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Abstract

Introduction: In spite of recent advances in traffic surveillance technology and ever growing concern over traffic safety, there have been

very few research efforts establishing links between real time traffic flow parameters and crash occurrence. This study aims at identifying

patterns in the freeway loop detector data that potentially precede traffic crashes. Method: The proposed solution essentially involves

classification of traffic speed patterns emerging from the loop detector data. Historical crash and loop detector data from the Interstate 4

corridor in the Orlando metropolitan area were used for this study. Traffic speed data from sensors embedded in the pavement (i.e., loop

detector stations) to measure characteristics of the traffic flow were collected for both crash and non crash conditions. Bayesian classifier

based methodology, probabilistic neural network (PNN), was then used to classify these data as belonging to either crashes or non crashes.

PNN is a neural network implementation of well known Bayesian Parzen classifier. With its superb mathematical credentials, the PNN

trains much faster than multilayer feed forward networks. The inputs to final classification model, selected from various candidate models,

were logarithms of the coefficient of variation in speed obtained from three stations, namely, station of the crash (i.e., station nearest to the

crash location) and two stations immediately preceding it in the upstream direction (measured in 5 minute time slices of 10 15 minutes prior

to the crash time). Results: The results showed that at least 70% of the crashes on the evaluation dataset could be identified using the

classifiers developed in this paper.
1. Introduction

The conventional approach to traffic safety analysis has

been to establish relationships between the traffic character-

istics (e.g., flow, speed), roadway and environmental

conditions (e.g., geometry of the freeway, weather con-

ditions), driver characteristics (e.g., gender, age), and crash

occurrence. The shortcoming of most of the models

developed using this approach is that they rely upon

aggregate measures of traffic speed (e.g., speed limit) and

volume (e.g., AADT or hourly volumes) and hence are not

sufficient to identify the real-time bblack spotsQ (i.e.,

locations having a high probability of crashes), created

due to the interaction of ambient traffic conditions with the

geometric characteristics of freeway segments.
In this study, the problem of predicting crashes (i.e.,

identifying freeway locations with high real-time crash

potential) has been approached as a classification problem in

which the real-time traffic conditions are categorized as

measured by underground sensors (i.e., loop detectors) into

either leading or not leading to a crash.

The idea of applying loop data to predict crashes in

real-time is still in preliminary stages. However, there have

been some efforts in this area. Lee, Saccomanno, and

Hellinga (2002) introduced the concept of bcrash pre-

cursorsQ and hypothesized that the likelihood of a crash is

significantly affected by short-term turbulence of traffic

flow. They came up with factors like speed variation along

the length of the roadway (i.e., difference between the

speeds upstream and downstream of the crash location)

and also across the three lanes at the crash location.

Another important factor identified by them was traffic

density at the instant of the crash. Weather, roadway



geometry, and the time of the day were used as external

controls. With these variables, a crash prediction model

was developed using log-linear analysis. In a later study

Lee, Saccomanno, and Hellinga (2003) continued their

work along the same lines and modified the aforemen-

tioned model. They incorporated an algorithm to get a

better estimate of the time of the crash and the length of

time slice (prior to the crash) to be examined. It was found

that the average variation of speed difference across

adjacent lanes doesn’t have direct impact on crashes and

hence was eliminated from the model. They also con-

cluded that variation in speed has a relatively longer-term

effect on crash potential than do either traffic density or

average speed difference between upstream and down-

stream ends of roadway sections.

A study by Oh, Oh, Ritchie, and Chang (2001) also

showed that the standard deviation of speed in a 5-minute

interval was the best indicator of bdisruptiveQ traffic flow

leading to a crash as opposed to bnormalQ traffic flow.

They used the Bayesian classifier to categorize the two

possible traffic flow conditions. Since Bayesian classifier

requires probability distribution function for each class,

they fitted their crash and non-crash speed standard

deviation data to non-parametric distribution functions

using kernel smoothing techniques. Due to lack of crash

data (only 52 crashes), their model remains far from being

implemented in the field. It is also important to note that in

order for a crash prediction model to be useful in

preventing crashes, it is necessary to identify the crash

prone conditions far ahead of the crash occurrence time,

not just 5-minutes prior; more lead time allows traffic

management authorities sufficient time for analysis, pre-

diction, and dissemination of information.

Although these studies do indicate the potential of

applying real-time loop detector data for identification of

balarmingQ traffic patterns on freeways, the biggest short-

coming of their analysis is that the data used in these studies

were coming from just one station downstream and/or

upstream of the crash location. Alarming conditions leading

to crashes on a freeway might actually originate far

upstream and btravelQ with traffic platoons until they

culminate into a crash at a certain downstream location.

To account for this possibility, we examined data from

several stations upstream of the crash location at several

time periods leading to the crash. This will also serve the

purpose of identifying how far in advance (in terms of both

time and distance) of a crash occurrence certain freeway

segments may be flagged for the impending hazard.

1.1. Introduction to the study area

This study was conducted on the Interstate-4 (I-4)

corridor in Orlando. The freeway stretch under consider-

ation is about 13.25 miles long and has a total of 28 loop

detector stations, spaced out at approximately 1/2 mile

intervals. Through dual loop detectors (sensors located
beneath the pavement) these stations collect and store the

following measurements every 1/2 minute for three lanes in

each direction:

a) Volume (number of vehicles passing each lane in 30

seconds)

b) Lane-occupancy (percentage of the 30-second interval

the loop detector was occupied), and

c) Average speed (of all vehicles passing over the loop

detector in the 30-second interval).

