
Abstract— Reactive traffic management strategies such as 
incident detection are becoming less relevant with the 
advancement of mobile phone usage. Freeway management in 
the 21st century needs to shift focus toward proactive strategies 
that include anticipating incidents such as the crashes. 
“Predicting” crash occurrences would also be the key to traffic 
safety. A two-step approach to identify freeway locations with 
high probability of crashes through real-time traffic 
surveillance data is presented here. For this study historical 
crash and corresponding traffic data from loop detectors were 
gathered from a 58-km (36-mile) corridor of Interstate-4.  
Following an exploratory analysis two types of logistic 
regression models, i.e., simple and multivariate, were 
developed. The simple models were used to deduce time-space 
patterns of variation in crash risk while the multivariate model 
was chosen for final classification of traffic patterns. As a 
suggested application for the simple models, their output may 
be used for preliminary assessment of the crash risk. If there is 
an indication of high crash risk then the multivariate model 
may be employed to explicitly classify the data patterns as 
leading or not-leading to crash occurrence. A demonstration of 
this two-stage real-time application strategy is also provided in 
the paper.  

I. INTRODUCTION

The emphasis in freeway management has largely been 
toward analyzing the post-incident traffic surveillance data 
in order to timely detect traffic incidents. The advancement 
in cell phone usage is rendering such reactive strategies 
irrelevant. The focus of freeway management should 
therefore shift toward anticipating incidents prior to their 
occurrence and devise countermeasures. Crashes are 
arguably the most critical and “predictable” type of 
incidents. However, traditional freeway safety literature 
does not offer solution to the traffic management problem of 
anticipating crashes due to their stated focus on crash 
frequency or crash rate estimation. The traditional approach 
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to traffic safety is not sufficient to “predict” crashes in real-
time using traffic flow variables measured from loop 
detectors. There is a need to estimate models that use 
dynamic flow variables as input and determine whether or 
not they potentially precede a crash occurrence.

One such crash prediction model was developed in one of 
our previous studies [1]. The model achieved satisfactory 
crash identification and demonstrated the feasibility of 
predicting crashes in real-time. However, the model was 
developed using data from a small, dense urban segment of 
the freeway (Interstate-4 in City of Orlando) with crashes 
spanning a short period of time (seven months). For this 
study the crash data was expanded to include crashes that 
occurred during 4-year period (from 1999 through 2002) on 
the 58-km (36-mile) instrumented corridor of Interstate-4 in 
Orlando, FL (USA). A stratified case control dataset 
consisting of traffic data corresponding to the crash (case) 
and five matched non-crashes (controls) was created. The 
purpose of matched case-control analysis is to explore the 
effects of independent variables of interest on the binary 
outcome while controlling for other confounding variables 
through the design of the study. Separate simple (one 
covariate) as well as multivariate logistic regression models 
were developed using the matched sample. Based on the 
results from these models a two stage implementation plan 
to obtain reliable real-time assessment of potential for crash 
occurrence is proposed. It is worth mentioning that the 
approach presented here is data-driven and actual 
mechanism of crashes is not considered. Detailed vehicle 
movement data would be needed to establish sound and 
reliable crash mechanism models; which being unavailable 
loop detector data have been used as a surrogate measure.  

The paper is divided in seven sections. A brief summary 
of literature is provided in the next section followed by 
theoretical details of the modeling methodology. Forth 
section summarizes data collection and preparation. Fifth 
section deals with preliminary data analysis and details of 
the multivariate model. It is followed by a two-stage real-
time implementation plan and conclusions are provided in 
the end. 

II. BACKGROUND

Hughes and Council [2] explored the relationship between 
freeway safety and peak period operations using loop 
detector data, it was one of the first studies aiming at 
preemptive traffic management. Lee et al. [3] developed a 
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log-linear model to predict crashes through estimation of 
crash precursors from loop detector data. In a later study by 
the same authors [4], the aforementioned model was refined 
and the coefficient of temporal variation in speed was shown 
to have a relatively longer-term effect on crash potential 
than density while the effect of average variation of speed 
across adjacent lanes was found to be insignificant.

