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ATMS Implementation System for Identifying Traffic
Conditions Leading to Potential Crashes

Mohamed Abdel-Aty and Anurag Pande

Abstract—Predicting a crash occurrence is the key to traffic
safety. Real-time identification of freeway segments with high
crash potential is addressed in this paper. For this study, his-
torical crashes and corresponding traffic-surveillance data from
loop detectors were gathered from a 36-mi corridor of Interstate
4 for 4 years. Following an exploratory analysis, two types of
logistic-regression models (i.e., simple and multivariate) were de-
veloped. It was observed that, although the simple models have
the advantage of being tolerant in their data requirements, their
classification accuracy was inferior to that of the final multivariate
model. Hence, the simple models were used to deduce time–space
patterns of variation in crash risk while the multivariate model
was chosen for final classification of traffic patterns. As a sug-
gested application for the simple models, their output may be
used for the preliminary assessment of the crash risk. If there
is an indication of high crash risk, then the multivariate model
may be employed to explicitly classify the data patterns as leading
or not leading to a crash occurrence. A demonstration of this
two-stage real-time application strategy, based on simple and mul-
tivariate models, is provided in the paper. The output from these
model-processing real-time loop-detector data may be utilized by
traffic-management authorities for developing proactive traffic-
management strategies.

Index Terms—Advanced traffic management, advanced traffic
management system (ATMS), crash prediction, crash risk, real-
time implementation.

I. INTRODUCTION

T RAFFIC safety studies are categorized into two groups
according to Golob et al. [1]. The first group is called

the aggregate studies, where units of analysis represent counts
of crashes or crash rates for specific time periods (typically
months or years) and for specific spaces (specific roads or
networks) and the traffic flow is represented by parameters
of the statistical distributions of traffic flow for similar time
and space. Disaggregate studies belong to the second group,
in which units of analysis are crashes themselves and the traffic
flow is represented by parameters of the traffic flow at the time
and the location of each crash.

Traditional traffic-safety literature [2], [3] has been more
or less focused on crash frequency/rate estimation and hence
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belongs to the former category. However, the approach is not
sufficient to “predict” crashes in real time using traffic-flow
variables measured from loop detectors in an advanced traffic
management system (ATMS) environment. There is a need to
estimate models that use dynamic flow variables as inputs and
determine whether or not they would lead to a crash occurrence.
This approach belongs to the later category (i.e., the disaggre-
gate studies), which are relatively new and are made possible
by the proliferation of data collection and analysis capabilities
in the field of intelligent transportation systems (ITS).

The essential premise of this approach involves identifying
patterns in the traffic-surveillance data observed prior to his-
torical crashes. The traffic-surveillance systems may then be
enhanced to detect the identified patterns in real-time data.
A reliable identification of such patterns could pave the way
for developing proactive strategies to avoid crashes, such as,
warning(s) to the motorists and variable speed limits. However,
in this paper, the scope has been limited to show the potential of
statistical models for reliable identification of these crash-prone
conditions on the freeway.

These models would be a substantial advancement in the
field of traffic management due to their potential contribution
towards traffic safety as well as freeway operations. In this
regard, a crash-prediction model was developed for the 13-mi
central corridor of Interstate 4 in Orlando in one of our previous
studies [4]. The model achieved satisfactory crash identification
and demonstrated the feasibility of predicting crashes in real
time. The model was developed using data from a small urban
segment of the freeway with the crash data spanning a short
period of time (8 mo).

For this study, the crash data were expanded to include
3755 crashes that occurred during a 4-year period (from 1999
through 2002) on a 36-mi instrumented corridor of Interstate
4 in Orlando metropolitan region. Out of these 3755 crashes,
the corresponding loop data were available for 2046 crashes.
A matched case-control dataset consisting of traffic data corre-
sponding to the crash (case) and five matched noncrashes (con-
trols) were created as per requirements of the analysis technique
adopted. The idea of matched case-control analysis is to explore
the effects of independent variables of interest on the binary
outcome while controlling other confounding variables through
the design of study. In the context of this research, crash versus
noncrash is the binary outcome with traffic parameters being
the independent variables. The design of the study controls the
external factors such as geometric design of the freeway, time
of the day, day of the week, etc. Simple (one covariate) and
multivariate logistic-regression models were developed based
on this attractive sampling technique. Based on the results from
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these models, a two-stage implementation plan for the reliable
real-time identification of crash-prone conditions is proposed.

II. BACKGROUND

The study by Hughes and Council [5] was among the first
studies aiming at real-time preemptive crash prediction. The
relationship between freeway safety and peak period operations
was explored using loop-detector data. Traffic-flow consistency,
as perceived by the drivers, was identified as one of the factors
associated with a crash occurrence. Lee et al. [6] developed a
log-linear model to predict crashes through the estimation of
crash precursors from loop-detector data. In a later study by the
same authors [7], the aforementioned model was refined. The
coefficient of temporal variation in speed was shown to have
a relatively longer term effect on the crash potential than the
density, while the effect of average variation in speed across
adjacent lanes was found to be insignificant.

Oh et al. [8] developed Bayesian classifiers to classify
patterns as leading or not leading to crash and argued that a
5-min standard deviation of speed was the best indicator of
“disruptive” traffic conditions leading to a crash as opposed to
“normal” freeway traffic. In our previous study [9], we used a
probabilistic neural network (PNN) as the classification algo-
rithm and demonstrated the feasibility of “predicting” crashes
at least 10 min in advance.