Also, this freeway stretch is under the jurisdiction of the

Orlando police department (OPD) and hence OPD was the

source of the crash data for this study.

First, the mile-post location was identified for each of

the 670 crashes that occurred on the Interstate-4 corridor

during the period of April 1999 through November 1999.

The remaining months of the year 1999 had to be

excluded, as no loop data were available for those

months. For every crash, its time and location were

identified using the new police reporting system (the time

the police department receives a call reporting a crash,

which is entered and checked with the drivers involved

and witnesses; this time is usually very close to the

actual time of crash occurrence), and verified based on

inspecting the space- and time-volume, occupancy, and

speed diagrams. For every crash, the loop detector station

nearest to its location was determined. This station is

referred to as the station of the crash from here on. The

next step was to extract pre-crash loop detector data from

the archived loop detector database. As mentioned earlier

our focus is on comparison and classification of crash

and non-crash traffic flow variables, therefore if a crash

is reported to occur on April 12, 1999 (Monday) 6 p.m.,

I-4 Eastbound, and the nearest loop detector was at

station 30, data were extracted from station 30, five loops

upstream and one loop downstream of station 30 for half

an hour period prior to the reported time of the crash for

all the Mondays of the eight month period of analysis at

the same time. This matched sample design was created

in order to control for roadway and geometric factors and

driver population on the freeway (e.g., more commuters

on weekday peak hours, indicating more young to middle

age drivers, etc.). Hence, this crash will have a loop data

table consisting of the speed, volume, and occupancy

values for all three lanes from the loop stations 25–31

(on eastbound direction) from 5:30 p.m. to 6 p.m. for all

the Mondays of the aforementioned eight-month period of

the year 1999, with one of them being the day of crash.

The data were available for only 377 (out of 670)

crashes. During the time of the remaining crashes none

of the loops from which data were required were

functioning.

The loop detectors suffer from intermittent hardware

problems that result in unreasonable values of speed,

volume, and occupancy. These values include Occupancy
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N100 (percent), speed = 0 or N100 (MPH), flow N25

(vehicles per lane), and flow = 0 (vehicles per lane) with

speed N0 (MPH), and were removed from raw 30-second

data. From the bcleanedQ data tables the average and

standard deviation of speed were extracted over each lane

for six, 5-minute intervals recorded prior to the crash on the

station nearest to the crash location (referred to as station of

the crash), five stations upstream and one station down-

stream of the station of the crash. It requires creation of 252

fields (7 stations*6 time slices*3 lanes*2 variables, i.e.,

average and standard deviation of speed) in the database for

each crash. The same 252 fields were extracted for all

bcorrespondingQ non-crash days as well.

The nomenclature procedure adopted for defining the

station and time slice to which the average and standard

deviation belongs is shown in Fig. 1. All the stations were

named as bAQ to bG,Q with bAQ being the farthest station

upstream and so on. It should be noted that bFQ is the station
of the crash and bGQ will be the station downstream of the

crash location since we have collected data from 5 upstream

stations, station of the crash itself, and one downstream

station. Similarly the 5-minute intervals were also given

bIDQ from 1 to 6. The interval between time of the crash and

5 minutes prior to the crash was named as slice 1, interval

between 5 to 10 minutes prior to the crash as slice 2, and

interval between 10 to 15 minutes prior to the crash as slice

3, and so on.
2. Methodology: Theoretical background of the

classification technique

The proposed solution to the research problem essentially

involves classification of traffic speed patterns emerging

from the loop detectors. This section provides a theoretical

overview of the probabilistic neural network (PNN)
classifiers used here. The PNN is a neural network

implementation of the well-established multivariate Baye-

sian classifier, using Parzen estimators to construct the

probability density functions of different classes (Specht,

1996).

2.1. Bayes classification

The PNN is strongly based on Bayesian method, which is

arguably the single most popular classification paradigm.

Suppose there is a collection of random samples from K

populations (k = 1, 2, . . .. . ., K; e.g., for crash vs. non crash

K = 2) and each of these samples is a vector x = [x1,

x2,. . .. . .. . ..xm], then these samples may be used to devise a

Bayes optimal decision rule in order to classify a pattern of

unknown class. Essentially this rule favors a class (e.g.,

crash vs. non-crash) if it has high density in the vicinity of

the pattern of unknown class. The probability density

function fk(x) corresponds to the concentration of class k

cases around the pattern of unknown class. The problem

with this rule is that the probability density functions (PDFs)

are generally unknown and they should be estimated from

the random samples available from K populations (Masters,

1995).

2.2. Parzen Estimator

Parzen estimator uses the weight function W(d)

(frequently referred to as potential function or a kernel)

having largest value at bdistance d = 0Q and it decreases

rapidly as the absolute value of bdQ increases (Masters,

1995). The weight functions are centered at each training

sample point with the value of each sample’s function at a

given abscissa being determined by the distance bdQ
between x and that sample point. The PDF estimator is

the scaled sum of that function for all the sample cases.