Oh et al. [5] suggested a classification approach for the 
problem and argued that five minutes standard deviation of 
speed was the best indicator of "disruptive" traffic flow 
leading to a crash as opposed to "normal" traffic flow. 
Abdel-Aty and Pande [6] also used probabilistic neural 
network (PNN) as the classification algorithm and 
demonstrated the feasibility of predicting crashes at least 10-
minutes prior to their occurrence. In some of the more 
detailed recent studies Golob and Recker [8, 9] concluded 
that the collision type is the best-explained characteristic and 
is related to the median speed and left-lane and interior lane 
variations in speed. Based on similar results Golob et al. [9] 
used data for more than 1000 crashes over six major 
freeways in Orange County, California and developed a 
software tool FITS (Flow Impacts on Traffic Safety) to 
forecast the type of crashes that are most likely to occur for 
the flow conditions being monitored. A case study 
application of this tool on a section of SR 55 (State Road 55) 
was also demonstrated. Findings from the aforementioned 
studies point towards potential application of real-time 
traffic data in the field of traffic safety. However, crashes 
usually occur due to result of complex interaction between 
traffic, geometric and environmental factors and it is 
difficult to explicitly account for the wide range of these 
factors in any of the modeling frameworks proposed by the 
studies mentioned above. 

The authors in their earlier studies [1, 10, 11] argued that 
the accuracy of real-time crash prediction model may be 
increased if the model utilizes information on traffic flow 
characteristics for both crash and non-crash cases while 
controlling for other external factors (thereby implicitly 
accounting for factors such as the geometry and location). It 
was proposed that this can be achieved using a within-
stratum analysis of a binary outcome variable Y (crash or 
non-crash) as a function of traffic flow variables X1, X2,… Xk

from matched crash-non-crash cases where a matched set 
(stratum) can be formed using crash site, time, day of the 
weak, season, year, etc., so that the variability due to these 
factors is controlled. The 5-minute average lane occupancy 
measured upstream and coefficient of variation in speed 
measured downstream of the crash location were identified 
to be the most significant crash precursors in the study [1]. 
However, the study was limited in scope due to insufficient 
data. A small, dense, and largely urban 21-km (13-mile) 
section of the freeway corridor was analyzed for just seven 
months. Due to lack of complete data, issues about the 
determination of the exact time of historical crashes could 
not be addressed thoroughly. With largely uniform traffic 

and crash characteristics on the segment analyzed, the 
transferability of the model remained suspect. In this study 
the database has been expanded to include crashes spanning 
four years on the 58-km (36-mile) corridor. Furthermore, a 
detailed online application strategy has been proposed in 
order to identify real-time “black spots” on the freeway 
corridor.

III. METHODOLOGY

To understand the matched case-control logistic 
regression in the context of the present research problem 
let’s assume that there are N strata with 1 case and m
controls in each stratum. The probability of any observation 
in a stratum being a crash may be modeled using the 
following linear logistic regression model: 

{ ( )} .............1 1 2 2jlogit p x x x xij j ij ij k kij       (1) 

where pj(xij) is the probability that the ith  observation in 
the jth stratum  belongs to a crash; xij = (x1ij, x2ij,……xkij) is 
the vector of k traffic flow variables x1, x2,……xk; i = 0,  1, 
2,…..m; and j = 1, 2,……N. 

Note that the intercept term in (1) summarizes the effect 
of control variables (used to form the strata) on the crash 
probability and would not be identical across strata. In order 
to account for stratification in the analysis, a conditional 
likelihood is constructed. This conditional likelihood 
function is independent of the intercept terms 1, 2,…….. N

[12]. So the effects of matching variables cannot be 
estimated and (1) cannot be used to estimate crash 
probabilities. However, the values of the  parameters that 
maximize the conditional likelihood function would also be 
the estimates of  coefficients in (1). These estimates are log 
odds ratios and can be used to approximate the relative risk 
of a crash.

