatives in a reasonable amount of time. Therefore, designing a high-level tool for fast

prototyping is essential.

GUSTO (General architecture design Utility and Synthesis Tool for Optimization) is such

a high-level design tool, written in Matlab, that is the first of its kind to provide design

space exploration across different matrix inversion architectures. As shown in Figure 6,

GUSTO allows the user to select the matrix inversion method (QR, LU, Cholesky

decompositions, or analytic), the matrix dimension, the type and number of arithmetic

resources, the data representation (the integer and fractional bit width), and the mode of

operation (mode 1 or mode 2).

Mode 1 of GUSTO generates a general-purpose architecture and its datapath by using resource-

constrained list scheduling after the required inputs are given. The general-purpose architecture

is used for area and timing analysis for a general nonoptimized solution. The advantage of

generating a general-purpose architecture is that it can be used to explore other algorithms, so

long as these algorithms require the same resource library. However, mode 1’s general-purpose

architectures generally do not lead to high-performance results. Therefore

optimizing/customizing these architectures to improve their area results is another essential step

to enhance design quality.

 [Insert Figure 6]

GUSTO creates a CPU-like architecture which can be seen in Figure 7. The created

architecture works at the instruction level where the instructions define the required

calculations for the matrix inversion. For better performance results, instruction-level

parallelism is exploited. The dependencies between the instructions limit the amount of

parallelism that exists within a group of computations. Our proposed design consists of

controller units and arithmetic units. The arithmetic units are capable of computing

decomposition, simple matrix inversion using back-substitution, and matrix

multiplication by employing adders, subtractors, multipliers, dividers, and square root

units that are needed. In this architecture, controller units track the operands to determine

whether they are available and assign a free arithmetic unit for the desired calculation.

Every arithmetic unit fetches and buffers an operand as soon as the operand is ready.

In mode 2, GUSTO performs this improvement by trimming/removing the unused

resources from the general-purpose architecture and creating a scheduled, static,

application-specific architecture while ensuring that correctness of the solution is

maintained. GUSTO simulates the architecture to define the usage of arithmetic units,

multiplexers, register entries, and input/output ports and trims away the unused

components with their interconnects.

A trimming example is shown in Figure 8. Suppose there are 2 arithmetic units with 2

inputs/1 output each and one memory with 1 input/2 outputs (Figure 8(a)). Input/output

port relationships between arithmetic unit A and the other units are shown in a block

diagram in (Figure 8(b)). Although Out A, Out B, Out mem1, and Out mem2 are all inputs

to In A1 and In A2, but not all the inputs may be used during computation. We can

represent whether an input/output port is used or not during simulation in a matrix such

as the one shown in (Figure 8(c)). As the simulation runs, the matrix is filled with 1s and

0s representing the used and unused ports, respectively. GUSTO uses these matrices to

remove the unused resources (Figure 8(d)). In this example, two inputs, Out A, Out mem1

to In A1 and another two inputs, Out B, Out mem2 to In A2 are removed.

 [Insert Figure 7 &8]

4. FIXED-POINT ARITHMETIC AND ERROR ANALYSIS USING GUSTO

There are two different types of approximations for real numbers: fixed-point and

floating-point arithmetic systems. Floating-point arithmetic represents a large range of

numbers with some constant relative accuracy. Fixed-point arithmetic represents a reduced

range of numbers with a constant absolute accuracy. Usage of floating-point arithmetic is

expensive in terms of hardware and leads to inefficient designs, especially for FPGA

implementation. On the other hand, fixed-point arithmetic results in efficient hardware

designs with the possibility of introducing calculation error.

We use two’s complement fixed-point arithmetic in our implementations as it results in

faster and smaller functional units. The data lines used in our implementations for fixed-

point arithmetic consist of an integer part, a fractional part, and a sign bit. Fixed-point

arithmetic reduces accuracy and consequently introduces two types of errors: round-off

and truncation errors. Round-off error occurs when the result requires more bits than the

reserved bit width after a computation. Truncation error occurs due to the limited number

of bits to represent numbers. These issues must be handled carefully to prevent incorrect

or low-accuracy results. Thus, error analysis is a crucial step to determine how many bits

are required to satisfy accuracy requirements.

