
 On Teaching Arrays with Test-Driven Learning in WebIDE
 

Michael Hilton, David S. Janzen 

ABSTRACT 
Test-driven development (TDD) has been shown to reduce 
defects and to lead to better code, but can it help beginning 
students learn basic programming topics, specifically arrays? 
We performed a controlled experiment where we taught ar­
rays to two CS0 classes, one using WebIDE, an intelligent 
tutoring system that enforced the use of Test-Driven Learn­
ing (TDL) methods, and one using more traditional static 
methods and a development environment that instructed, 
but did not enforce the use of TDD. Students who used the 
TDL approach with WebIDE performed significantly better 
in assessments and had significantly higher opinions of their 
experiences than students who used traditional methods and 
tools. 

1. INTRODUCTION 
Test-driven development (TDD)[1] is a software engineer­

ing best practice that involves writing fine-grained auto­
mated unit tests prior to corresponding code, then refac­
toring in short, rapid increments. Numerous studies have 
examined the efficacy of test-driven development (TDD)[13, 
3] with encouraging, but sometimes mixed results. For in­
stance, TDD studies generally report improved software qual­
ity, but sometimes at the expense of lower productivity [2]. 
In addition, while many of these studies report very promis­
ing results with advanced students, incorporating TDD with 

beginning students has been more challenging. Desai et 
al. [4] report that introductory students who were taught 
TDD wrote higher quality code as measured through code-
coverage. However, there was not significant change in the 
quality of source-code, the time spent on projects, attitudes 
towards testing or overall comprehension of material. It was 
their conclusion that simply incorporating TDD into current 
course materials with existing tools was not ideal, and that 
what was needed was some re-ordering and re-emphasizing 
of the material. We consider whether teaching an intro­
ductory programming topic, namely arrays, in a test-driven 
manner with the support of WebIDE, a novel web-based 
intelligent tutoring system that can enforce the test-driven 
approach, has any effect on student learning. Section 2 dis­
cusses related work, establishing context and motivation for 
this work. Section 3 describes the lab we created for teach­
ing beginning programming students about arrays. Section 
4 reports results from a controlled experiment to evaluate 
the new instructional materials, and Section 5 suggests some 
conclusions and future work. 

2. RELATED WORK 

2.1 Test-Driven Learning 
Test-Driven Learning (TDL) [6] was proposed as an ap­

proach to teach computing students new topics using auto­
mated tests as examples. The basic idea is that TDD can be 
taught for free by simply incorporating a TDD approach to 
the material being taught. When an instructor introduces a 
topic such as recursion, as they present examples they can 
include automated tests as the first step of writing a source 
code implementation. 

2.2 WebIDE 
Although demonstrating TDD to students can be moti­

vating, actually getting them to write code in a test-first 
manner can be challenging. WebIDE [5] is a novel intel­
ligent tutoring system framework for delivering interactive 
web-based labs designed specifically for applying TDL in 
the first few weeks of introductory programming courses. 
WebIDE helps students during these difficult early weeks by 
offering a one-button interface in a ubiquitous and familiar 
web context that requires no additional installation. 

Significant work on intelligent tutors exists [14], but Web-
IDE appears to be the first open and scalable system de­
signed to incorporate TDL. WebIDE’s architecture separates 
lab specification, lab rendering, and automated evaluation. 
Labs are specified in an xml file located at any URL. Labs 

 



embed references to evaluators that process and respond to 
student submissions. WebIDE includes internal evaluators 
such as regular expression matching. An unlimited num­
ber of external evaluators can be located on any Internet-
accessible server. External evaluators can range from generic 
evaluators that compile and/or execute complete programs 
or test suites, to custom evaluators that parse very specific 
expressions (e.g. the sum of two integers). 

Dvornik et al. [5] conducted a pilot study in 2010 using 
WebIDE to teach students using TDL. Although WebIDE 
was still under development they did see significant improve­
ment in students developing a beginning Android applica­
tion over the non-WebIDE students. However, the WebIDE 
students did not perform better on programming tasks over­
all. During the experiment students experienced significant 
evaluator timeouts on some labs that prevented them from 
completing all labs. This was a significant threat to validity. 
The timeout issue and other reliability issues were resolved 
prior to conducting the study reported in this paper. 