In some of the more detailed recent studies, Golob and
Recker [10] and Golob et al. [1] concluded that the collision
type is the best explained crash characteristic and that it is
related to the median speed and left and interior-lane variations
in speed. Moreover, it was observed that the severity of crashes
tracks the inverse of the traffic volume and is influenced more
by the volume than by the speed. Based on these results, in
one of their later studies, Golob et al. [11] used loop data
corresponding to more than 1000 crashes over six major free-
ways in Orange County, California, and developed a software
tool called Flow Impacts on Traffic Safety (FITS) to forecast
the type of crashes that are most likely to occur under the
traffic conditions being monitored. A case study application
of this tool on a section of SR-55 was also demonstrated.
Findings from the aforementioned studies point towards the
potential application of real-time traffic data in the field of
traffic safety. However, crashes usually involve a complex in-
teraction between traffic, geometric, and environmental factors.
It is difficult to explicitly account for wide range of these
factors in any of the modeling frameworks proposed by the
aforementioned studies.

In one of our earlier studies [4], we argued that the accuracy
of real-time crash identification may be increased if the model
utilizes information on traffic-flow characteristics for both crash
and noncrash cases while controlling other external factors
(thereby implicitly accounting for factors such as the geome-
try and the location). This is known as matched case-control
analysis, where each case refers to a crash and control refers
to a noncrash case. The 5-min average occupancy measured
upstream and the coefficient of variation in speed measured
downstream of the crash location were identified to be the most
significant crash precursors in the study. The logistic-regression

model developed using these two parameters as inputs achieved
satisfactory classification accuracy [4].

Despite this attractive modeling approach, the study was lim-
ited in scope due to insufficient data. Only 8 mo worth of crash
data were collected for a small largely urban corridor. Due to
largely uniform traffic and crash characteristics on the freeway
segment, the transferability of the model remained suspect. In
this study, the database has been expanded to include crashes
spanning 4 years on a 36-mi freeway corridor. Moreover, a two-
stage online application strategy has been proposed in order to
identify real-time “black spots” on the freeway corridor under
consideration.

III. METHODOLOGY

The purpose of the proposed matched crash–noncrash analy-
sis is to explore the effects of traffic-flow variables while con-
trolling for the effects of other confounding variables through
the design of the study. In this section, a brief description
of sampling and modeling methodologies is provided in the
context of the present research problem.

A. Sampling Technique

Under a matched crash–noncrash study design, all crashes
are selected first. For each crash, parameters such as location,
time of day, day of the week, etc., associated with it are selected
as matching factors. A subpopulation of noncrashes is then
identified using these matching factors. For example, for a crash
at certain freeway location on a Monday, a subpopulation of
noncrash cases would consist of observations on traffic-flow
variables obtained from the same location at the same time but
over all other Mondays of the same year. A total of m noncrash
cases are then selected at random from each subpopulation of
noncrash cases. The m + 1 observations (1 crash and m non-
crash cases) form one stratum. Within the stratum, differences
between crash and noncrash traffic characteristics may then
be utilized for estimation of statistical model(s) for the binary
target. This is accomplished under the conditional likelihood
principle of the statistical theory.

B. Modeling Technique

Suppose there are N strata with one crash and m non-
crash cases in stratum j, j = 1, 2, . . . , N . Let the probability
of the ith observation in the jth stratum being a crash be
pj(xij); where xij = (x1ij , x2ij , . . . , xkij) is the vector of
k traffic-flow variables x1, x2, . . . , xk; i = 0, 1, 2, . . . ,m; and
j = 1, 2, . . . , N . The probability pj(xij) may be modeled using
a linear logistic-regression model as follows:

logit (pj(xij)) = αj + β1x1ij + β2x2ij + · · · + βkxkij . (1)

Note that the intercept term would be different for different
strata. It summarizes the effect of parameters used to form
the strata on the probability of a crash occurrence. In order to
account for the stratification in the analysis, one may construct
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a conditional likelihood. This conditional likelihood function
is the product of N terms, each of which is the conditional
probability that the crash in the jth strata is the observation
that involves a vector of explanatory variables x0j where
x0j , x1j , . . . , xmj are the vectors of explanatory variables in
the jth stratum. The mathematical derivation of the relevant
likelihood function is quite complex and is omitted here. The
reader may consult [12] for a full derivation of the conditional
likelihood function that can be expressed as

L(β) =
N∏

j=1

[
1 +

m∑
i=1

exp

{
k∑

u=1

βu(xuij − xu0j)

}]−1

(2)

where parameters β are the same as in (1). The likelihood func-
tion L(β) is independent of the intercept terms α1, α2, . . . , αN .
Therefore, the effects of matching variables cannot be esti-
mated, and (1) cannot be used to estimate crash probabilities.
However, note that the values of the β parameters that would
maximize the likelihood function [given by (2)] are also esti-
mates of β coefficients in (1). These estimates can be used to
approximate the relative risk of a crash occurrence in terms of
the log-odds ratio.

The odds ratios can also be used to classify observations
under this matched case-control framework [13]. To see this,
consider two observation vectors x1j = (x11j , x21j , . . . , xk1j)
and x2j = (x12j , x22j , . . . , xk2j) from the jth strata. From (1),
one may verify that the log-odds ratio of a crash occurrence due
to traffic-flow vector x1j relative to vector x2j would be

log




p(x1j)
[1−p(x1j)]

p(x2j)
[1−p(x2j)]


 = β1(x11j − x12j) + β2(x21j − x22j)

+ · · · + βk(xk1j − xk2j). (3)

The right-hand side (RHS) of this log-odds ratio is in-
dependent of αj and can be estimated using the estimates
for β coefficients. We may utilize the relative log-odds ratio
[from (3)] for the classification of individual observations by
replacing x2j with the vector of values for the traffic-flow
variables representing “normal” traffic conditions in the jth
stratum. One may conveniently use a simple average of all
noncrash observations within the stratum for each variable.
If we let x2j = (x12j , x22j , x32j , . . . , xk2j) denote the vector
of average values for the k variables over m noncrash cases
within the jth stratum, then the log odds of a crash relative to a
noncrash may be approximated by

log




p(x1j)
[1−p(x1j)]

p(x2j)
[1−p(x2j)]


 = β1(x11j − x12j) + β2(x21j − x22j)

+ · · · + βp(xk1j − xk2j). (4)

The above log-odds ratio can then be used to separate
“normal” conditions from crash-prone conditions by establish-
ing an appropriate threshold.