GUSTO performs error analysis after the instruction generation step (shown in Figure 6) to

find an appropriate fixed-point representation which provides results with accuracy similar

to that of a floating-point implementation. GUSTO takes the sample input data which is

generated by the user. The matrix inversion is performed using single or double precision

floating-point arithmetic and these are referred as the actual results. The same calculations

are performed using different bit widths of fixed-point representations to determine the

error, the difference between the actual and the computed result. GUSTO provides four

different metrics to the user to determine if the accuracy is enough for the application:

mean error, standard deviation of error, peak error, and mean percentage error, as shown in

Figure 9.

The first metric, mean error, is computed by finding the error for all matrix entries and then

dividing the sum of these errors by the total number of entries. This calculation can be seen as

where y, ˆy, and m are the actual results, the computed results, and the number of entries

which are used in the decomposition (16 for a 4 × 4 matrix), respectively. Mean error is

an important metric for error analysis, however, it

[Insert Figure 9]

does not include the information about outlier errors. This is the case where a small

number of entries have very high error but the majority of entries have very small error.

To calculate the dispersion from the mean error, the standard deviation of error and the

peak error are introduced in our tool. Mean error sometimes leads to misleading

conclusions if the range of the input data is small. Therefore the third metric, mean

percentage error, makes more sense if the relative error is considered. This metric is

defined as

As an example, we perform an error analysis for QR decomposition-based matrix

inversion. We generate uniformly distributed pseudorandom numbers, [0, 1], for a 4 × 4

matrix. The mean error results provided by GUSTO are shown in Figure 10 in log domain

where mean error decreases with the increase in the number of bits used as bit width.

Therefore, the user can determine how many bits are required for the desired accuracy. It

is important to note that the tool also provides standard deviation of error, peak error, and

mean percentage error.

5. RESULTS

In this section, we present different design space exploration examples using different

inputs of GUSTO and compare our results with previously published FPGA

implementations. Design space exploration can be divided into two parts: inflection point

analysis and architectural design alternatives analysis.

Inflection Point Analysis. In this subsection, we first compare QR decomposition and analytic

method because they are both applicable to any matrix. Then, we compare different

decomposition methods (QR, LU, and Cholesky) to benefit from different matrix characteristics.

 [Insert Figures 10 & 11]

 Comparison of QR Decomposition-Based Matrix Inversion and Analytic Method. The

total number of operations used in these methods is shown in Figure 11 in log domain. It is

important to notice that the total number of operations increases by an order of magnitude

for each increase in matrix dimension for the analytic method, making the analytic solution

unreasonable for large matrix dimensions. Since the analytic approach does not scale well,

there will be an inflection point where the QR decomposition approach will provide better

results. At what matrix size does this inflection point occur and how does varying bit width

and degree of parallelism change the inflection point? The comparisons for sequential and

parallel executions of QR and analytic methods are shown in Figures 12 and 13 with

different bit widths: 16, 32, and 64. We used implementation A for the parallel

implementation of the analytic method. Solid and dashed lines represent the QR

decomposition method and analytic method results, respectively. The balloons denote the

inflection points between the two methods for the different bit widths.

 [Insert Figures 12 & 13]

The sequential execution results (Figure 12) show that the analytic method offers a

practical solution for matrix dimensions < 4 x 4. It also gives the same performance as the

QR decomposition method for 5 x 5 matrices using 64 bits. The analytic method result

increases dramatically for 6 x 6 matrices (not shown) where it needs 12,251 clock cycles

(for 16 bits) as opposed to 1,880 clock cycles for QR decomposition, suggesting the

analytic method is unsuitable for matrix dimensions >6 x 6.

The parallel execution results are shown in Figure 13. The analytic method offers a practical

solution for matrix dimensions <4 x 4 and it is preferred for 5 x 5 matrix dimension for 32 and

64 bits. The increase in the clock cycle is again dramatic for matrix dimensions >6 x 6 for the

analytic method. This requires to use the QR decomposition method for these larger matrix

dimensions.