Consider two observation vectors x1j = (x11j, x21j,….., xk1j)
and x2j = (x12j, x22j,….., xk2j) from the jth strata on the k traffic
flow variables. The log odds ratio of crash occurrence due to 
traffic flow vector x1j relative to vector x2j will have the 
following form: 
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     (2) 

Note that it is the ratio of the resultants obtained by 
substituting the two observation vectors in equation 1. The 
right hand side of (2) depends only on j, therefore the 
estimate for log odds ratio may be obtained using the 
estimated  coefficients. One may utilize the above relative 
log odds ratio for predicting crashes by replacing jx2  with 

the vector of values of the traffic flow variables in the jth

stratum under normal traffic conditions.   Simple average of 
all non-crash observations within the stratum for each 
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variable may conveniently be used. If jx 2  = ( 12 jx , 22 jx ,

32 jx …, 2k jx )  denotes the vector of mean values of the k
variables over non-crash cases within the jth stratum, then 
the log odds of crash relative to non-crash may be 
approximated by: 
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Above log odds ratio can then be used to predict crashes 
by establishing a threshold value that yields desirable 
classification accuracy [12]. 

IV. DATA COLLECTION AND PREPARATION

Traffic surveillance data collected through underground 
sensors on Interstate-4 (I-4) are used in this study. These 
sensors record and archive following traffic flow parameters 
every 30 seconds: average vehicle counts, average speed, 
and lane detector occupancy (percent of time the loop is 
occupied by vehicles).  These data are collected from three 
lanes in each direction through 69 stations spaced at 
approximately 0.8 km (0.5 mile) for a 58-km (36-mile) 
stretch. The crash data for the study were collected from the 
FDOT crash database for the years 1999 through 2002.   

First, the location for each crash that occurred in the study 
area during this period was identified.  For every crash, the 
loop detector station nearest to its location was determined 
and referred to as the station of the crash. The pre-crash 
loop detector data from stations surrounding the crash 
location were collected based on the adjusted time of 
historical crashes estimated through a shockwave and rule-
based methodology [10]. Traffic data were extracted for the 
day of crash and on all corresponding (non-crash) days to 
the day of every crash. The correspondence here means that, 
for example, if a crash occurred on April 12, 2002 (Monday) 
6:00 PM, I-4 Eastbound and the nearest loop detector was at 
station 30, data were extracted from station 30, four loops 
upstream and two loops downstream of station 30 for half an 
hour period prior to the estimated time of the crash for all 
Mondays of the same season in the year at the same time. 
Hence, this crash will have loop data table consisting of the 
speed, volume and occupancy values for all three lanes from 
the loop stations 26-32 (on eastbound direction) from 5:30 
PM to 6:00 PM for all the Mondays of the same season in 
the year 2002, with one of them being the day of crash 
(crash case). More details of this sampling technique, 
application of this methodology and data cleaning could be 
found in the earlier study by the authors [1].  

The 30-second data have random noise and are difficult to 
work with in a modeling framework. Therefore, the 30-
second raw data was combined into 5-minute level in order 
to get averages and standard deviations. Thus for 5-minute 
level aggregation half an hour period was divided into 6 
time slices. The stations were named as “B” to “H”, with 

“B” being farthest station upstream and so on. It may be 
noted that “F” is the station of the crash with “G” and “H”
being the stations downstream of the crash location. 
Similarly the 5-minute intervals were given “IDs” from 1 to 
6. The interval between time of the crash and 5 minutes 
prior to the crash was named as slice 1, interval between 5 to 
10 minutes prior to the crash as slice 2, interval between 10 
to 15 minutes prior to the crash as slice 3 and so on.  The 
arrangement used for stations (B-H) and time slices (1-6) 
used here is crucial for generating the patterns of crash risk 
and it’s “propagation” in a time-space framework.  