IV. DATA COLLECTION AND PREPARATION

Crash data and the corresponding traffic data collected
through underground sensors on Interstate 4 (I-4) are used in
this study. These sensors record and archive following traffic-
flow parameters every 30 s from three lanes of the freeway
in each direction: average vehicle counts, average speed, and
lane detector occupancy. These data are collected on I-4 from
69 stations spaced at approximately 1/2 mi on a 36-mi stretch
of the freeway. The crash data were collected from the Florida
Department of Transportation (FDOT) crash database for the
years 1999–2002.

First, the location for each crash that occurred in the study
area during this period was identified. For every crash, the
loop-detector station nearest to its location was determined
and referred to as the station of the crash. The precrash loop-
detector data from stations surrounding the crash location were
collected based on the adjusted time of historical crashes esti-
mated through a shock wave and the rule-based methodology
[14]. Traffic data were extracted for each crash and noncrash
cases corresponding to each crash. The correspondence here
means that, for example, if a crash occurred on April 12, 2002
(Monday) 6:00 P.M. on I-4 in the eastbound direction and the
nearest loop detector was at station 30, data were extracted from
station 30 at four-loops upstream and two-loops downstream
of station 30 for a 30-min period prior to the estimated time
of the crash for all Mondays of the year at the same time.
Thus, this case will have a loop-data table consisting of the
speed, the volume, and the lane-occupancy (percent of time the
loop is occupied by vehicles) values for all three lanes from
the loop stations 26–32 (on the eastbound direction) between
5:30–6:00 P.M. for all the Mondays of the year 2002 including
the day of the crash (crash case). This matched sampling essen-
tially controls for external factors affecting the crash occurrence
such as driver population, time of day, day of week, location on
the freeway, etc. (thus implicitly accounting for these factors).
More details on this sampling technique, the application of the
methodology, and data cleaning may be found in our earlier
study [4].

The raw 30-s loop data have random noises and are difficult
to work with in a modeling framework. Therefore, the 30-s
raw data were combined in the forms of 5-min averages and
standard deviations. Thus, the 30-min period was divided into
six 5-min time slices (a 3-min aggregation was also attempted,
but 5-min was preferred—see [14]). The series of seven stations
was named “B”–“H,” respectively, with “B” being farthest
station upstream and so on. It should be noted that “F” would be
the station closest to the location of the crash with “G” and “H”
being the stations downstream of the crash location. Similarly,
six 5-min time slices were denoted 1–6. The interval between
the time of the crash and 5-min prior to the crash was named as
time slice 1, the interval between 5–10-min prior to the crash as
time slice 2, the interval between 10–15 min prior to the crash
as time slice 3, and so on.
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Using data from only the specific lane of the crash would
have reduced the size of the dataset to about 30% of the
original crash sample due to the fact that the loop data from
the specific lane of the crash were often missing. Therefore,
in the final dataset, averages and standard deviations were ob-
tained using parameter (speed, volume, and occupancy) values
over the three lanes. Hence, the averages (and standard devi-
ations) at the 5-min level were calculated using 30 (3 lanes ∗
5 min ∗ 2 observations/min) observations. Therefore, even if
at a location where the loop detector from a certain lane was
not reporting data, there would be observations (either 10 from
one lane or 20 from two lanes) available to obtain a measure of
the traffic conditions at that location. This not only increased
the sample size to more than 2000 crashes but also helped
in developing a system more robust for loop failures, since
all three lanes at loop-detector stations are less likely to be
simultaneously unavailable. Another advantage is that these
aggregated measures not only capture temporal variations (or
lack there of) of parameters on the freeway, but their variations
across the three lanes as well. This issue has been investigated
thoroughly in [14].

This dataset with 2046 matched strata included all types of
crashes. The type of crash information available in the FDOT
crash database was utilized to retain only multivehicle crashes.
The ambient traffic characteristics are more likely to affect
crashes involving interaction among vehicles rather than the
single-vehicle crashes (which were removed from the dataset,
since single-vehicle crashes are more likely to be caused by
errors on the part of individual drivers). The resulting dataset
had 1528 matched strata available for analysis. For each of
the seven loop detectors (B–H) and six time slices (1–6) men-
tioned above, the values of means (AS, AV, AO) and standard
deviations (SS, SV, SO) of speed, volume, and occupancy,
respectively, were available for all crashes and the correspond-
ing noncrash cases in every strata. Due to data availability
issues, there were different numbers of controls (noncrash
cases) for each case (crash). To carry out matched case–control
analysis, a symmetric dataset was created (such that each crash
case in the dataset has the same number of corresponding
noncrash cases as controls) by randomly selecting five noncrash
cases for each crash.

In addition to the aforementioned dataset, we also created a
pseudo case-control dataset in which six random noncrash cases
in each stratum were selected, and one of them was assigned
as a (pseudo) crash while all the real crash cases were dropped.
The results from this dataset were analyzed in order to delineate
the differences between real and pseudo case-control datasets.

V. MULTIVARIATE LOGISTIC-REGRESSION MODEL

A. Data Analysis

From each of the seven loop detectors (B–H) and six time
slices (1–6) mentioned above, the values of averages (AS, AV,
AO) and standard deviations (SS, SV, SO) of speed, volume,
and occupancy, respectively, were used one at a time as the
a risk factor (i.e., the independent variable) in a logistic-
regression model. In the logistic-regression setting, the output
of these simple models would be the hazard ratio for the

parameter used as a covariate in the model. The hazard ratio
for an explanatory variable with a regression coefficient β is
defined as exp(β) [15].

These hazards ratios, computed by exponentiating the pa-
rameter estimates, are useful in interpreting the results of the
analysis. If the hazards ratio of a prognostic factor is greater
than 1, an increment in the factor increases the hazard rate.
If the hazard ratio is less than 1, an increment in the factor
decreases the hazard rate [13].