 [Insert Figure 14]

Comparison of Different Decomposition Methods. The total number of operations used in

different decomposition-based matrix inversion architectures is shown in Figure 14 in log

domain. It is important to notice that there is an inflection point between LU and Cholesky

decompositions at 4 x 4 matrices with a significant difference from QR decomposition. The

comparisons for sequential and parallel executions of QR, LU, and Cholesky,

decomposition-based matrix inversion architectures are shown in Figures 15 and 16,

respectively, with different bit widths: 16, 32, and 64. Square, spade, and triangle represent

QR, LU, and Cholesky, methods, respectively. Solid, dashed, and smaller dashed lines

represent 64, 32, and 16 bits of bit widths, respectively. The balloons denote the inflection

points between these methods for the different bit widths where an inflection point occurs.

The sequential execution results of decomposition-based matrix inversion architectures

(Figure 15) show that QR takes more clock cycles than Cholesky and LU, where Cholesky

takes more cycles than LU. As the bit widths get smaller, the difference between QR and the

others doesn’t change significantly, however, it becomes smaller between Cholesky and LU

decomposition-based inversions. There is an inflection point between LU and Cholesky

decompositions at 7 x 7 matrices for 16 bits. The parallel execution results of decomposition-

based matrix inversion (Figure 16) show that QR decomposition-based matrix inversion

architectures have the highest number of clock cycles for all bit widths. Cholesky and LU

decomposition-based matrix inversion architectures have a similar number of clock cycles

for small bit widths. However, LU decomposition uses increasingly fewer clock cycles than

Cholesky decomposition with increasing bit widths and matrix dimensions. LU

decomposition with 32 bits performs almost the same as QR decomposition with 16 bits.

Also, 64-bits LU decomposition performs almost the same as 32-bits QR decomposition in

terms of total number of clock cycles.

 [Insert Figures 15 &16]

Architectural Design Alternatives. These analyses are shown for QR, LU, and Cholesky,

decomposition-based matrix inversion architectures for 4 × 4 matrices. We present area

results in terms of slices and performance results in terms of throughput. Throughput is

calculated by dividing the maximum clock frequency (MHz) by the number of clock cycles

to perform matrix inversion. All designs are written in Verilog and synthesized using

Xilinx ISE 9.2. Resource utilization and design frequency are post place-and-route values

obtained using a Virtex 4 SX35 FPGA.

 [Insert Figure 17]

All functional units are implemented using the Xilinx Coregen toolset. The addition and

subtraction units are implemented with SLICES, the multiplications use XtremeDSP

blocks, the divider core uses a circuit for fixed-point division based on radix-2

nonrestoring division, and the square root unit uses a CORDIC core. We use Block RAMs

available on Xilinx FPGAs as memory storage space for instructions. The Block RAM

modules provide flexible 18Kbit dual-port RAM, that are cascadable to form larger

memory blocks. Embedded XtremeDSP SLICES with 18 × 18 bit dedicated multipliers and

a 48-bit accumulator provide flexible resources to implement multipliers to achieve high

performance. Furthermore, the Xilinx Coregen tool set implements these cores very

efficiently since it uses special mapping and place-and-route algorithms allowing for high-

performance design.

We present both mode 1 (nonoptimized) and mode 2 (optimized) results in Figure 17 to

show the improvement in our results with the optimization feature, and present only mode

2 results in Figures 18 and 19.

We investigate different resource allocations for QR decomposition-based matrix inversion

architectures using both modes of GUSTO and present the results in Figure 17. As

expected from mode 1, Figure 17 shows an increase in area and throughput as the number

of resources increase up to the optimal number of resources. Adding more than the optimal

number of resources decreases throughput while still increasing area. However, mode 2 of

GUSTO finds the optimal number of resources, which maximizes the throughput while

minimizing area (shown in Figure 17). Mode 2’s optimized application-specific

architecture can therefore provide an average 59% decrease in area and 3X increase in

throughput over mode 1’s general-purpose (nonoptimized) design.

Bit width of the data is another important input for the matrix inversion. The precision of

the results is directly dependent on the number of bits used. The usage of a high number of

bits results in high precision at a cost of higher area and lower throughput. We present 3

different bit widths, 19, 26, and 32 bits, in Figure 18 for these three different

decomposition-based matrix inversion architectures. Usage of LU decomposition for matrix

inversion results in the smallest area and highest throughput compared to the other

methods. Cholesky decomposition offers higher throughput at a cost of larger area

compared to QR decomposition.