The parameters were further aggregated across the three 
lanes and the averages (and standard deviations) for speed, 
volume and lane-occupancy at 5-minute level were 
calculated based on 30 (10*3 lanes) observations. Therefore, 
even if at a location the loop detector from a certain lane 
was not reporting data, there were observations available to 
get a measure of traffic flow at that location. Aggregating 
data across the lanes helps to develop a system for more 
realistic application scenario since all three lanes at a loop 
detector stations are less likely to be simultaneously 
unavailable when the model is used for real-time prediction. 
Another advantage is that the measures aggregated across 
lanes not only capture temporal variations (or lack there of) 
but variations across the three lanes as well.  

This dataset consisted of 2046 matched strata included all 
types of crashes. The type of crash information available in 
the FDOT crash database was utilized to retain only multi-
vehicle crashes. Since the ambient traffic characteristics are 
more likely to affect crashes involving interaction among 
vehicles rather than the single vehicle crashes that mostly 
occur during the late night hours. Also, due to intermittent 
failure of loop detectors the numbers of controls (non-crash 
cases) available for each case (crash) were not 
homogeneous. To carry out matched case-control analysis, a 
symmetric data set was created (i.e., each crash case in the 
dataset has the same number of non-crash cases as controls) 
by randomly selecting five non-crash cases for each crash in 
the dataset. The resulting dataset had 1528 symmetric 
matched strata available for analysis. 

V. DATA ANALYSIS

A. Exploratory Analysis and Simple Models 
In a logistic regression setting the output of simple (one 

covariate) models would be the hazard ratio for the 
parameter used as covariate in the model. The hazard ratio is 
defined as the exponential of the estimate for model 
coefficient and represents how much more likely (or 
unlikely) it is for the crash to occur if the covariate is 
increased by one unit. Therefore, if the output hazard ratio 
for a parameter is significantly different from one and, for 
example, equals two then increasing the value of this 
variable by one unit would double the risk of a crash around 
station F (station of the crash). 
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For each of the seven loop detectors (B to H) and six time 
slices (1-6) mentioned above, the values of means (AS, AV, 
AO) and standard deviations (SS, SV, SO) of speed, volume 
and occupancy, respectively, were used one at a time as the 
risk factor (i.e. independent variable) in the logistic 
regression model. Exploratory analysis with 5-minute 
standard deviations and averages of speed showed that the 
hazard ratios for standard deviation of speed were all greater 
than unity while they were all less than one for the average 
speeds at stations B-H and time slices 1-6. Thus, the 
coefficient of variation in speed was a natural choice as a 
precursor resulting in hazard ratio values substantially 
greater than one. Therefore, we combined mean and 
standard deviation of speed, occupancy and volume into the 
variables CVS, CVO, CVV (coefficients of variation of speed 
occupancy and volume, respectively, expressed in 
percentage as (SS/AS)*100, (SO/AO)*100, and
(SV/AV)*100). Logarithmic transformation was applied to 
these coefficients of variation due to skewed nature of their 
distribution. Further explorations concluded that the 
variables LogCVS, AO and SV measured at a range of 
stations and time-slices had the most significant hazard 
ratios. To identify time duration(s) and location of loop 
detector(s) having traffic characteristics significantly 
associated with the binary outcome (crash vs. non-crash) the 
hazard ratios were calculated for each of the 126 parameters 
(7 stations *6 time slices *3 variables i.e., LogCVS, AO, SV)
through one separate model each. The outcome of each of 
these models was the hazard ratio corresponding to these 
variables at various stations and time slices and the p-value
for the test indicating whether the value is significantly 
different from unity. It was noticed that the hazard ratio for 
LogCVS increases most significantly as we approach Station 
F and the time of the crash (Slice 1). The values of hazard 
ratio for AO were low (i.e., only slightly greater than 1.0) 
yet statistically significant. For SV the hazard ratios were 
found to be significantly less than one and tended to 
decrease as the time and station of crash approached from 
the downstream direction. It indicated that as SV becomes 
smaller at certain freeway locations the crash risk apparently 
increases at locations upstream of these sites. It was 
concluded that in general a higher LogCVS, and/or AO value 
and a lower SV value would increase the likelihood of 
crashes.