The method can be stated mathematically using the

following equation:

g xð Þ ¼ 1

nr

Xn
i¼1

W
x� xi

r

� �
:

The scaling parameter r (also known as spread value)

defines the width of the bell curve that surrounds each

sample point. The value of this parameter has a profound

influence on the performance of a PNN. While too small

values will cause individual training cases to have too

much of an influence, thereby losing the benefit of

aggregate information, extremely large values will cause

so much blurring that the details of density will be lost,

often distorting the density estimate badly (Masters,

1995). This idea will be clearer when the results from

various PNN models are discussed later in the paper. Note

that the above description for Parzen estimator corre-

sponds to a univariate case. Oh et al. (2001) used a

similar procedure to obtain the density function in their

research work. An extension to multivariate setting is

intuitive, the details of which may be found in Abdulhai

and Ritchie (1999).

2.3. Multivariate bayesian discrimination and classical

PNN

The accuracy of decision boundaries’ estimation and the

subsequent classification depends on the accuracy with

which the underlying PDFs are estimated. A nice feature of

this approach and the related PNN implementation is the

estimation consistency. Consistency refers to the fact that the

error in estimating the PDF from a limited sample gets

smaller as the sample size increases, and therefore the

estimated PDF (the class estimator) collapses on the unknown

true PDF as more patterns in the sample become available.
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Fig. 2. The traditional PNN architecture for a two-class classific
Also, note that the estimated PDF for a given class, say

fk(x), is the sum of small multivariate Gaussian distributions

centered at each training sample. However, the sum is not

necessarily Gaussian. It can, in fact, approximate any

smooth density function. The smoothing factor r can alter

the resulting PDF. The optimal r can be easily determined

experimentally (Abdulhai & Ritchie, 1999).

The network in Fig. 2 shows p dimensional inputs to be

classified into two classes. The pattern layer contains one

neuron for each training case while the summation layer

has one neuron for each class. In the creation (training)

phase of the PNN each training case (patterns with known

classification) is stored in a neuron of the pattern layer. To

classify an unknown input pattern, the execution starts by

simultaneously presenting this input vector to all pattern

layer neurons. Each pattern neuron then computes a

distance measure (Euclidean in the case of a classical

PNN) between the input and the training case represented

by that neuron. It then subjects the distance measure to

neuron’s potential function (W(d)). The following layer

contains summation units that have a modest task. Each

summation layer neuron is dedicated to a single class. It

just sums up the pattern layer neurons corresponding to the

members of that summation neuron’s class. The attained

activation of the summation neuron is the estimated

density function value for that population class. The

output neuron is merely a threshold discriminator and

decides which of its inputs from the summation units is the

maximum (Masters, 1995).

In other words, the PNN computes the potential

function for the distances between unknown input pattern

and the stored training patterns from two competing

classes (i.e., crash vs. non-crash). Whichever class has

higher potential function (i.e., has more density around the

unknown input pattern) is chosen to be the class of the

unknown vector.
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The classical PNN uses Euclidean distance as a

measure of nearness among different patterns. Euclidean

distance is statistically unsatisfactory for some applications

because it does not account for differences in variations

along the axes (i.e., if some parameters in the input vector

are more important than the others) nor the presence of

correlation among the variables constituting the pattern

vector. To overcome this deficiency, Abdulhai and Ritchie

(1999) proposed a modification in the classical PNN

algorithm.

To replace the employed Euclidean distance with the

preferred statistical distance, principal components rather

than the original variables should be used. Algebraically,

principal components are particular linear combinations of

the original set of random variables.

Fig. 3 shows the modified version of the PNN (referred

to as PNN2) that takes the above transformation into

account. Two layers, an input layer and a transformation

layer, replace the previous input layer of the classical

PNN. The original input vector X is transformed into a

rotated vector Y using the eigenvectors (eij) of the
Table 1

Average values of 5-minute standard deviation of speeds observed at various tim

Time Slice

1 2 3

Y Y Y

0 1 0 1 0 1

Station

A 5.38 5.63 5.39 5.39 5.36 5.46

B 5.33 5.67 5.37 5.69 5.29 5.65

C 5.38 5.58 5.36 5.71 5.36 5.71

D 5.23 6.00 5.27 5.70 5.26 5.69

E 5.27 6.00 5.30 5.55 5.22 5.63

F 5.33 5.89 5.33 5.79 5.34 5.89

G 5.14 5.50 5.20 5.67 5.15 5.26
covariance matrix R associated with random vector X.

The component variables of the vector in terms of the

rotated axes are then divided by their standard deviations

(Ei)
0.5 to equalize the variances and obtain a new set of

inputs free of the effects of correlation and widely varying

variances. Beyond this transformation, layer processing of

PNN2 is identical to the original PNN described earlier

(Abdulhai & Ritchie, 1999).

2.4. Exploration with the loop detector data

There are several studies associating crash occurrences

with increasing variation in vehicle speeds (e.g., Shinar,

1999; Garber & Ehrhart, 2000). It has been argued that as

individual vehicle speeds deviate more and more from the

average speed of the traffic stream, the probability of

having a crash increases. The data emanating from a series

of consecutive loop detectors on a freeway section has

been used here as a surrogate for the detailed vehicle

movement data in order to capture the variance in vehicle

speeds.
e slice-station combinations

4 5 6

Y Y Y

0 1 0 1 0 1

5.36 5.61 5.31 5.41 5.30 5.21

5.31 5.59 5.34 5.60 5.31 5.51

5.34 5.73 5.34 5.44 5.33 5.42

5.26 6.05 5.25 5.59 5.24 5.47

5.24 5.51 5.26 5.86 5.23 5.63

5.33 5.89 5.30 5.85 5.27 5.42

5.20 5.60 5.17 5.55 5.17 5.56



Table 2

Average values of 5-minute average speeds observed at various time slice-station combinations