2.3 Beginning Programmer Experiments 
While most of the research into TDL and TDD has been 

with advanced students, there has been some research into 
TDL and TDD for beginning students. 

2.3.1 Effects on Student Learning 
Janzen and Saiedian [6] conducted a short experiment in 

two sections of a CS1 course that used C++. The experi­
ment was conducted in three fifty-minute lectures and one 
fifty-minute lab that covered the introduction of classes and 
arrays. While both sections had been introduced previously 
to the assert() macro, during this experiment the first sec­
tion was instructed using TDL and the second section was 
presented examples in a traditional manner using standard 
output with the instructor explaining the expected results. 
At the end of the experiment, all students were given the 
same short quiz. The quiz covered concepts and syntax from 
the experiment topics. The section that had been instructed 
using TDL scored a higher average on the test than the non-
TDL section by a margin of 7.84 to 7.14. The sample size 
was relatively small with only 27 participants, so broad con­
clusions cannot be made. 

2.3.2 Beginning Programmer Resistance 
Many TDD studies address student appreciation of TDD 

and willingness to adopt TDD with mixed results. Janzen 
and Saiedian [7] performed an examination of acceptance 
of TDD by students at various levels. They found that af­
ter learning about TDD in the study, over 60% of mature 
developers would choose test-first over test-last, while only 
10% of beginning developers would choose test-first meth­
ods. However, among several confounding factors they note 
that the mature developers used Java and JUnit while the 
beginners used C++ and assert statements. 

2.3.3 Few choosing TDD 
Garcia et al. [8] report that teaching beginning students in 

a test-driven manner resulted in only 10% of students choos­
ing to use automated tests. However, there were several dif­
ferences in their approach that may account for why so few 
students chose to use TDD. The students were taught in a 
classical procedural language and therefore they were taught 
a specially designed testing framework called tpUnit. The 

creators of the study chose not to use JUnit because they felt 
it would be too complex for beginning students. By using 
WebIDE we were able to abstract out the more complex fea­
tures, and thereby teach beginning students Java and testing 
with JUnit at the same time. Garci et al. did find that the 
students who choose to write the tests scored higher than 
the students who did not, but due to low participation rates 
they couldn’t draw definitive conclusions. 

2.3.4 TDD least popular of XP practices 
A study performed by Keefe [9] introduced students to 

four XP practices: Pair Programming, Test Driven Develop­
ment, Simple Design, and Refactoring. Of the four practices 
TDD was least preferred by the students in the study. There 
were several reasons why students did not like TDD. They 
found that students did not have a sufficient understanding 
of testing to be able to write tests effectively. Many of the 
students found JUnit to be too complicated for them. They 
also found that many of the students had difficulty under­
standing why testing was important, and felt as if it was a 
waste of their time. While the authors recommended that 
testing needs to be introduced to programming students, 
they believed that their study was inconclusive on whether 
beginning students are capable of test first development. 

2.3.5 Age and attitudes towards TDD 
An investigation into students’ perceptions of Extreme 

Programming (XP) practices conducted by Melnik [10] found 
a positive correlation between a students’ age and a positive 
attitude towards TDD. They considered that this might be 
explained by a higher level of discipline of more mature stu­
dents. They believe that this is because TDD is not about 
testing but about design. They feel that the older students 
are better at design, which in turn leads to them having a 
better opinion of TDD than beginning students. 

2.3.6 Proper incentives needed 
To help students appreciate TDD, Spacco and Pugh [11] 

developed a system called Marmoset for student project pro­
gramming and submission. They would distribute projects 
to students including documentation, skeleton code, and 
several test cases in order to give the students a starting 
place. They found that as students had not yet learned the 
value of TDD, they needed to incentivize the students to 
write tests. In order to do that, they based a part of the 
students’ grades on the amount of automated testing code 
coverage delivered. They also tried to design the system 
to encourage students to write tests. They found that as 
a result of their efforts, the students did indeed write and 
submit test cases as part of their final submission. How­
ever, upon further exploration, they found that a significant 
number of students did substantial work on their test cases 
after they had passed all the submission tests. It is their 
conclusion that without the proper incentive to write test 
cases early, many students do not adopt a test-first men­
tality, but rather stick to the test-late mentality of writing 
their implementation and then testing it at the very end. 