To understand the patterns of crash risk with respect to 
time and location of the crash in a time-space framework we 
generated contour plots of the hazard ratio corresponding to 
the three parameters (LogCVS, AO and SV). One such plot, 
with hazard ratio for LogCVS at various time slice-station 
combinations as the contour variable, is shown in Fig. 1. 
These hazard ratios essentially depict the risk for observing 
a multi-vehicle crash at Station F. According to the color 
scale provided alongside the plot the dark colored regions 
represent high hazard ratios thereby indicating more risk. It 
may be observed that region around Station F remains fairly 

dark (i.e., crash prone) for about 20 minute period while 
upstream and downstream sites (Station E and G,
respectively) also show high risk for about 15-20 minute 
period before recording a crash. These results are significant 
since they allow leverage in terms of time to predict an 
impending crash. It is also important to note that the clearest 
trends in hazard ratio were depicted by the plot 
corresponding to LogCVS, with a stark contrast between 
locations of crash and other surrounding stations.  

B. Multivariate Models 
The results from exploratory analysis had shown that 

three parameters, namely, the LogCVS, SV and AO are most 
significantly associated with crash occurrence. These three 
parameters correspond to 126 variables (three parameters 
measured from 7 stations during 6 time slices) as potential 
independent variables for the final multivariate model. 
Based on the results from the previous section we could 
discard Station B, C and D from consideration in the final 
model. Even though hazard ratio from these stations were 
significantly different from unity they were less significant 
than their counterparts belonging to Station E, F, G and H.

Fig. 1.  Spatio-temporal pattern of the hazard ratio for LogCVS obtained 
from 5-minute combined lane dataset for multi-vehicle crashes 

Also, even though time slice 1 (0-5 minutes prior to time 
of the crash) exhibited significant hazard ratios; being too 
close to the actual time of the crash it was not useful in 
practice for crash prediction models. This time slice was, 
therefore, ignored from further considerations. For each of 
the remaining five time slices (with first slice being 
ignored), we have p = 12 traffic flow variables; LogCVS, 
SV, and AO at each of the four loop detectors E, F, G and H.
To identify most significant variables during each time slice 
among the set of 12 potential variables (three parameters 
measured at four stations), the binary outcome variable y 
was modeled using stratified conditional logistic regression 
method described above in the previous section.  The SAS
procedure for proportional hazard regression analysis 
(PHREG) allows one to identify significant variables using 
stepwise automatic search procedure. The procedure resulted 
in three significant variables for time slice 2 (5-10 minutes 
before crash occurrence): LogCVS F2 =log10(CVS) from 
station F (the station of the crash) and    AOG2 = AO at 
station G (the downstream station) and SVG2 = SV at station 
G (the downstream station). All other variables are found to 
be statistically insignificant. Similar search procedures from 
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subsequent time slices resulted in slightly different models 
involving variables measured during time slice 3, 4 and so 
on. The decision regarding the selection of the time slice 
was made based on the classification accuracy achieved 
from each model. The model developed from slice 2 
described above was found to be the best in this regard. 
Thus, the final model includes variables LogCVSF2 and
AOG2 and SVG2. The details of the final predictive model 
are provided in Table 1. First two variables have positive 
beta coefficients (and a hazard ratio greater than 1), which 
mean that the odds of observing a crash at Station F increase 
as these variables increase while SVG2 had a negative beta 
coefficient implying increasing odds of a crash as this 
parameter decreases.  