Time Slice

1 2 3 4 5 6

Y Y Y Y Y Y

0 1 0 1 0 1 0 1 0 1 0 1

Station

A 49.24 46.81 49.15 46.30 49.11 45.82 49.11 46.63 49.13 47.01 49.24 46.72

B 46.96 43.80 46.95 43.55 47.06 43.57 47.06 43.94 47.08 44.20 47.15 44.65

C 46.62 42.59 46.62 42.76 46.79 42.34 46.86 42.57 46.97 42.94 47.12 42.86

D 47.23 41.56 47.20 42.27 47.41 42.73 47.66 42.81 47.78 43.57 47.89 43.43

E 46.23 40.18 46.27 41.00 46.39 41.47 46.50 41.30 46.62 42.20 46.79 42.80

F 45.71 40.08 45.71 39.93 45.92 39.88 46.01 39.38 46.21 40.18 46.38 41.02

G 48.09 42.60 48.10 42.43 48.21 41.69 48.38 41.67 48.49 41.61 48.66 42.89
Due to malfunctioning of loops, the speed, volume, and

occupancy data were rarely available simultaneously over

the three lanes. Moreover, there were a lot of data missing

from all three lanes (such data was not used in the

analysis). To overcome the problems due to missing data,

it was decided to replace the values on three lanes with

one value that was the average over the three lanes.

Averaging was preferred over imputation of missing values

because imputation procedures would have been very time

consuming and beyond the scope of this study. The

averaging over three lanes is acceptable for the analysis

carried out in this paper, because about 76% of crashes in

the database were rear-end. Therefore, the longitudinal

variation of traffic parameters was deemed to be more

critical than the variation across lanes.

To detect the trends in 5-minute averages and standard

deviations of speed at various time slices and stations, their

averages over all the crash and non-crash cases were

obtained. Table 1 provides the average of 5-minute

standard deviation of speeds over all the crash cases

(Columns with Y = 1) and non-crash cases (Columns with

Y = 0). Similarly, Table 2 provides the average of 5-

minute averages of speeds. The values are obtained at all

42 (7 stations * 6 slices) time-slice and station combina-

tions. It should be noted that the average over non-crash
Table 3

Aggregated 5-minute coefficient of variation in speed expressed in term of perce

Time Slice

1 2 3

Y Y Y

0 1 0 1 0 1

Station

A 10.93 12.03 10.97 11.64 10.91 11.92

B 11.35 12.95 11.44 13.07 11.24 12.97

C 11.54 13.10 11.50 13.35 11.46 13.49

D 11.07 14.44 11.17 13.48 11.09 13.32

E 11.40 14.93 11.45 13.54 11.25 13.58

F 11.66 14.70 11.66 14.50 11.63 14.77

G 10.69 12.91 10.81 13.36 10.68 12.62
cases is observed over much more data points than the

crash cases.

Observing Table 1 closely shows that the crash case

variance (Y = 1) is higher than the non-crash (Y = 0)

counterpart at all the stations during every time slice except

for station A (that is 5 stations upstream of the station of the

crash) during time slice 6 and time slice 2 (where they are

equal). Another interesting aspect is that as we bapproachQ
the time and location of the crash the difference in standard

deviation tends to increase. Also, the differences during all

time slices at station A are relatively smaller than the other

entries in the Table.

These two parameters (5-minute average and standard

deviation) may be chosen as crash precursors as they

represent turbulent traffic conditions ahead of the crash

occurrence. Lower average speed signifies congestion and

queuing conditions on freeways while high variability

associated with it depicts frequent formation and dissipation

of such queues. In such a scenario, the drivers on the

freeway might have to slow down and speed up quite often

while traversing through small distances. These conditions

can potentially lead to rear-end crashes.

In view of the above argument, 5-minute coefficient of

variation (standard deviation/average) in speed may be used

to account for the trends observed in Tables 1 and 2. Table 3
ntages at various time slice-station combinations

4 5 6

Y Y Y

0 1 0 1 0 1

10.91 12.03 10.81 11.51 10.76 11.15

11.28 12.72 11.34 12.67 11.26 12.34

11.40 13.46 11.37 12.67 11.31 12.65

11.04 14.13 10.99 12.83 10.94 12.59

11.27 13.34 11.28 13.89 11.18 13.15

11.58 14.96 11.47 14.56 11.36 13.21

10.75 13.44 10.66 13.34 10.62 12.96



consists of the values for the coefficient of variation in speed

expressed in terms of percentage for every time slice-station

combination. This variable also magnifies the difference

between crash and non-crash cases, which would help the

distance based classifiers to correctly identify certain

patterns.