An exploratory analysis with these 5-min averages and
standard deviations of speed showed that the hazard ratio for the
standard deviation of speed were all greater than unity, while
they were all less than one for the average speeds at stations
B–H and time slices 1–6. Thus, the coefficients of the variation
in speed, if used as independent variables, were expected to
result in hazard ratios substantially greater than 1. Therefore,
we combined averages and standard deviations of speed,
occupancy, and volume into the variables CVS, CVO, and CVV
(coefficients of variation of speed occupancy, and volume,
respectively, expressed in percentage as (SS/AS) ∗ 100,
(SO/AO) ∗ 100, and (SV/AV) ∗ 100). A logarithmic
transformation was applied to these coefficients of variation
due to the skewed nature of their distributions. It was found that
the variables LogCVS, AO, and SV had the most significant
hazard ratios.

The results of stratified conditional simple (involving one
covariate) logistic-regression models were further examined
for these three variables (LogCVS, AO, and SV) over each of
the seven loop detectors and six time slices to identify the time
duration(s) and the location of loop detector(s) whose traffic
characteristics are significantly correlated with the binary target
(crash versus noncrash). This was accomplished by estimating
the hazard ratio using a proportional hazard regression
analysis [proportional hazard regression (PHREG) of statistical
analysis system (SAS)] for each of the 126 (seven stations ∗
six time slices ∗ three parameters, i.e., LogCVS, AO, and SV)
parameters. The outputs of 126 models were the hazard ratios
for these variables at various stations and time slices along
with the p-values for the test indicating whether the values are
significantly different from unity. A hazard ratio is an estimate
of the expected change in the odds of having a crash. Therefore,
if the output hazard ratio of a variable is significantly different
from one and, for example, is equal to two, then increasing
the value of this variable by one unit would double the risk
of observing a crash at station F (station of the crash). The
arrangement used for stations (B–H) and time slices (1–6)
is crucial for generating the patterns of a crash risk and its
“propagation” in a time–space framework. These 126 single
covariate models were estimated for corresponding hazard
ratios using the pseudo matched case-control dataset as well.

B. Results

It was noticed that the hazard ratio for LogCVS and AO
increases as we approach the station of the crash (station F) and
the time of the crash (slice 1). The values of the hazard ratio for
AO were low (i.e., closer to 1.0) yet statistically very significant
(indicated by the chi-square statistic and the p-value). The
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Fig. 1. Time–space pattern of the hazard ratio for LogCVS obtained from a 5-min combined lane dataset for multivehicle crashes.

reason for the low value is that the occupancy usually changes
by 1% quite frequently on freeways. Therefore, it is more
meaningful to represent the increased risk of observing a crash
resulting from a 10% increase in occupancy. This modified risk
ratio can be obtained by raising the hazard ratio to the power 10.
For all SV parameters, hazard ratios were found to be less than
one and appeared to be decreasing as the time and the station
of a crash are approached from the downstream direction. Note
that the value of the hazard ratio significantly different from 1
(and not necessarily a high value) makes the variable a better
crash precursor. In this regard, hazard ratios for SV indicates
that, as this parameter becomes smaller at certain freeway sec-
tions, the crash risk apparently increases at locations upstream
of these sections. Generally, it can be argued that a higher
LogCVS, AO value and a lower SV value increase the likeli-
hood of crashes. For LogCVS, this trend is observed starting
at about 1–1.5-mi upstream of the crash location (from station
D); it is considerably clear at about 0.5 mi upstream and also
downstream. Based on the temporal variation trends in hazard
ratios, it was concluded that the “ingredients” for an impending
crash may be observed about 15 min before its occurrence.

To ascertain the fact that these results are depicting associa-
tions of certain traffic parameters with a crash occurrence and
not some random patterns in the data, we analyzed hazard ratios
from the pseudo case-control dataset. As expected, the trends
in the resultant hazard ratio were either nonexistent (as was the
case with LogCVSs and SVs with hazard ratios not significantly
different than unity) or reversed (as was the case with AOs with
hazard ratios significantly less than unity).

To understand the patterns of the crash risk with respect to the
time and the location of the crash in a time–space framework,
we generated contour plots of hazard ratios corresponding
to three parameters (LogCVS, AO, and SV). One such plot,
with hazard ratios for LogCVS at various time-slice–station
combinations as the contour variables, is shown in Fig. 1.
These hazard ratios essentially represent the risk of observing a
multivehicle crash at station F attributable to the value of 5-min

LogCVS recorded at surrounding stations during the period
leading to the crash. According to the color scale provided
alongside the plot, it may be seen that the dark colored regions
represent high hazard ratios and thereby indicating more
risk. Note that these hazard ratios were generated from the
1:5 dataset including one crash and five noncrashes in each
stratum. As mentioned earlier, these trends were expectantly
nonexistent when the pseudo matched dataset was used to es-
timate the hazard ratios. The contour plots for the hazard ratios
corresponding to the LogCVS values from the pseudo dataset
essentially represent “normal” traffic conditions on freeways.

It may be seen in Fig. 1 that the region around station F
remains fairly dark (i.e., crash prone) for about a 20-min
period, while upstream and downstream sites (stations E and
G, respectively) also show a high risk for about a 15–20-min
period before observing a crash. These results are significant
since they allow leverage in terms of time to anticipate an
impending crash. It is also important to note that the clearest
trends in the hazard ratio were depicted by the contour plot
corresponding to LogCVS, with a stark contrast between the
locations of crash and the surrounding stations. The contour
plots corresponding to hazard ratios for parameters SV and AO
(not shown here) also exhibited similar trends.