3. TDL ARRAY LESSON 
We created a new lab to teach introductory students about 

the topic of arrays in Java using the TDL approach and 
WebIDE. Each step is described below. 



Figure 1: WebIDE lab step 1 exercise with sample error feedback 

3.1 Step 1: Introduction to Arrays 
The first step of the WebIDE lesson is titled “Introduc­

tion to Arrays”. The purpose of this step is to introduce the 
students to the basics of Java arrays including the concepts 
of indexes and declaration, along with basic syntax. The 
lab targets beginning students so we assume the students 
do not have any knowledge about arrays before coming into 
this class. After seeing examples of array declarations, stu­
dents are asked to declare two simple arrays before being 
allowed to move to the next step. Figure 1 shows a sample 
input where the student entered the first declaration cor­
rectly, but forgot to change the data types in the second 
declaration. These very simple first steps are to help the 
student build confidence and to not be overwhelmed too 
early. This will attempt to break down some of the initial 
resistance to TDL other studies have found to be common 
in beginning students [9, 8]. 

3.2 Step 2: Populating Arrays 
The second step is “Populating Arrays”. We emphasize 

how indices start at 0, a common source of confusion when 
dealing with arrays. We also introduce the first test in an 
exercise for the students. We assume that they have already 
been exposed to tests as part of their coursework in this 
class, so we do not need to go into detail about what the tests 
are or how they will work. Others [7, 10] have reported that 
beginning students feel test-last is more intuitive to them 
than test-first, so we start with one test-last example to help 
them feel comfortable before we move on to test-first. The 
exercise in this step is a simple task, to populate an array 
with the first five prime numbers. We give them the first 
five prime numbers to minimize external barriers to success 
with the topic at hand. Since we have assumed familiarity 
with the concept of variables, we do a simple assignment 
much like they have done with integers in the past. 

3.3 Step 3: Retrieving Values from Arrays 
The next step is “Retrieving Values from Arrays” and is 

shown in Figure 2. Here we want to introduce students to 
the concept of retrieving a value from an array and using 
that value. The exercise that the students will need to do 
this time is to sum all the values that they put into the array 
in the previous step. Before they write this code, they will 
set up a test to ensure that they have the correct sum. We 

have gradually been introducing testing, but at this point 
they are now doing test-first development. In order to avoid 
the confusion that has bothered other students in the past [9] 
we attempt to make the tests as straight forward as possible 
and directly related to the outcome of the code. 

3.4 Step 4: Out of Bounds 
Step 4 is designed to help students learn more about array 

indices. It also is designed to introduce them to the concept 
of Java exceptions. This step uses a WebIDE external Java 
Evaluator so that students could see an actual Java excep­
tion being thrown based on the code. We assume that the 
students at some point would write some code in which the 
array index is out of the bounds of the array, resulting in 
an exception being thrown. This step also provides an addi­
tional opportunity to work with array indices which must be 
mastered before they move on to more advanced exercises. 
This step starts with erroneous code that throws an excep­
tion. After running the code and seeing the exception, the 
student must fix the defect and see the code run successfully. 

3.5 Step 5: Looping with Arrays 
Now that we have been over the basics of arrays, we will 

start to cover concepts that are a little more complicated. 
This step will teach students how to work with arrays in 
loops. Since the students have already covered loops in this 
course, we do not need to introduce them as a new concept. 
Our focus is on teaching students to understand how they 
can use a loop to work with an array. We are also using this 
as an opportunity to continue to develop their understand­
ing of test-first development. Since TDD has been shown to 
help programmers design better code [6], we will guide the 
students to write tests that will help them with their code 
design, as the exercises get to be more complicated. In this 
step, we give them the first test, then we use the internal 
WebIDE Regular Expression evaluator to ensure that they 
write the correct test for each test case, which in this in­
stance corresponds to each index of the array that they will 
be populating. Once the students have written the correct 
test cases, they will get feedback as they write their code. If 
their design is incorrect, the test cases will show them. 