2.5. Preliminary matched case control logistic regression

A basic matched case-control analysis, where the crashes

act as cases and all corresponding non-crash data are used as

controls, was performed. In this analysis the value of bHazard
ratioQ (ratio of odds for crash occurrence versus not, i.e., odds
ratio) for the data combined over three lanes was derived.
Table 4

Hazard ratio for average volume, average occupancy, and log coefficient of varia

Variable 5-minute average of Volume 5-minute ave

Station Time slice PrNChisq Hazard ratio PrNChisq

A 1 0.197 0.967 0.008

A 2 0.282 0.969 0.008

A 3 0.366 0.971 0.005

A 4 0.694 0.992 0.039

A 5 0.947 1.004 0.083

A 6 0.582 1.011 0.034

B 1 0.138 0.962 0.031

B 2 0.060 0.945 0.012

B 3 0.080 0.939 0.029

B 4 0.231 0.972 0.044

B 5 0.200 0.969 0.116

B 6 0.960 1.002 0.130

C 1 0.192 0.971 0.005

C 2 0.640 0.991 0.036

C 3 0.180 0.964 0.005

C 4 0.546 0.985 0.011

C 5 0.925 0.991 0.003

C 6 0.754 1.003 0.017

D 1 0.174 0.965 b.0001

D 2 0.210 0.969 0.001

D 3 0.329 0.974 0.001

D 4 0.443 0.988 0.000

D 5 0.712 1.006 0.001

D 6 0.861 1.002 0.001

E 1 0.550 0.985 b.0001

E 2 0.535 0.983 b.0001

E 3 0.902 0.998 b.0001

E 4 0.344 0.975 b.0001

E 5 0.947 1.001 b.0001

E 6 0.953 1.002 b.0001

F 1 0.016 0.945 b.0001

F 2 0.013 0.981 b.0001

F 3 0.031 0.967 b.0001

F 4 0.031 0.982 b.0001

F 5 0.110 0.998 b.0001

F 6 0.347 0.969 b.0001

G 1 0.201 0.984 b.0001

G 2 0.152 0.987 b.0001

G 3 0.170 0.972 b.0001

G 4 0.140 0.963 b.0001

G 5 0.113 0.962 b.0001

G 6 0.562 0.989 b.0001
In a logistic regression setting the function of dependent

variables yielding a linear function of the independent

variables would be the logit transformation.

g xð Þ ¼ ln
p xð Þ

1� p xð Þ

� �
¼ b0 þ b1; x;

where p(x) = E (Y|x) is the conditional mean of Y (dummy

variable representing crash occurrence) given x when the

logistic distribution is used. Under the assumption that the

logit is linear in the continuous covariate x the equation for

the logit would be g(x) = b0 + b1,x. It follows that the slope

coefficient b1, gives the change in the log odds for an

increase of 1 unit in x, that is b1 = g (x + 1) –g (x) for any
tion of speed

rage of Occupancy Log (5-minute coefficient of variation in speed)

Hazard ratio PrNChisq Hazard ratio

1.018 0.007 1.643

1.022 0.024 1.499

1.021 0.015 1.642

1.019 0.017 1.660

1.015 0.069 1.409

1.018 0.186 1.289

1.016 0.003 1.631

1.019 0.002 1.680

1.013 0.001 1.764

1.012 0.004 1.593

1.011 0.007 1.502

1.010 0.019 1.446

1.013 0.000 1.722

1.012 0.000 1.805

1.018 0.000 1.852

1.012 0.000 1.807

1.025 0.001 1.616

1.016 0.001 1.706

1.023 b.0001 2.789

1.024 0.000 2.212

1.027 0.001 2.054

1.027 b.0001 2.607

1.023 0.002 1.770

1.021 0.002 1.771

1.035 b.0001 2.981

1.032 b.0001 2.256

1.031 b.0001 2.284

1.031 b.0001 2.320

1.033 b.0001 2.541

1.031 b.0001 2.100

1.037 b.0001 2.335

1.034 b.0001 2.568

1.031 b.0001 2.603

1.029 b.0001 2.857

1.030 b.0001 2.630

1.026 0.000 2.022

1.032 b.0001 2.272

1.029 b.0001 2.571

1.035 b.0001 2.221

1.033 b.0001 2.486

1.031 b.0001 2.704

1.031 b.0001 2.411



value of x. Hazard ratio is defined as e raised to the power

of this coefficient (Agresti, 2002).

Table 4 shows the values of hazard ratio for average

volume, average occupancy and log of coefficient of

variation in speed (logcvs) at all time slice-station combi-

nations, when used one at a time as the risk factor (i.e.,

independent variable) in the matched case-control logistic

regression analysis. It could be seen that the values of

hazard ratio are much less for volume and occupancy when

compared to those of logcvs. Fig. 4 depicts the trends shown

by the values of bhazard ratioQ when logcvs are used one at a
time as independent variable. Note that the crashes are

treated as cases while all available corresponding non-crash

cases act as controls.

The bhazard ratioQ essentially represents the factor by

which the risk of observing a crash in the vicinity of bstation
of the crashQ will increase when the corresponding brisk
factorQ (i.e., the covariate used as independent variable) is

increased by one unit. This means that the time slice-station

combination with a higher value of bhazard ratioQ will affect
the probability of crash occurrence to a greater degree. It

may be seen that the values observed for stations bDQ bEQ
bFQ and bGQ are higher than those observed for stations bAQ
bBQ and bCQ during all the time slices. The higher value of

the hazard ratio is an important consideration when selecting

which of the traffic parameters will become inputs to the

PNN models.

2.6. Development of classification models

The variable (Logcv) with highest hazard ratios was

chosen as input to the PNN models, but this was not the

only consideration. If the Logcvs during time slice 1 and 2

(i.e., 0–5 and 5–10 minutes prior to the crash), despite

having maximum hazard ratios, were to become inputs to

the model the prediction will come out too late to predict a

crash and warn the drivers about it, once the model is

applied on-line. It was therefore decided to work with

variables that are observed at least 10–15 minutes prior to

the crash. Also, all the Logcvs to be fed into a model for

training and testing should belong either to the same time
Hazard ratio variation over time slic
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slice duration or to the same station. This was required from

a field application standpoint because if a model uses data

from different detectors at different time slices and classifies

a real-time pattern as balarming,Q it would be difficult to

determine exactly which section should be flagged as a

potential crash location.