VI. MULTIVARIATE LOGISTIC-REGRESSION MODEL

A. Data Analysis

The results from the exploratory analysis showed that the
three parameters, namely, LogCVS, SV, and AO are most
significantly associated with a crash occurrence. These three
parameters correspond to 126 potential independent variables
(three parameters measured from seven stations during six time
slices) for the final model. Also, based on the results from the
previous section, we can discard parameters from stations B,
C, and D. Even though the hazard ratios for parameters from
these stations were significantly different from unity, they were
less significant than their counterparts belonging to stations E,
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TABLE I
FINAL MODEL DESCRIPTION

F, G, and H. Essentially, it means that any variable selection
procedure examining these factors together (from stations B, C,
D, E, F, G, and H) would invariably show the factors from the
three upstream stations (stations B, C, and D) as insignificant.

One might argue that, even if that is the case, we should still
examine both full and reduced models and make the decision
about critical stations based on the classification accuracy. This
would not be a good idea since the modeling procedure requires
all variables used in the model to be nonmissing (i.e., complete-
case analysis) in order to use any observation from the dataset
for model building. It should be understood that the data from
seven stations would not be simultaneously available at all
times due to intermittent hardware failures. It means that some
independent variables will be missing in certain observations.
The number of observations, which have no variables missing
and hence may be used for model building, would be reduced
drastically if a lot of independent variables are examined. To
illustrate this point, let us assume that each of the k variables
can be missing completely at random with a probability α; then,
the expected proportion of complete cases will be (1 − α)k. For
example, 1% missing values (missing completely at random) in
each of the 126 potential input variables would leave only 28%
of complete cases on an average. Note that, with this example,
we are not trying to estimate the cases available for a complete-
case analysis, but it is provided to illustrate the reduction in the
sample size as the number of potential input variables increases.

Also, even though time duration 1 (0–5 min) prior to a crash
exhibited significant hazard ratios, it is too close to the actual
time of the crash and thus not useful in practice for crash-
prediction models. This time duration is thus ignored from
further considerations.

For each of the remaining five time slices (time slice 2–6), we
have 12 traffic-flow variables LogCVS, SV, and AO from four
loop-detector stations (stations E, F, G, and H). To identify the
most significant variables from each time slice among the set of
these 12 variables, the binary variable “Y ” is modeled using
stratified conditional logistic regression. The SAS procedure
PHREG allows one to identify significant variables within
this framework using standard automatic search techniques:
stepwise, forward, and backward. A full description of the
three automatic search procedures can be found in [16]. The
β coefficients are obtained for significant variables found by
these three search procedures.

These procedures resulted in three significant variables
for time slice 2 (5–10 min before a crash occurrence):

LogCVSF2 = log10(CVS) at station F (the station of the
crash), AOG2 = AO at station G (the downstream station), and
SVG2 = SV at station G (the downstream station). All other
variables were found to be statistically insignificant. Similar
search procedures from subsequent time slices resulted in
slightly different models involving variables measured during
time slice 3, 4, and so on. The model belonging to which time
slice should be used was decided based on the classification
accuracy achieved from the models. The model with input para-
meters from time slice 2 was found to be the best in this regard.

The final logistic-regression model included three variables:
LogCVSF2, AOG2, and SVG2. The details of the final model
are provided in Table I. The table provides model degrees of
freedom, estimates for the model coefficients and the standard
error, chi-square test statistic along with the p-value, and the
corresponding hazard ratio for each parameter. Although the
model is developed for binary classification, it is essential to
establish links between the factors entered in the model and
the crash occurrence. The premise of the approach adopted
here involves identifying patterns in the loop-detector data that
are observed prior to historical crashes. Without the existence
of a real relationship between model parameters and crashes,
it can be argued that the identified patterns in the loop data
have a mere correlation with the crash occurrence rather than
a causal relationship. This argument would mean that the
estimated statistical model(s) cannot be used to identify crash-
prone conditions in the future.

However, it is not the case here, since significant traffic
parameters and their model coefficients could be traced as con-
tributing to crash-prone conditions on the freeway. A positive
coefficient for LogCVSF2 indicates that the high coefficient
of variation at a certain freeway location leads to frequently
forming and dissipating queues and in turn leading to condi-
tions in which drivers need to slow down and speed up quite
often and be very attentive in following the vehicles ahead of
them. SVG2 has a negative β coefficient implying increasing
odds of a crash as this parameter decreases. The signs of
the coefficients indicate (positive for LogCVSF2 and negative
for SVG2) that a high variation in speeds with little or no
difference in volume across lanes might cause drivers in the
slow lane to make lane changes; resulting in increased odds of
experiencing a crash. The other factor AOG2 in the model also
has a positive coefficient, indicating that a high occupancy at the
station downstream of the crash site 5–10 min before the crash
increases the odds of a crash occurrence. This observation may
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TABLE II
(a) CLASSIFICATION RESULTS FROM THE MULTIVARIATE MODEL ON THE

DATASET USED TO DEVELOP THE MODEL. (b) CLASSIFICATION RESULTS

FROM THE SIMPLE MODEL WITH LogCVSF2 AS THE COVARIATE

ON THE DATASET USED TO DEVELOP THE MODEL

be associated with the backward propagation of a congested
flow regime, which in turn could increase the probability of
observing a rear-end crash.

B. Classification Accuracy of the Models

As previously explained in the modeling-methodology sec-
tion, the odd ratio given by (4) may be used to classify crash
and noncrash cases. We first calculated the averages of the three
variables LogCVSF2, AOG2 and SVG2 over five noncrashes
within each of the 1528 matched strata in the dataset. For the
jth-matched stratum, the vector x2j in (4) may be replaced
by the vector of these noncrash means. The odds ratios for
each observation in the dataset are then calculated based on
(4), utilizing β coefficients from Table I with the vector x1j

being the observation from the dataset. An observation may be
classified as a crash if the corresponding odds ratio is greater
than 1 and as a noncrash if the ratio is less than or equal to 1.
The classification table resulting from this rule for the 1:5
matched dataset is shown in Table II(a). It may be observed
that more than 62.41% of crashes are identified using this
threshold for the odd ratio. Table II(b) depicts the classification
performance of one of the simple models (i.e., the model with
LogCVSF2 as the only covariate) at the same threshold for the
odds ratio. The simple model with LogCVSF2 was chosen to
generate the comparison classification table, since it was the
single most significant model of all one-covariate models. By
comparing the two tables, it may be seen that the misclassi-

Fig. 2. Classification performance of the multivariate model: Cumulative
proportion of crashes above and noncrash cases below a range of odds-
ratio-threshold values (the gray curve denotes proportion of crashes and the
black curve denotes proportion of noncrash cases).

fication rate is higher on crash as well as noncrash cases for
the simple model. While simple models have the advantage due
to their data requirement, the decision regarding the selection
of models must be made based on the classification accuracy.
Therefore, the multivariate model is recommended for a reliable
classification of the patterns.