3.6 Step 6: Functions with Arrays 
This step focuses on teaching students how to use arrays 

with functions. As with the previous step, since they have 



Figure 2: WebIDE lab step 3 with sample error feedback 

covered functions previously in the course we will not have 
to introduce functions from scratch, but will focus on what 
the students will need to know to work with functions and 
arrays. The two main concepts that we want to teach the 
students are how to pass arrays into functions as parameters 
and how to return arrays from functions. We provide the 
students with some example code that is very similar to the 
code that we wish them to write. Then we set them up 
with some partial test cases so that they will be able to 
develop the test cases before they write the code. The code 
required to complete this exercise involves writing a function 
that takes an array as a parameter and then returns an int 
that is the count of the number of positive integers in the 
array. This exercise was designed with the goal of not only 
forcing the student to understand the information that was 
just given to them about arrays and functions, but also to 
reinforce the last step, where they learned how to use loops 
to deal with arrays. By building on the previously taught 
concepts we hope to reinforce the students’ understanding. 

3.7 Step 7: Array of Objects 
We will continue to build on previous information with 

this step. Up until this point we have only used arrays of 

primitive types. In this step we will introduce arrays of 
objects. As before, we are assuming that they are familiar 
with objects and so we are only concerned with this lesson 
covering the information that the students will need to be 
able to use an array of objects. We give them an example 
of an array of PlayingCards. For the exercise we will ask 
them to write a piece of code that will declare an array of 
type President and fill it with some information about four 
presidents. However, before they write this code we will give 
them an example test and a partial test, and ask them to 
finish the partial test. Once they have written this code, 
we will use this array for the next step. Since we can use 
WebIDE to force them to finish this step correctly before 
they move on, we know that they will have answered this 
step correctly when we arrive at the next step. 

3.8 Step 8: Operations On Array Elements 
As the eighth and last step, we will tie in all the concepts 

that we have taught in the previous steps of this lesson. We 
will have the students iterate through the array that they 
created in the previous step which contains four presidents 
and the years that they started their presidency and the year 
that they ended their presidency. We will start the students 



off with part of a test, which they will need to complete. 
This test will be straight forward as it will test the sum of 
all the years in office of all the presidents in the array. This 
test was chosen because in order to complete it, the student 
will have to figure out on paper how they will come up with 
a number of years based on the information that they have 
been given. This computation is the type of design work 
that we would like them to do before they begin to write 
code. It also benefits the student because once they have 
that number, it will provide them with a test so that they 
know that their code is working properly once they have 
written it. In order to complete this assignment, the student 
will have to use concepts that we have previously taught in 
the lesson such as array indices, looping, functions, arrays 
of objects and array values. By continuing to use the same 
concepts repeatedly, we hope to reinforce the learning. 

4. RESULTS 
In order to evaluate the effects of the TDL arrays lab, 

we conducted a controlled experiment with 72 students in 
two sections of an introductory computing course (CS0) for 
students who had selected a computing major. Students 
were given a pre-study programming quiz at the beginning 
of the course to determine their programming skills enter­
ing the course. Results on this quiz indicated no statisti­
cally significant difference in previous programming expe­
rience between the WebIDE and control groups, although 
the WebIDE group did score slightly lower. Students com­
pleted the new array lab in the eighth week of the ten week 
course during a 90 minute closed lab period. This partic­
ular course introduced students to computing in the con­
text of mobile applications. Prior to the lab on arrays, 
students completed labs using Scratch, App Inventor, and 
Java including Java basics (data, operators, expressions), 
methods, selection, looping, and classes. Each section con­
tained 36 students and was taught by the same instructor 
with identical content. The independent variable was the 
use of WebIDE. Students in the control section were pre­
sented the same content in static html lab pages, and they 
used the Eclipse integrated development environment and 
were provided boiler-plate code for completing the exercises 
(e.g. Java and JUnit classes). Students in the control group 
had been using Eclipse for three weeks prior to this lab, 
whereas students in the WebIDE section had been intro­
duced to Eclipse, but were completing their labs in WebIDE. 
Students in both sections were required to demonstrate pro­
ficiency in Eclipse by creating an Android app in a six-week 
group project. 