The curves on the segment of Interstate-4 under consid-

eration are not of widely varying radii, therefore the roadway

alignments along the corridor were divided into two

categories (i.e., straight and curved). To incorporate this into

the PNN architecture, the population classes were increased

to four (i.e., crash on curved section, crash on straight section,

non-crash on curved section, and non-crash on straight

section), instead of just two (i.e., crash vs. non-crash).

2.7. Preparation of training and evaluation datasets

As described in the previous section, loop detector data

were obtained for 377 crashes. The data were then used to

calculate Logcvs for various (42 in all) time slice-station

combinations. To classify these data through a PNN

classifier, all the Logcvs to be fed in the model should be

simultaneously available. Based on this consideration, due

to poor availability of data we were left with 148 (out of

377) crash and 2,857 non-crash data points. From both

categories (crash and non-crash) approximately two-third

(66%) of the data points were used for creation of the

networks with the remaining one-third used for evaluation.

The data belonging to crash category were heavily under-

represented, hence it was necessary to balance the dataset in

order to have equal crash and non-crash data points used for

the creation of the networks.

First, 100 crash data points (66% of the total 148) were

randomly selected from the available crashes. Subtractive

clustering procedure was then used in order to reduce 1,883

non-crash data points (66% of the total 2,857; to be used for

creation of PNN) into 100 cluster centers. The procedure

essentially involved identifying an appropriate cluster radius

such that 100 points (out of 1,883) are selected as cluster

centers representing all the points lying within that

particular radius. With randomly selected 100 crash data
es at different stations
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Table 5

The number of patterns in the datasets created for training and evaluation of neural networks

Data set Crash data points Non-crash data points Number of training data points Number of evaluation data points

Crash Non-crash Crash Non-crash

Complete 148 2857 100 100(1883) 48 974

Time-limited 116 2289 78 78(1526) 38 763
points and 100 non-crash cluster centers the dataset for

creation of PNNs was ready. It should be noted, however,

that non-crash data points in the evaluation dataset were not

clustered and were used as is. The number of points in

creation and evaluation datasets are shown in Table 5 (refer

to the first row). It may be seen that the test (evaluation)

dataset had a total of 48 crashes (148–100 = 48) and 974

non-crash data points (2,857–1,883 = 974).

Because crashes during late-night and early morning

hours may be attributed mostly to human errors rather than

ambient traffic conditions (e.g., a study by Stutts et al.

(2003) in which the fatigue/drowsiness has been associated

with late-night crash involvement), a reduced dataset

(referred to as btime-limitedQ) was prepared in which only

the crashes (and corresponding non-crash data points) that

occurred from 7 a.m. to 10 p.m. were included. The number

of data points available for training and testing was

obviously reduced in the time-limited dataset. The compo-

sition of this dataset is also shown in Table 5 (refer to

second row). The figure in parenthesis in the column

containing non-crash training data points is the number of

patterns from which the cluster centers, equal to the number

of crash data points, are obtained.
3. Classification models: results and discussion

The hazard ratio values for Logcvs were higher than

corresponding values for average volume and occupancy,

therefore the first experiment with PNN involved deciding

on the combination of Logcvs to be used as inputs. Based on

the hazard ratio values for the variables and the practical

consideration described earlier, various combinations of

Logcvs were used as PNN inputs and the resulting

performance of the models on the evaluation dataset was

carefully examined. The classification performance of the

models was evaluated in terms of two parameters, namely,

percentage of overall (crash and non-crash) patterns

classified correctly on the test dataset and percentage of

crash identification over the test dataset. The criterion for

the optimal model was the maximum overall classification

accuracy for at least 70% of crashes identified correctly. The

overall classification accuracy criterion will ensure that even

at good crash identification rate, too many false warnings

aren’t issued.

It was observed that the three-dimensional input pattern

involving the Logcvs at stations D, E and F (which are the

two stations upstream and the station of the crash itself,
respectively) during time slice 3 (10–15 minutes prior to the

time of the crash) meets the requirement of providing the

optimal crash identification of 72.5% (with 62.1% of overall

crash and non-crash identification accuracy) on the evalua-

tion dataset. In order to further explore the parameters that

might improve the classification, in addition to the three

dimensional traffic speed pattern, 5-minute average occu-

pancies from various time slice-station combinations were

included as inputs. It was found that when occupancy at G3

(Station G, downstream of crash location at time slice 3)

with LogcvD3, LogcvE3, LogcvF3 is used as part of a 4-

dimensional input pattern, the maximum crash identification

that could be achieved was 62.34%. It was the maximum

among various 4-dimensional patterns explored with occu-

pancy data from time slices 3 to 6. Note that it is less than

that achieved through traffic speed patterns only and doesn’t

even satisfy the minimum requirement of 70%. It was

observed that when occupancy at G3 was replaced with

Occupancy at F2 or F1 (at station of the crash, during time

period 5–10 and 0–5 minutes prior to crash, respectively)

the classification accuracy improved marginally. This

finding conforms to the literature (Lee et al., 2003) as the

occupancy seems to have a relatively short-term effect on

crash occurrence as compared to temporal variation in

speed. It is worth mentioning that such models would have

little practical application since there will not be enough

time to bpredictQ a crash. Therefore, they were discarded

from further considerations and the final models used only

the three-dimensional input pattern with Logcvs at stations

D, E and F to represent the real-time traffic characteristics.