The threshold (chosen to be equal to 1 here) on odds ratio
may be varied in order to achieve a desirable classification
given the tradeoff between the overall classification accuracy
(crash and noncrash) and the crash identification. Cumulative
proportions of crashes above and noncrashes equal or below a
range of these odd ratios were determined and plotted against
odd ratios in Fig. 2 (only odds-ratio threshold less than or equal
to 5 are shown on the horizontal axis). The figure provides the
proportion of crashes and noncrashes correctly classified as a
function of the chosen odds-ratio threshold. It may be seen that,
on this dataset, the threshold of unity provides a reasonable
balance between the two conflicting attributes (i.e., overall clas-
sification and crash identification) and hence is recommended
as the cutoff value. However, in a real-time application, this
threshold might be altered based on considerations such as
time of day, day of the week, or freeway operation regime.
For example, during a free-flow operation (characterized by
high speeds), a lower value of odds ratio may be used as the
threshold so that most of the crashes are identified even if that
increases the number of “false-alarms” because speed is known
to be positively associated with the severity of crashes.

VII. IMPLEMENTATION PLAN

A. Phase 1—Simple Model(s) Implementation: Procedure and
Data Requirement

The single-covariate (i.e., simple) models need information
from only one loop-detector station at a time. It makes these
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TABLE III
HAZARD RATIOS FROM SINGLE COVARIATE MODELS CONSISTING OF

LogCVS FROM FIVE STATIONS AND SIX TIME SLICES

models particularly attractive given the intermittent failures
of magnetic loops on certain stations. It also makes the data
processing faster for the online application. The output for each
of the simple models developed was the hazard ratio for the
corresponding covariate. According to its definition, the hazard
ratio multiplied by the value of corresponding covariate would
provide the measure of a crash risk relative to the situation if
the value of the covariate was zero.

For a real-time application, the instrumented freeway cor-
ridor can be divided into 69 (which is the total number of
loop-detector stations) sections of approximately 0.5 mi in each
direction, such that each loop detector remains at the center of
each such section. It is clear that for crashes occurring on any
of these sections, the corresponding station would be analogous
to station F (station of the crash), as defined earlier in the paper.
The series of 69 loop detectors on the corridor may then be
divided into sets of five stations as (1–5), (2–6), (3–7), and so
on up to (65–69). The sets of five detectors are chosen because
these stations would correspond to stations D–H (two upstream
stations, station F, and two downstream stations, respectively).
Note that hazard ratios for parameters from stations B and
C, the two stations located farthest upstream of the station
of the crash, were not as critically associated with a crash
occurrence as those from stations D–H. Therefore, the sets of
loop detectors chosen for the implementation strategy consist
of five stations (D–H) as opposed to the seven stations (B–H),
which contributed input parameters for simple models. Among
the three parameters (i.e., LogCVS, SV, and AO) LogCVS was
chosen for the preliminary assessment of the crash risk because
the contour plot depicting the time–space variation of the crash
risk (Fig. 1) based on LogCVS showed a stark contrast between
the location that experienced a crash and the locations that did
not. The values of the hazard ratios corresponding to LogCVSs
measured at these five stations (D–H) during the six time slices
are shown in Table III.

With the hazard ratios for LogCVS from station D–H (shown
in Table III), one can observe the change in the crash risk on
the basis of changes in LogCVS and update it in real time.
The update may be done on a continuous basis as soon as new
observations are recorded in real time. For example, we first
calculate the LogCVS based on ten most recent observations
available. Then, after 30 s as the latest observation (since

loop data are updated every 30 s) come in, the data may be
included in the calculation of LogCVS, replacing the farthest
observation. The LogCVS measured at different stations may
be multiplied by the corresponding hazard ratios to obtain the
measure of a crash risk for a period up to the next 30 min.
Hazard ratios corresponding to station D would be chosen if
the station is the most upstream of the set of five, to station G
if it is the most downstream, and to station F if it is the
station belonging to that particular section and so on. The
decision of selecting the time slice depends upon how much
time in advance are we trying to assess the crash risk. For
example, to obtain the risk of observing a crash within the next
10–15-min period, the hazard ratio(s) belonging to time slice 3
should be used; for the next 5–10 min, the hazard ratio(s) from
time slice 2 may be used. The measure of a crash risk may then
be plotted as a contour variable in a time–space framework.
Based on the patterns depicted by the continuously updated
plots, freeway locations with a high crash risk may be identified
in real time.

B. Implementation of Simple Models: Illustration

In this section, we illustrate how the crash risk and its vari-
ation on a freeway location may be observed through contin-
uously updated contour plots. The application is demonstrated
using historical loop-detector data belonging to a crash and a
noncrash case. Table IV shows a sample of LogCVS calculated
as a moving average from the actual historical traffic speed
data from a set of five detectors, starting at 15 min prior to the
time of crash. These data were collected prior to a real crash
that occurred on April 6, 1999 near station 34 at 4:35 P.M.
on Interstate 4 in the eastbound direction. The formulation of
LogCVS remains the same as in the modeling phase.