TABLE 1: FINAL MODEL DESCRIPTION

As previously explained in the modeling methodology 
section, the odd ratio given by (4) may be used to classify 
crash and non-crash cases. Following the classification 
procedure the model provided more than 62% of crash 
identification on the matched case-control dataset using the 
threshold of unity for the odd ratio. Note that this threshold 
(chosen to be equal to one here) may be further varied in 
order to achieve desirable classification given the tradeoff 
between overall classification accuracy (crash and non-
crash) and crash identification. The threshold of unity 
provided reasonable balance between the two conflicting 
attributes (i.e., overall classification and crash identification) 
and hence is recommended as the cut-off value. The simple 
models have the advantage due to their data requirement; the 
decision regarding selection of models must be made based 
on their classification accuracy. Of all simple models, the 
one with LogCVSF2 as the independent covariate happens to 
be the single most significant model. The crash 
identification was only 59% when the single covariate 
model with LogCVSF2 was used for classification. It is less 
than 62.5% achieved by the multivariate model (with odd 
ratio cutoff set at 1.0). The multivariate model, therefore, is 
recommended for a reliable classification of the patterns.  

VI. REAL-TIME APPLICATION

A. Phase 1-Simple Model Application 
The basic idea for the two-step implementation plan 

proposed here is to first estimate the measure of crash risk 
for next 10-15 minutes using the simple models. If there is 
an indication for a crash then subject the data to the final 
multivariate model for classification which would assess the 
crash risk for next 5-10 minutes since parameters in the final 
model belong to time slice 2 (refer Table 1).   

For a real-time application, the instrumented freeway 
corridor can be divided into 69 (which is the total number of 
loop detector stations) segments in each direction such that 
each loop detector remains at the center of each section. It is 
clear that for crashes occurring on any of these sections, the 
corresponding station would be analogous to Station F
(station of the crash), as defined earlier in the paper. The 
series of 69 loop detectors on the corridor may then be 
divided into sets of five stations as (1-5), (2-6), (3-7) and so 
on up to (65-69). These sets of five stations would 
correspond to station D through station H used in the 
modeling procedure. 

The measure for crash risk may be estimated by 
multiplying the observed LogCVS value at these stations 
with an appropriate time slice 3 hazard ratio which by 
definition would provide the measure of crash risk relative 
to the situation if the value for the covariate (LogCVS) were
zero. In other words, time slice 3 hazard ratio corresponding 
to station D would be chosen if the station is most upstream 
of the set of five, station H if it is the most downstream, and, 
station F if it is the station belonging to that particular 
segment and so on. This measure for crash risk may be 
updated in real-time on a continuous basis as soon as new 
observations come in. For example, we first calculate the 5-
minute level LogCVS based on the available ten most recent 
observations and then after 30-seconds as the latest 
observation (since loop data is collected every 30 seconds) 
come in they are included in the calculation of LogCVS 
replacing the far most observation. The measure of crash 
risk may also be plotted as a contour variable in a time space 
framework similar to the plots for raw hazard ratios shown 
in Fig. 1. Based on the changing patterns depicted by the 
continuously updated plots, freeway locations with high 
crash risk may be identified in real-time. Since the objective 
of the paper is to propose a generic plan for traffic 
surveillance from a safety perspective the authors are not 
proposing any threshold on the measure of crash risk to 
determine exactly what value constitutes a high enough risk 
and would trigger the application of the multivariate model. 
Such decisions are to be made after exhaustive location 
specific field testing which is beyond the scope of this 
generic implementation plan.   