Table 6 shows the results of the model using the

aforementioned 3-dimensional input patterns and classifying

them as crash or non-crash over a range of r (the spread

parameter) values. It may be recalled from an earlier section

in the paper that the spread parameter has a profound impact

on the estimated PDFs. The optimal performance based on

the criteria adopted is highlighted in the table. It may be

seen that at very small spread values (e.g., 0.005), the model

has very high accuracy for crashes (above 95%) but the

overall classification accuracy is poor (less than 20%). What

this essentially means is that most of the data points from

the test data set are being classified as crashes, which from a

practical point of view would lead to excessive bfalse
alarms.Q At near zero spread values the PNN act as a nearest

neighbor classifier with class of bsingle nearest neighborQ
exerting too much influence on the resulting class of test

data point. It is highly likely to have non-crash data near to

at least one of the crash data points (the reason being that



Table 6

Performance of PNN models classifying observations from the complete dataset as crash vs. non-crash

Spread Value Result parameters for classical PNN (%) Result parameters for modified PNN (%)

Overall classification

accuracy (test crash

and non-crash data)

Accuracy

on test

crash data

Overall classification

accuracy (test crash

and non-crash data)

Accuracy

on test

crash data

0.005 18.9 97.5 19.9 98.0

0.01 21.5 97.5 20.0 97.5

0.015 27.9 90.0 25.5 90.8

0.02 37.8 87.5 34.2 88.5

0.025 48.6 85.0 46.7 84.2

0.03 56.2 77.5 54.3 76.3

0.035 62.1 72.5 59.8 73.7

0.04 66.7 67.5 63.9 68.4

0.045 70.0 65.0 67.7 65.8

0.05 72.5 62.5 70.3 63.2
sometimes even the alarming conditions may not culminate

into a crash due to driver’s ability). Therefore, if for a non-

crash case its bsingle nearest neighborQ lies in the crash

category, then at near zero spread value it will be classified

as crash even though multiple data points from the

competing class (i.e., non-crash cases) might be present in

the vicinity of this unknown input pattern. When the value

of spread parameter was increased gradually (i.e., with an

increment of 0.005), it was found that although the overall

classification accuracy increases, the percentage of crashes

correctly identified decreases. This means that at even

higher spread values such a network will classify everything

as non-crash and achieve high overall accuracy but would

be of no use, as the primary aim of this research is to

identify the crashes correctly. The reason for missing out on

crashes is because so much blurring is caused by the high

spread parameter value (r) that it loses the details of density
function of the crash data. Therefore, an appropriate spread

value providing optimal classification based on the 70%

crash identification criterion should be chosen. Note that the

performance of PNN model at various spread parameter

values conform to the properties discussed earlier in the

paper while discussing the Parzen estimator.

Two more PNN models were created and evaluated,

incorporating the roadway alignment (straight vs. curved)

at the crash location and time of the day when crash

occurred, respectively, in the classes to be identified.
Table 7

The optimal classification performances by various PNN models

Dataset used

for training

and evaluation

Roadway

alignment in

the classes to

be identified

Time of the

day in the

classes to be

identified

Parameters for classica

Spread

Value

Overall ac

(test crash

non-crash

Complete � � 0.035 62.1 %

Complete M � 0.045 74.6 %

Complete � M 0.015 17.8 %

Time-limited � � 0.050 80.0%

M Incorporated; � Not Incorporated.
Inclusion of time of day into the classes to be identified

degrades the performance of the network drastically. To

explain this, one must first note that the 70% minimum

crash identification criterion for this PNN model is

achieved at spread parameter value of r = 0.015, which

is far less than that for any other models (see row 3 in

Table 7). Inclusion of late night crashes would mean that a

lot of daytime non-crash cases will be similar to (i.e., less

distant neighbors of) night time crashes (in late night hours

5-minute average speeds will be high with less variance, a

pattern which we expect day-time non-crashes to follow).

Since a spread value as low as 0.015 will force PNN to

become merely a nearest neighbor classifier, a lot of day

time non-crashes will be classified as late night crashes

(which are their nearest neighbors). This would mean poor

overall classification accuracy at desired crash identifica-

tion rate (greater than 70%). Also, as mentioned earlier, the

late night crashes may be attributed more to human errors,

rather than any crash prone interactions between vehicles

resulting from congestion or turbulence in the traffic speed

patterns, making them difficult to bpredict.Q These factors

result in significantly poor performance of this particular

PNN model.

A careful analysis of the missed (i.e., unidentified)

crashes led to the conclusion that quite a few of these

crashes occurred during late night hours, so a model

classifying the speed patterns into crash and non-crash
l PNN Parameters for modified PNN

curacy

and

data)

Accuracy

on test

crash data

Spread

Value

Overall accuracy

(test crash and

non-crash data)

Accuracy

on test

crash data

72.5 % 0.035 59.8 % 73.7 %

71.7 % 0.045 73.2 % 71.6 %

72.3 % 0.035 18.8 % 72.0 %

70.1 % 0.045 72.6 % 73.9 %
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Fig. 5. PNN with best classification accuracy on evaluation dataset when complete crash and non-crash data are used for creation and evaluation.
was developed using the time-limited dataset. In all, four

PNN classifiers and the optimal results obtained from them

are depicted in Table 7. Note that the input patterns to all

these PNN models are three-dimensional, consisting of

Logcv-D3, Logcv-E3 and Logcv-F3 (i.e., logarithms of

coefficient of variation in speed (Logcvs) at stations D, E

and F during time slice 3).