Table III depicted the hazard ratios corresponding to stations
D–H at all six time slices. In Table V(a)–(c), the process of
calculating the values for the contour variables (measure of
the crash risk obtained by multiplying LogCVS values with
the corresponding hazard ratios) is shown. In the first row of
Table V(a), 1.42 (the LogCVS value obtained from station 32,
which corresponds to station D, during the 5-min period of
4:14:30 to 4:19:30 P.M.) is multiplied by the hazard ratios for
station D corresponding to each of the six time slices to obtain
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TABLE IV
SNAP SHOTS OF 5-min LogCVS (VALUES UPDATED EVERY 30 s) CALCULATED AS A

MOVING AVERAGE STARTING AT 15 min PRIOR TO A CRASH OCCURRENCE

the measures of a crash risk for the next 30 min. In the second
row, 1.42 is replaced by 1.60, which happens to be the value of
LogCVS from station 33 (i.e., station E) during the last 5-min
period. The third, fourth, and fifth rows of the table are created
by multiplying the hazard ratios corresponding to stations F,
G, and H with the values of LogCVS at the corresponding
stations.

Table V(b) is generated through a similar procedure; the only
difference being that the values for LogCVS are now updated
based on the most recent speed observations. In Table V(c),
the values of the independent covariate LogCVS are fur-
ther updated based on the most recent speed observations. in
Table V(a), it may be noted that the values of LogCVS are high-
lighted in yellow (light color) to associate them with the obser-
vations from the same period of time (4:14:30–4:19:30 P.M.)
in Table IV. Similarly, in Table V(b) and (c), the updated values
for LogCVS are highlighted red (dark) and green (medium) to
associate them with the respective 5-min periods during which
these values were observed (Table IV).

Three contour plots depicting the variation in the crash risk
generated from these data are shown in Fig. 3(a)–(c). It can
clearly be seen that the region about station F remains dark,
indicating a high risk for a crash occurrence. It may be noted

that the values for the contour variable in Fig. 3(a) come from
the corresponding cells of Table V(a). The plot is updated
to Fig. 3(b) as soon as the new set of readings is recorded
(after 30 s). The values from Table V(b) are used to generate
the updated plot in Fig. 3(b), which eventually turns into
Fig. 3(c) after 30 s based on Table V(c). The updated patterns
do not differ much from their predecessor since most of the
observations contributing to the calculation of LogCVS remain
the same. Only three observations out of thirty (the number of
total observations used for computing required averages and
standard deviations) are updated after 30 s.

These figures may be contrasted with similar patterns gen-
erated for the same time of the day prior to a corresponding
matched noncrash case (On April 27, 1999 from the same set
of stations). These patterns are shown in Fig. 4(a)–(c). In a real-
time application of the models, the measures of risk may be
calculated continuously and the corresponding plots can be gen-
erated using the color scheme depicted on the side of each plot.
According to the color scale, the dark (red) colors represent
the regions of the contours where the measure of the crash risk
exceeds 6.0. There is no such region in Fig. 4(a)–(c), which cor-
respond to a matched noncrash case from the dataset. It should
be noted that the difference between the crash and noncrash
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TABLE V
(a) MEASURE FOR THE RISK OF OBSERVING A CRASH IN THE SEGMENT BELONGING TO STATION F WITHIN THE NEXT 30 min AT TIME 4:19:30 P.M.

(b) MEASURE FOR THE RISK OF OBSERVING A CRASH IN THE SEGMENT BELONGING TO STATION F WITHIN THE NEXT 30 min
AT TIME 4:20:00 P.M. (c) MEASURE FOR THE RISK OF OBSERVING A CRASH IN THE SEGMENT BELONGING

TO STATION F WITHIN THE NEXT 30 min AT TIME 4:20:30 P.M.

case is highlighted here to illustrate the application. However,
in some other cases, the difference may not be as clear.

The simple models are proposed to be applied in the first
phase of the proposed implementation plan. In the second and
final phase, a multivariate model employing data from three
stations would be applied to assess the crash risk for the next
5–10-min period. Keeping this in perspective, an effective
online application strategy would be to critically examine the
region in the contour plots (generated in the first phase of
the strategy) where the abscissa encompasses time slice 3.
It would provide a preliminary assessment for the risk of a
crash occurrence within the next 10–15 min. If the sequential
patterns of a crash risk appear hazardous, as is the case with
those depicted in Fig. 3(a)–(c), then the multivariate model can
be employed for a reliable classification of the patterns in loop

data. The application for the multivariate model is described in
the following section.

C. Phase 2—Application of Multivariate Models: Procedure
and Data Requirement

Following the detection of hazardous patterns through the
contour plots in the first phase; a multivariate model may be
applied for classification. As explained earlier, the odds ratio
can be calculated using (4) to classify the patterns in crash and
noncrash cases.

For this purpose, we first calculated the averages of the three
covariates included in the final model: LogCVSF2, AOG2, and
SVG2 over five noncrashes within each matched stratum of the
1:5 matched dataset. For the jth matched set, vector xk2j in (4)
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Fig. 3. (a)–(c) Illustrative pattern(s) of variation in measures for the risk of observing a crash in the segment belonging to station F updated every 30 s.

may be replaced by the vector of these noncrash means and the
most current values of the three variables can be used as xk1j

to calculate the odds ratio. Equation (4) with estimated values
of the parameters could be rewritten as




p(x1j)
[1−p(x1j)]

p(x2j)
[1−p(x2j)]


 = exp (1.21405(LogCVSF2 − .95164)

+ 0.02466(AOG2 − 13.26) − 0.19124(SVG2 − 2.56445)) .