4.1 Overall Quiz Scores 
At the end of the lab period, students were given a six 

question on-line quiz on array concepts and syntax in Java 
worth a total of 22 points. The control group had 36 stu­
dents take the quiz and the experimental group had 35 stu­
dents take the quiz. One week later, students were also given 
a comprehensive lab quiz that included a question on Java 
arrays and loops. Students were encouraged to redo and 
study the lab outside of class in preparation for the com­
prehensive lab quiz. Table 1 reports student performance 
on the computer programming assessments, demonstrating 
the weaker performance on the pre-experiment assessment, 
and better performance after the introduction of WebIDE. 
Statistical significance was determined with p < .05 using a 

one-tailed univariate analysis of covariance test controlling 
for each student’s score on the pre-study programming quiz. 

4.2 Individual Question Scores 
Since TDD has been shown to help improve software de­

sign [6], we would expect that TDL would be more beneficial 
for the more complicated problems, and there to be less of 
a difference on the less complicated quiz questions. That is 
exactly what we see in Table 2. Questions two and three 
were the simplest questions, requiring the least recall and 
corresponding to steps one and two. Questions two and four 
were both multiple choice, requiring more recognition over 
recall, but question four covered the more difficult topic of 
arrays of objects, corresponding to step seven. Questions 
five and six were the most open-ended and challenging, re­
quiring students to write entire tests and methods based 
only on a problem description. Consequently, the control 
group even performed slightly better than the experiment 
group on question two, which was a very simple question. 
On the most complicated question (number six) we see the 
largest difference of 19%. 

4.3 Student Opinions 
Students were asked their opinions on the course, the labs, 

and their perspectives on the course topics (Java and An­
droid) in a post-experiment on-line survey. Table 3 reports 
these results based on a five point Likert scale with one 
being “Strongly Agree” and five being “Strongly Disagree.” 
The WebIDE students were more positive about the array 
lab than the control group. 

4.4 Threats to Validity 
As with any academic study there are unavoidable threats 

to validity such as the course time of day and external social 
or academic factors. One main threat to validity is that we 
are unable to determine if the better test scores were due 
exclusively to students using WebIDE, and that if they had 
used WebIDE with a different learning style they would have 
shown similar improvement over the control group. 

5. CONCLUSIONS AND FUTURE WORK 
This experiment has shown that students who were taught 

arrays in a TDL manner with a system that enforced the 
TDL approach performed better on assessments of the ar­
ray topics than students who were taught the same material 
in a more traditional manner. Further, the students who 
used WebIDE were more positive about the course and the 
labs, than students who used a traditional development en­
vironment. 

Future work includes extending the same concepts that 
were used to teach beginning students arrays in a test-driven 
manner, to other CS0/CS1 topics, such as functions and 
loops. Also, since WebIDE is not intrinsically built on TDL, 
an experiment could be devised that compares teaching the 
same material using WebIDE and TDL, and also using Web-
IDE but with a different teaching paradigm. 

6. ACKNOWLEDGMENTS 
We would like to thank Clark Turner for his work review­

ing early versions of this paper, John Clements, Thomas 
Dvornik, and Karl Bell for their work developing WebIDE, 
and Olga Dekhtyar for reviewing all statistical analyses. 



Assessment 
Total 

Possible 
WebIDE 
Mean 

Control 
Mean Significant? 

Pre-Study Programming Quiz 25 2.72 3.50 No 

Lab 8 Quiz: Java Arrays 
Comp. Lab Quiz: Java Arrays/Loops 

22 
12 

13.75 
10.17 

11.44 
8.75 

Yes 
Yes 

Table 1: Student Performance on Programming Assessments 

Question 
WebIDE 
Mean 

Control 
Mean Difference 

Total 
Possible 

Percent 
Difference 

1 (declare array) 
2 (last element m/c) 
3 (first element) 
4 (array of objects m/c) 
5 (test for getSmallest method)) 
6 (method getSmallest) 

1.80 
1.83 
1.29 
1.6 
3.49 
4.14 

1.58 
1.94 
1.19 
1.39 
2.72 
2.61 

.22 
-.12 
0.091 
.211 
0.76 
1.53 

2 
2 
2 
2 
6 
8 

10.83 
-5.80 
4.56 
10.55 
12.72 
19.15 

Table 2: Quiz Scores by Question 

Question 
WebIDE 
Mean 

Control 
Mean Significant? 