B. Phase 2-Multivariate Model 
Following the detection of hazardous patterns through the 

measure of crash risk obtained from simple models the 
multivariate model may be applied for classification of 
patterns into leading or not leading to a crash. As explained 
in one of the previous sections, the log odds can be 
calculated using (4) to classify the patterns into crash and 
non-crash cases. For this purpose, we first calculate the 
mean for the three covariates included in the final model: 
LogCVSF2, AOG2 and SVG2 on all five non-crashes within 
each matched stratum of the 1:5 matched dataset. For jth

matched set, the vector 2k jx  in (4) may be replaced by the 

Variable Parameter 
Estimate p-value Hazard

Ratio 
LogCVSF2 1.2140 <.0001 3.367 
AOG2 0.0246 <.0001 1.025 
SVG2 -0.1912 <.0001 0.826 
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vector of these non-crash means and the most current five-
minute data on the three variables for 1k jx can be used to 

calculate the odds ratio for the purpose of identifying a 
crash. The RHS of (4) with estimated values of the 
parameters from Table 1 can be written as:  
exp (1.214 ( 2 - .951) .024 ( 2 - 13.260) - .191 ( 2 - 2.564))LogCVSF AOG SVG  (5) 

Note that the average vectors ( 2k jx ) on the RHS of (4) 

have been replaced with the respective means of these 
covariates over non-crash cases in the matched dataset. The 
values for the three parameters (LogCVSF2, AOG2 and
SVG2) obtained from the loop detectors in real-time would 
be used as independent variables in this expression above to 
obtain the ratio of odds for having a crash vs. not having a 
crash. If the resultant odd ratio exceeds unity then the 
patterns would be classified as a crash. However, note that 
this threshold would also have to be calibrated through 
location specific field testing. Data from station F and G
(LogCVS from the station of the crash and the AO and SV 
from the station one immediately following it in the 
downstream direction) may be collected and updated 
continuously. To obtain an updated odds ratios every 30-
seconds the last set of observations in the 5-minute period 
may be replaced by the data most recently recorded. In other 
words the values for LogCVS, SV and AO are updated on a 
continuous basis by calculating means and standard 
deviations of the parameters as moving averages.  

VII. CONCLUSION

A statistical link between turbulent traffic conditions and 
crash occurrences was established through a detailed 
analysis of loop detector data corresponding to the multi-
vehicle crashes that occurred on the instrumented corridor of 
Interstate-4 during 1999 through 2002. Following an 
exploratory analysis a series of simple (involving one 
covariate) logistic regression models were estimated to 
deduce the spatio-temporal variation of crash risk. Based on 
the results from the simple models a multivariate logistic 
regression model was estimated through a step-wise 
procedure. For the final model, average occupancy and 
standard deviation of volume observed at the downstream 
station (Station G), during the slice of 5-10 minutes prior to 
the crash (time slice 2) along with the coefficient of variation 
in speed at the station closest to the location of the crash 
(Station F) during the same time slice were found to affect 
the crash occurrence most significantly. It was shown that 
using 1.0 as the threshold for the log odds ratio, over 62% 
crash identification was achieved from the final model on 
the matched case-control dataset. This modeling approach 
may be extended to any freeway similarly equipped with 
loop detectors although model parameters would need to be 
calibrated using field data from that freeway. 

A real-time application plan for these models was 
demonstrated in the paper. Essentially the proposed plan 
states that a preliminary assessment of the freeway 

conditions may be made using the measure of crash risk 
assessed using simple models and if this measure indicate 
high risk of crash occurrence for next 10-15 minutes; the 
data may be further subjected to the multivariate model for 
classification. If the classification model identifies patterns 
from the detectors as crash prone then the traffic 
management authorities can keep the incident mitigation 
squads on alert in anticipation of a crash so that the impact 
of crash occurrence on freeway operation may be 
minimized. At this point the traffic safety application of the 
plan proposed here is limited and more aggressive strategies 
such as variable speed limits, warning drivers through 
variable message signs etc., need to be explored. These 
techniques would allow more proactive intervention and 
help reduce the crash potential. Another point of 
consideration while devising these strategies would be that 
although all multi-vehicle crashes were included in the 
modeling procedure, the methodology presented here might 
result in better identification of rear-end crashes, which are 
the most common type of crashes on freeways. 
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