(5)

The RHS of (5) represents the odds ratio. Note that the
βp (model coefficients) in (4) have been replaced with the

estimates of model coefficients for LogCVSF2, AOG2, and
SVG2, respectively. The values for the estimates of the three
model coefficients were shown in Table I. The vector xk2j has
been replaced with the averages of the three covariates over
the five noncrash cases of the stratum. The real-time values
for the three independent variables (LogCVSF2, AOG2, and
SVG2) may be used in (5) to obtain the odds ratio of having
a crash versus not having a crash. If the resultant odds ratio
exceeds unity, then the patterns may be classified as “crash
prone.” These odds ratios and the resultant classification may
also be updated in a way similar to the contour plots. To update
the odds ratios every 30 s, the oldest set of observations in the
5-min period may be replaced by the 30-s data most recently
recorded.
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Fig. 4. (a)–(c) Illustrative pattern(s) of variation in measures for the risk of observing a crash in the segment belonging to station F updated every 30 s for a
noncrash scenario.

D. Multivariate Model: Illustration

Table VI shows the historical values for the three covariates
included in the final model starting at 10 min prior to the same
crash, which was used to illustrate the application of the simple
models. These values are calculated on a continuous basis, i.e.,
the averages and standard deviations are calculated as moving
averages. The procedure to obtain the input parameters through
the moving average is same as that described in the implemen-
tation plan for the simple models. In the first row, three input
parameters (5-min average occupancy, 5-min standard devia-
tion of volume, and 5-min coefficient of variation in speed) are
obtained using 30 latest observations (5 min ∗ two observations
every min ∗ three lanes) from the corresponding stations. In

subsequent rows, parameters are updated using the most recent
speed, volume, and occupancy observations. The odds ratios
are calculated based on (5). The odds ratios of having a crash
versus not having a crash near station F for the observed values
of the independent variables are also shown in the table. It may
be seen that in all three instances, the odds ratio is greater than
unity; hence, the model classifies the data patterns as “crash
prone.” This was expected, since it is already known that a
crash did occur following these data patterns. Since the final
model included the parameters from time slice 2, the odds of a
crash occurrence within the next 5–10-min period are assessed.
It should be noted that the application of the model just requires
simple arithmetic calculations using traffic parameters and
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TABLE VI
OUTPUT FROM THE FINAL MULTIVARIATE MODEL WHEN APPLIED

ON THE HISTORICAL LOOP DATA PRIOR TO A CRASH

estimated logistic-regression coefficients (from Table I).
Hence, the model can be easily applied to real-time data.

VIII. SUMMARY AND CONCLUSION

The objective of this research was to develop a strategy
to identify crash-prone conditions on freeways in real time.
A detailed database was assembled for all crashes that oc-
curred on the instrumented corridor of Interstate 4 in the
period 1999–2002. Statistical links between turbulent traffic
conditions measured through loop detectors and crash occur-
rences were established. It was demonstrated that these links
may be used for identification of freeway “black spots” in
real time.

A logistic regression within a stratum matched case-control
study design was used as the analysis technique. The matched
design of the study implicitly accounts for external factors such
as the freeway geometry, time of the day, and day of the week.
Following an exploratory analysis, a series of simple (involv-
ing one covariate) models were estimated for the binary tar-
get (crash versus noncrash). A multivariate logistic-regression
model was also estimated through a stepwise variable selection
procedure. A 5-min coefficient of variation in speed at the loop-
detector station closest to the crash location was found to affect
the crash occurrence most significantly. In the final model, a
5-min average occupancy and a 5-min standard deviation of
volume (observed at the loop detector downstream of the crash
location) were also found significant. The final multivariate
model with these three input variables can be used to calculate
the odds ratio of observing a crash versus not observing a crash.
A threshold value on this ratio may be established to determine
whether the location has to be flagged as a potential “crash
location.” It was shown that using 1.0 as the threshold over
62% crashes can be identified by the model. It should be noted
that, even though the simple models achieved a classification
accuracy inferior to that of the final model, the advantage of
using those models is that they have tolerant data requirements.
In addition, it was shown that the results from simple one-
covariate models may be used to obtain a time–space variation
of the crash risk.

A two-stage real-time application plan for these models
was also proposed in the paper. The proposed plan essentially
involves a preliminary assessment of freeway traffic conditions

through the contour plots generated by applying simple models.
If these plots indicate a high risk of crash occurrence, the loop
data may be subjected to the multivariate model for classi-
fication. If the classification model identifies traffic patterns
from the loop detectors as “crash prone,” then the traffic-
management authorities can keep their crash mitigation squad
on alert so that the impacts of the impending crash occurrence
may be minimized. If these models trigger more warnings at
certain freeway locations, then the traffic-management author-
ities may closely watch such locations through surveillance
cameras. It will help in recognizing the problems associated
with these locations, e.g., weaving sections, configuration of the
ramps with respect to the freeway, etc.

It should be acknowledged that some parameters (e.g., the
rainfall information and human factors), which could poten-
tially impact the probability of a crash occurrence, have not
been included in the analysis. It is expected that the effect of
weather conditions (i.e., the rainfall) on traffic would arguably
be captured by the parameters measured at the loop detectors.
As for the human factors, the errors by individual driver(s)
would play a critical role in a crash occurrence. However, there
is no way to measure the behavior of all the drivers on a freeway
section in real time. Hence, the goal in this study was to try
and identify patterns observed in the loop-detector data before
the historical crashes. These patterns were then explained as
conditions in which crashes are more likely to occur and under
such conditions drivers need to be more attentive in order to
avoid crashes.

It should also be noted that the models developed here are
calibrated for the Interstate 4 corridor in Orlando. Therefore,
the same model coefficients may not be applicable for other cor-
ridors. However, the matched case-control sampling approach
can be easily extended to any other instrumented corridor
equipped with loop detectors.

Based on the results of this study and the understanding of
the crash occurrence phenomena, more aggressive strategies,
e.g., variable speed limits and warning the drivers through
variable message signs etc., need to be explored. These strate-
gies may be used by freeway management authorities to in-
tervene and reduce the crash potential. However, the develop-
ment of these proactive strategies, their application, and their
impact on drivers are nontrivial issues and demand separate
attention.
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