To compare across various models we may observe that

the PNN model improves its performance (i.e., reasonable

crash identification rate at moderate false alarm rate) when

the roadway alignment is incorporated into the classes to be

identified (results shown in second row, Table 7). The

topology of this network is shown in Fig. 5. The

classification performance also improved when time-limited

dataset was used for classification between crash and non-

crash (i.e., without including the roadway alignment; results

shown in the fourth row in Table 7).

It was not possible to develop a time-limited model that

accounts for the roadway alignment using these data since

relying on the time-limited dataset separating the crashes

belonging to straight and curved sections would have

resulted in insufficient evaluation sample size. Another point

to be noted here is that there is no marked difference between

the performances of classical and modified PNN. This

implies that in this dataset whether the Euclidean or statistical

distance is applied as a measure of nearness in the PNN

models, no difference is observed. The reason might be that

the three Logcvs used as inputs are equally important and

explain the variance in the data in almost equal proportions.

3.1. Proposed real time application

The results from the PNN classifiers show that it is

possible to identify more than 70% of the crashes at a
reasonable bfalse alarmQ rate using the traffic speed loop

data collected from a series of three consecutive loop

detector stations, 10–15 minutes prior to the crashes. The

real-time application of the models developed here is

conceptually simple. On a stretch of a freeway one may

collect data from sets of three consecutive loop stations

(e.g., a series of 10 loop detectors on a freeway section)

which may be divided into sets of three detectors as (1, 2

and 3), (2, 3 and 4), (3, 4 and 5), and so on. The logarithm of

coefficients of variation in speed for five minute interval can

be continuously calculated and subjected to the PNN

models. If patterns emerging from any set of detectors is

classified as crash, the freeway segment in the vicinity of the

station most downstream of the set of three (as it will

correspond to station bF;Q station of the crash), may be

flagged as a potential crash location.

Once a location is identified for having high potential of

crash occurrence it may be flagged with warnings issued

through variable message signs (VMS). However, warning

the drivers about an impending crash needs more inves-

tigation. The effects of such warnings on drivers need to be

thoroughly studied. Also, the concept of variable speed

limits could be used to intervene and reduce the variation in

speeds. Higher speed limits on upstream while lower speed

limits on the downstream of a potential crash location,

identified by the crash prediction model, could be the basic

strategy in applying variable speed limits.

The strategies suggested in this study require extensive

research before they may be implemented in the field.

However, as an immediate application of the model, some

freeway locations that show the hazardous speed variability

due to their configuration (e.g., presence of onramp) may be

identified. The drivers merging on the freeway through such

onramp locations may be warned abut the existing/impend-



ing conditions on the freeway. Interstate-4 segment in the

vicinity of SR 408 (East-west Expressway) onramp on to I-4

(Eastbound) is one such location with a high number of rear-

end crashes. Another possible application for the model may

be to have the crash mitigation squad ready near to the

locations with high potential of crashes.
4. Conclusions

The performance of multiple PNN models having

different combinations of Logcvs (logarithms of coefficient

of variation in speed) and average occupancy as input was

examined. It was observed that the model achieving optimal

classification performance included Logcvs observed 10–15

minutes prior to crash occurrence from three stations: the

station of the crash and two stations immediately preceding

it in the upstream direction. The parameters used as inputs

represent balarmingQ traffic conditions, with coefficient of

variation defined as standard deviation of speed in five-

minute intervals divided by the average speed over the same

interval. Lower speeds associated with high variance

(resulting in a high value for coefficient of variation)

measured on loop detectors depict frequent formation of

queues followed by their quick dissipation. In practice these

are crash (in fact rear-end crash) prone driving conditions

where the drivers need to be very alert while following the

vehicles ahead since they would have to slow down and

speed up again very often.

The performance of the PNN classifier improves when

additional information regarding alignment of the roadway

at crash location is provided to the model by increasing the

number of classes. Inclusion of time of the day (day time

or late night) doesn’t improve the performance of the

models. When a time-limited dataset (excluding late-night

crashes) was used for training and evaluation of neural

networks, the best model, in terms of overall classification

accuracy, was achieved. In fact it may always be difficult

to predict late-night crashes, since so many of them appear

to be caused by sporadic driver errors rather than any

turbulence in the traffic flow. The authors also acknowl-

edge the fact that these models are developed using data

from a dense urban segment of the freeway where the

traffic, crash, and geometric characteristics remain largely

uniform (i.e., same AADT/peak hour, little or no variation

in the geometry along the segment, and mostly rear-end

crashes caused by frequent formation and dissipation of

ephemeral queues). Hence, these models would perform

much better while predicting crashes in the congested

regime than compared to a free-flow regime. To predict

crashes in the free flow regime, the study area would need

to be expanded thereby allowing for diversity in traffic,

geometric, and crash characteristics.

The study demonstrates the applicability of loop detector

data for identifying crash prone conditions (especially of
rear-end type). Once a potential crash location is identified

in real-time, measures for reducing the speed variance may

be taken in order to reduce the risk. The strategy for such

measures, however, should be carefully investigated prior to

field application.
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