 [Insert Figures 18 &19]

We also present three different matrix dimensions, 4x4, 6x6, and 8x8, with

implementation results in Figure 19 showing how the area and performance results scale

with matrix dimension. We again observe that LU decomposition-based matrix inversion

architectures offer better area and throughput results compared to other methods.

Comparison. A comparison between our results and previously published implementations for a

4 x 4 matrix is presented in Tables I and II. For ease of comparison we present all of our

implementations with bit width 20, as this is

[Insert Tables I &II]

the largest bit width value used in the related works. Though it is difficult to make direct

comparisons between our designs and those of the related works (because we used fixed-

point arithmetic instead of floating-point arithmetic and fully used FPGA resources (like

DSP48s) instead of LUTs), we observe that our results are comparable. The main

advantages of our implementation are that it provides the designer the ability to study

the trade-offs between architectures with different design parameters and provides a

means to find an optimal design.

6. CONCLUSION

This article describes a matrix inversion core generator tool, GUSTO, that we developed to

enable easy design space exploration for various matrix inversion architectures which targets

reconfigurable hardware designs. GUSTO provides different parameterization options, including

matrix dimensions, bit widths, and resource allocations, which enables us to study area and

performance tradeoffs over a large number of different architectures. We present QR, LU, and

Cholesky decomposition methods and an analytic method for matrix inversion, to observe the

advantages and disadvantages of all of these methods in response to varying parameters.

GUSTO is the only tool that allows design space exploration across different matrix inversion

architectures. Its ability to provide design space exploration, which leads to an optimized

architecture, makes GUSTO an extremely useful tool for applications requiring matrix inversion

(i.e., MIMO systems).

REFERENCES

ABE, T., TOMISATO, S., AND MATSUMOTO, T. 2003a. A MIMO turbo equalizer for

frequency-selective channels with unknown interference. IEEE Trans. Vehicular Technol. 52, 3,

476–482.

ABE, T. AND MATSUMOTO, T. 2003b. Space-Time turbo equalization in frequency selective

MIMO channels. IEEE Trans. Vehicular Technol. 469–475.

BJ˝ORCK, A. AND PAIGE, C. 1992. Loss and recapture of orthogonality in the modified Gram-

Schmidt algorithm. SIAM J. Matrix Anal. Appl. 13, 1, 176–190.

BJ˝ORCK, A. 1994. Numerics of Gram-Schmidt orthogonalization. Linear Algebra Appl. 198,

297– 316.

CAGLEY, R. E., WEALS, B. T., MCNALLY, S. A., ILTIS, R. A., MIRZAEI, S., AND

KASTNER, R. 2007. Implementation of the Alamouti OSTBC to a distributed set of single-

antenna wireless nodes. In Proceedings of the IEEE Wireless Communications and Networking

Conference. IEEE. 577–581.

EDMAN, F. AND ¨OWALL, V. 2005. A scalable pipelined complex valued matrix inversion

architecture. In Proceedings of the IEEE International Symposium on Circuits and Systems.

4489–4492.

EILERT, J., WU, D., AND LIU, D. 2007. Efficient complex matrix inversion for MIMO software

defined radio. In Proceedings of the IEEE International Symposium on Circuits and Systems.

2610–2613.

GOLUB, G. H. AND LOAN, C. F. V. 1996. Matrix Computations 3rd Ed. John Hopkins

University Press, Baltimore, MD.

HANGJUN, C., XINMIN, D., AND HAIMOVICH, A. 2003. Layered turbo space-time coded

MIMO-OFDM systems for time varying channels. In Proceedings of the IEEE Global

Telecommunications Conference, 4, 1831–1836.

IEEE 802.11. LAN/MAN wireless LANS. IEEE Standards Association. http://standards.ieee.org/

getieee802/802.11.html

IEEE 802.16. LAN/MAN broadband wireless LANS. IEEE Standards Association.

http://standards. ieee.org/getieee802/802.16.html

ILTIS, R. A., MIRZAEI, S., KASTNER, R., CAGLEY, R. E., AND WEALS, B. T. 2006.