I liked this course 
I am comfortable with Java 
Labs helped learn Java 
Liked Lab 8 

1.59 
2.38 
2.21 
2.34 

2.03 
2.47 
2.64 
2.81 

Yes 
No 
Yes 
Yes 

Table 3: Student Opinions 

This material is based upon work supported by the Na­
tional Science Foundation under Grant No. 0942488. Any 
opinions, findings, and conclusions or recommendations ex­
pressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science Foun­
dation. 

7. REFERENCES 
[1] K. Beck “Test Driven Development: By Example,” 

Addison Wesley, November 2002. 
[2] S. Kollanus, “Test-driven development - still a 

promising approach?” 7th Int. Conf. on the Quality of 
Information and Communications Technology 
(QUATIC), Porto, Portugal, Oct. 2010, pp. 403 – 408. 

[3] C. Desai, D. Janzen, and K. Savage “A survey of 
evidence for test-driven development in academia,” 
SIGCSE Bulletin, vol. 40, no. 2, 2008, pp. 97 – 101 

[4] C. Desai, D. Janzen, and J. Clements, “Implications of 
integrating test-driven development into CS1/CS2 
curricula,” in Proceedings of the 40th ACM technical 
symposium on Computer science education. New York, 
NY, USA: ACM, 2009, pp. 148–152 

[5] T. Dvornik, D. Janzen, J. Clements, O. Dekhtyar, 
“Supporting introductory test-driven labs with 
WebIDE” 24th IEEE-CS Conference on Software 
Engineering Education and Training (CSEE and T), 
2011 22–24 May 2011, pp. 51–60. 

[6] D. Janzen and H. Saiedian, “Test-Driven Learning: 
Intrinsic Integration of Testing into the CS/SE 
Curriculum.” In Proc. 37th Technical Symposium on 
Computer Science Education (SIGCSE), pages 
254–258. ACM, 2006. 

[7] D. Janzen and H. Saiedian, “Test-Driven Learning in 

Early Programming Courses.” In Proc. 39th Technical 
Symposium on Computer Science Education (SIGCSE). 
ACM, 2008. 

[8] E. Barriocanal, M. Urban, I. Cuevas, and P. Perez, “An 
Experience in Integrating Automated Unit Testing 
Practices in an Introductory Programming Course.” 
ACM SIGCSE Bulletin, 34(4):125–128, December 2002. 

[9] K. Keefe, J. Sheard, and M. Dick, “Adopting XP 
Practices for Teaching Object Oriented Programming.” 
In Proc. 8th Australian Conf. Computing Education, 
volume 52, pages 91–100, 2006. 

[10] G. Melnik and F. Maurer, “A Cross-Program 
Investigation of Students’ Perceptions of Agile 
Methods.” In Proc. 27th Intl. Conf. on Software Eng. 
(ICSE), pages 481–488. ACM Press, 2005. 

[11] J. Spacco and W. Pugh, “Helping Students Appreciate 
Test-Driven Development (TDD).” In Companion to 
21st. ACM SIGPLAN Conf. Object-Oriented Prog. 
Systems, Languages, and Applications (OOPSLA), 
pages 907–913, 2006. 

[12] D. Janzen and H. Saiedian, “A Leveled Examination 
of Test-Driven Development Acceptance.” In Proc. 29th 
Intl. Conf. on Software Engineering (ICSE), pages 
719–722. IEEE Press, 2007. 

[13] R. Jeffries and G. Melnik, “Guest Editors’ 
Introduction: TDD–The Art of Fearless Programming.” 
IEEE Software, volume 24, pages 24–30. IEEE 
Computer Society, 2007. 

[14] R. Raga and J. Raga, “A Survey on Intelligent 
Tutoring Systems (Its) and it’s Authoring in the 
Context of Features Promoting the Human-Teacher 
Factor.” Journal of Business, Education and Law, 
volume 14, no 1, Jose Rizal University, 2010. 