Carrier offset and channel estimation for cooperative MIMO sensor networks. In Proceedings of

the IEEE Global Telecommunications Conference. 1–5.

IRTURK, A., BENSON, B., MIRZAEI, S., AND KASTNER, R. 2008. An FPGA design space

exploration tool for matrix inversion architectures. In Proceedings of the IEEE Symposium on

Application Specific Processors (SASP).

KARKOOTI, M., CAVALLARO, J. R., AND DICK, C. 2005. FPGA implementation of matrix

inversion using QRD-RLS algorithm. In Proceedings of the Conference Record of the 39th

Asilomar Conference on Signals, Systems and Computers. 1625–1629.

KUSUME, K., JOHAM, M., UTSCHICK, W., AND BAUCH, G. 2005. Efficient Tomlinson-

Harashima pre-coding for spatial multiplexing on flat MIMO channel. In Proceedings of the

IEEE International Conference on Communications, vol. 3. 2021–2025.

MENG, Y., BROWN, A. P., ILTIS, R. A., SHERWOOD, T., LEE, H., AND KASTNER, R.

2005. MP core: Algorithm and design techniques for efficient channel estimation in wireless

applications. In Proceedings of the 42nd Design Automation Conference. 297–302.

SINGH, C. K., PRASAD, S. H., AND BALSARA, P. T. 2007. VLSI architecture for matrix

inversion using modified Gram-Schmidt based QR decomposition. In Proceedings of the 20th

International Conference on VLSI Design. 836–841.

ZHOU, L., QIU, L., AND ZHU, J. 2005. A novel adaptive equalization algorithm for MIMO

communication system. In Proceedings of the Vehicular Technology Conference. 2408–2412.

©ACM, 2010 . This is the author’s version of the work. It is posted here by permission of

ACM for your personal use. Not for redistribution. The definitive version was published in

ACM Transactions on Embedded Computing Systems (TECS), {9,4, (March 2010)}

http://dx.doi.org/ 10.1145/1721695.1721698

http://standards.ieee.org/getieee802/802.16.html�
http://dx.doi.org/10.1145/1721695.1721698�

Fig. 1. Matrix inversion of upper triangular matrices.

Fig. 2. QR decomposition Modified Gram Schmidt (QR-MGS) algorithm is presented in (a). The resulting matrices of the

decomposition are shown in (b). The solution steps of the matrix inversion are presented in (c).

Fig. 3. LU decomposition algorithm is presented in (a). The resulting matrices of the decomposition are shown in (b). The

solution steps of the matrix inversion are presented in (c).

Fig. 4. Cholesky decomposition algorithm is presented in (a). The resulting matrices of the decomposition are shown in (b). The

solution steps of the matrix inversion are presented in (c).

Fig. 5. Matrix Inversion with analytic approach. The first element of cofactor matrix, C11, and determinant calculation for a 4 × 4

matrix is shown in (a), (b) and (c) respectively.

 Fig. 6. Different modes of GUSTO.

Fig. 7. General-purpose architecture and its datapath.

Fig. 8. Flow of GUSTO’s trimming feature.

Fig. 9. Performing error analysis using GUSTO.

Fig. 10. An error analysis example, mean error, provided by GUSTO for QR decomposition-based 4 × 4 matrix inversion. The

user can select the required number of bit widths for the application where the increasing number of bits results in high accuracy.

Fig. 11. The total number of operations for both the QR decomposition and the analytic method in log domain.

Fig. 12. The inflection point determination between the QR decomposition and the analytic method using sequential execution.

Fig. 13. The inflection point determination between QR decomposition and analytic method using parallel execution.

Fig. 14. The total number of operations for different decomposition-based matrix inversion methods in log

Fig. 15. The comparison between different decomposition-based matrix inversion methods using sequential execution.

Fig. 16. The comparison between different decomposition-based matrix inversion methods using parallel execution.

Fig. 17. Design space exploration using different resource allocation options.

Fig. 18. Design space exploration using different bit widths.

Fig. 19. Design space exploration using different matrix sizes.

Table I. Comparisons Between Our Results and Previously Published Articles for Analytic

Table II. Comparisons Between Our Results and Previously Published Articles for

Decomposition Methods.

